1
|
Iqbal N, Brien C, Jewell N, Berger B, Zhou Y, Denison RF, Denton MD. Chickpea displays a temporal growth response to Mesorhizobium strains under well-watered and drought conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70041. [PMID: 39807089 PMCID: PMC11730068 DOI: 10.1111/ppl.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions. Does the impact of rhizobial strains on chickpea growth change with well-watered versus drought conditions? Do Mesorhizobium strains differ in their ability to influence biomass and nodule traits of chickpea varieties under well-watered and drought conditions? Are bacteroid size and amount of polyhydroxybutyrate modified by Mesorhizobium strain, chickpea variety, water availability and their interactions? Under well-watered conditions, chickpea inoculated with CC1192 showed higher shoot growth rates than M075 and accumulated high plant biomass at harvest. Under drought conditions, however, the shoot growth rate was comparable between CC1192 and M075, with no significant difference in plant biomass and symbiotic effectiveness at harvest. Across sources of variation, plant biomass varied 3.0-fold, nodules per plant 3.9-fold, nodule dry weight 3.0-fold, symbiotic effectiveness 1.5-fold, bacteroid size 1.4-fold and bacteroid polyhydroxybutyrate 1.4-fold. Plant biomass was negatively correlated with both bacteroid size and allocation to polyhydroxybutyrate under well-watered conditions, suggesting a trade-off between plant and rhizobial fitness. This study demonstrates the need to reassess rhizobial strain effectiveness across diverse environments, recognising the dynamic nature of their interaction with host plants.
Collapse
Affiliation(s)
- Nasir Iqbal
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - Chris Brien
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Nathaniel Jewell
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Bettina Berger
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Yi Zhou
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - R. Ford Denison
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| | - Matthew D. Denton
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| |
Collapse
|
2
|
Pseudomonas fluorescens imparts cadmium stress tolerance in Arabidopsis thaliana via induction of AtPCR2 gene expression. J Genet Eng Biotechnol 2023; 21:8. [PMID: 36695935 PMCID: PMC9877264 DOI: 10.1186/s43141-022-00457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/17/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cadmium is a non-essential, third largest heavy metal contaminant with long retention time that poses environmental hazards. It emanating majorly from industrial processes and phosphate fertilizers. Cadmium is effortlessly assimilated by plants and leads to yield loss. Henceforth, identification of mechanisms to attenuate the heavy metal toxicity in crops is beneficial for enhanced yields. RESULTS Beneficial soil bacteria have been known to combat both biotic and abiotic stress, thereby promoting plant growth. Amongst them, Pseudomonas fluorescens has been shown to enhance abiotic stress resistance in umpteen crops for instance maize and groundnut. Here, we investigated the role of P. fluorescens in conferring cadmium stress resistance in Arabidopsis thaliana. In silico analysis of PCR2 gene and promoter revealed the role, in cadmium stress resistance of A. thaliana. Real-time expression analysis employing qRT-PCR ratified the upregulation of AtPCR2 transcript under cadmium stress up to 6 folds. Total leaf (50%), biomass (23%), chlorophyll content (chlorophyll-a and b 40%, and 36 %) silique number (50%), and other growth parameters significantly improved on bacterial treatment of the 2mM Cd-stressed plants. CONCLUSION Moreover, generated 35s-promoter driven AtPCR2 over-expressing transgenic lines that exhibited resistance to cadmium and other heavy metal stress. Taken together, a crucial interplay of P. fluorscens mediated enhanced expression of AtPCR2 significantly induced cadmium stress resistance in Arabidopsis plants.
Collapse
|
3
|
Impact of Two Strains of Rhizobium leguminosarum on the Adaptation to Terminal Water Deficit of Two Cultivars Vicia faba. PLANTS 2022; 11:plants11040515. [PMID: 35214847 PMCID: PMC8879231 DOI: 10.3390/plants11040515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/03/2023]
Abstract
Drought stress has become one of the most uncontrolled and unpredictable constraints on crop production. The purpose of this study was to evaluate the impacts of two different Rhizobium leguminosarum strains on terminal drought tolerance induction in two faba bean genotypes cultivated in Algeria, Aquadulce and Maltais. To this end, we measured physiological parameters—osmoprotectants accumulation, oxidative stress markers and enzyme activities—to assess the effect of R. leguminosarum inoculation on V. faba under terminal water deficiency conditions in greenhouse trials. Upregulation of anti-oxidative mechanisms and production of compatible solutes were found differentially activated according to Rhizobium strain. Drought stress resilience of the Maltais variety was improved using the local Rhizobium strain OL13 compared to the common strain 3841. Symbiosis with OL13 strain leads in particular to a much better production of proline and soluble sugar in nodules but also in roots and leaves of Maltais plant. Even if additional work is still necessary to decipher the mechanism by which a Rhizobium strain can affect the accumulation of osmoprotectants or cellular redox status in all the plants, inoculation with selected Rhizobium could be a promising strategy for improving water stress management in the forthcoming era of climate change.
Collapse
|
4
|
Garcia-Lemos AM, Großkinsky DK, Saleem Akhtar S, Nicolaisen MH, Roitsch T, Nybroe O, Veierskov B. Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Front Microbiol 2020; 11:566613. [PMID: 33281762 PMCID: PMC7705201 DOI: 10.3389/fmicb.2020.566613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Abies nordmanniana is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from A. nordmanniana. Laboratory screenings of a bacterial strain collection yielded several Bacillus and Paenibacillus strains that improved seed germination and produced indole-3-acetic acid. The impact of three of these strains on seed germination, plant growth and growth-related physiological parameters was then determined in greenhouse and field trials after seed inoculation, and their persistence was assessed by 16S rRNA gene-targeted bacterial community analysis. Two strains showed distinct and significant effects. Bacillus sp. s50 enhanced seed germination in the greenhouse but did not promote shoot or root growth. In accordance, this strain did not increase the level of soluble hexoses needed for plant growth but increased the level of storage carbohydrates. Moreover, strain s50 increased glutathione reductase and glutathione-S-transferase activities in the plant, which may indicate induction of systemic resistance during the early phase of plant development, as the strain showed poor persistence in the root samples (rhizosphere soil plus root tissue). Paenibacillus sp. s37 increased plant root growth, especially by inducing secondary root formation, under in greenhouse conditions, where it showed high persistence in the root samples. Under these conditions, it further it increased the level of soluble carbohydrates in shoots, and the levels of starch and non-structural carbohydrates in roots, stem and shoots. Moreover, it increased the chlorophyll level in the field trial. These findings indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs. The current results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions.
Collapse
Affiliation(s)
- Adriana M Garcia-Lemos
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.,Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln an der Donau, Austria
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.,Department of Adaptive Biotechnologies, Global Change Research Institute, Brno, Czechia
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bjarke Veierskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Garcia-Lemos AM, Großkinsky DK, Saleem Akhtar S, Nicolaisen MH, Roitsch T, Nybroe O, Veierskov B. Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Front Microbiol 2020. [PMID: 33281762 DOI: 10.3389/fmicb.2020.566613)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Abies nordmanniana is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from A. nordmanniana. Laboratory screenings of a bacterial strain collection yielded several Bacillus and Paenibacillus strains that improved seed germination and produced indole-3-acetic acid. The impact of three of these strains on seed germination, plant growth and growth-related physiological parameters was then determined in greenhouse and field trials after seed inoculation, and their persistence was assessed by 16S rRNA gene-targeted bacterial community analysis. Two strains showed distinct and significant effects. Bacillus sp. s50 enhanced seed germination in the greenhouse but did not promote shoot or root growth. In accordance, this strain did not increase the level of soluble hexoses needed for plant growth but increased the level of storage carbohydrates. Moreover, strain s50 increased glutathione reductase and glutathione-S-transferase activities in the plant, which may indicate induction of systemic resistance during the early phase of plant development, as the strain showed poor persistence in the root samples (rhizosphere soil plus root tissue). Paenibacillus sp. s37 increased plant root growth, especially by inducing secondary root formation, under in greenhouse conditions, where it showed high persistence in the root samples. Under these conditions, it further it increased the level of soluble carbohydrates in shoots, and the levels of starch and non-structural carbohydrates in roots, stem and shoots. Moreover, it increased the chlorophyll level in the field trial. These findings indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs. The current results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions.
Collapse
Affiliation(s)
- Adriana M Garcia-Lemos
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln an der Donau, Austria
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Brno, Czechia
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bjarke Veierskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Sim U, Sung J, Lee H, Heo H, Jeong HS, Lee J. Effect of calcium chloride and sucrose on the composition of bioactive compounds and antioxidant activities in buckwheat sprouts. Food Chem 2019; 312:126075. [PMID: 31893551 DOI: 10.1016/j.foodchem.2019.126075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
In this study, we evaluated the effect of sucrose and CaCl2 on the growth profile, nutritional quality, and antioxidant capacity of sprouted buckwheat. Buckwheat seeds were germinated at 25 °C for 8 days and sprayed with four different solutions: distilled water, 3% sucrose, 7.5 mM CaCl2, and 3% sucrose plus 7.5 mM CaCl2. Our results showed that CaCl2 effectively improved sucrose-elicitation induced growth reduction in buckwheat sprouts. Elicitation with both sucrose and CaCl2 in buckwheat sprouts markedly enhanced the accumulation of bioactive compounds, such as polyphenols, flavonoids, γ-aminobutyric acid, vitamin C, and E, without negatively affecting sprout growth. Elicitation with both sucrose and CaCl2 not only significantly enhanced the antioxidant activities but also exerted cytoprotective effects against oxidative damage in HepG2 cells and fibroblasts. These findings suggested that simultaneous elicitation with 3% sucrose and 7.5 mM CaCl2 can potentially improve the nutritional value and potential health benefits of buckwheat sprouts.
Collapse
Affiliation(s)
- Ung Sim
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Gyeongbuk 36729, South Korea
| | - Hana Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Huijin Heo
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea.
| |
Collapse
|
7
|
Garcia-Lemos AM, Großkinsky DK, Stokholm MS, Lund OS, Nicolaisen MH, Roitsch TG, Veierskov B, Nybroe O. Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Front Microbiol 2019; 10:1937. [PMID: 31507556 PMCID: PMC6714061 DOI: 10.3389/fmicb.2019.01937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Abies nordmanniana is a major Christmas tree species in Europe, but their uneven and prolonged growth slows down their production. By a 16S and 18S rRNA gene amplicon sequencing approach, we performed a characterization of root-associated bacterial and fungal communities for three-year-old A. nordmanniana plants collected from two nurseries in Denmark and Germany and displaying different growth patterns (small versus tall plants). Proteobacteria had the highest relative abundance at both sampling sites and plant sizes, and Ascomycota was the most abundant fungal phylum. At the order level, Acidobacteriales, Actinomycetales, Burkholderiales, Rhizobiales, and Xanthomonadales represented the bacterial core microbiome of A. nordmanniana, independently of the sampling site or plant size, while the fungal core microbiome included members of the Agaricales, Hypocreales, and Pezizales. Principal Coordinate Analysis indicated that both bacterial and fungal communities clustered according to the sampling site pointing to the significance of soil characteristics and climatic conditions for the composition of root-associated microbial communities. Major differences between communities from tall and small plants were a dominance of the potential pathogen Fusarium (Hypocreales) in the small plants from Germany, while Agaricales, that includes reported beneficial ectomycorrhizal fungi, dominated in the tall plants. An evaluation of plant root antioxidative enzyme profiles showed higher levels of the antioxidative enzymes ascorbate peroxidase, peroxidase, and superoxide dismutase in small plants compared to tall plants. We suggest that the higher antioxidative enzyme activities combined with the growth arrest phenotype indicate higher oxidative stress levels in the small plants. Additionally, the correlations between the relative abundances of specific taxa of the microbiome with the plant antioxidative enzyme profiles were established. The main result was that many more bacterial taxa correlated positively than negatively with one or more antioxidative enzyme activity. This may suggest that the ability of bacteria to increase plant antioxidative enzyme defenses is widespread.
Collapse
Affiliation(s)
- Adriana M. Garcia-Lemos
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michaela S. Stokholm
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole S. Lund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas G. Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bjarke Veierskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
8
|
Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-030-30926-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Kallala N, M'sehli W, Jelali K, Kais Z, Mhadhbi H. Inoculation with Efficient Nitrogen Fixing and Indoleacetic Acid Producing Bacterial Microsymbiont Enhance Tolerance of the Model Legume Medicago truncatula to Iron Deficiency. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9134716. [PMID: 30406145 PMCID: PMC6201330 DOI: 10.1155/2018/9134716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
The aim of this study was to assess the effect of symbiotic bacteria inoculation on the response of Medicago truncatula genotypes to iron deficiency. The present work was conducted on three Medicago truncatula genotypes: A17, TN8.20, and TN1.11. Three treatments were performed: control (C), direct Fe deficiency (DD), and induced Fe deficiency by bicarbonate (ID). Plants were nitrogen-fertilized (T) or inoculated with two bacterial strains: Sinorhizobium meliloti TII7 and Sinorhizobium medicae SII4. Biometric, physiological, and biochemical parameters were analyzed. Iron deficiency had a significant lowering effect on plant biomass and chlorophyll content in all Medicago truncatula genotypes. TN1.11 showed the highest lipid peroxidation and leakage of electrolyte under iron deficiency conditions, which suggest that TN1.11 was more affected than A17 and TN8.20 by Fe starvation. Iron deficiency affected symbiotic performance indices of all Medicago truncatula genotypes inoculated with both Sinorhizobium strains, mainly nodules number and biomass as well as nitrogen-fixing capacity. Nevertheless, inoculation with Sinorhizobium strains mitigates the negative effect of Fe deficiency on plant growth and oxidative stress compared to nitrogen-fertilized plants. The highest auxin producing strain, TII7, preserves relatively high growth and root biomass and length when inoculated to TN8.20 and A17. On the other hand, both TII7 and SII4 strains improve the performance of sensitive genotype TN1.11 through reduction of the negative effect of iron deficiency on chlorophyll and plant Fe content. The bacterial inoculation improved Fe-deficient plant response to oxidative stress via the induction of the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Nadia Kallala
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
- Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Wissal M'sehli
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Karima Jelali
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
- Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Zribi Kais
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| |
Collapse
|
10
|
Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba. PLoS One 2017; 12:e0190284. [PMID: 29281721 PMCID: PMC5744999 DOI: 10.1371/journal.pone.0190284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/11/2017] [Indexed: 01/24/2023] Open
Abstract
Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d'Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.
Collapse
|
11
|
Oliveira RS, Carvalho P, Marques G, Ferreira L, Nunes M, Rocha I, Ma Y, Carvalho MF, Vosátka M, Freitas H. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4379-4385. [PMID: 28071807 DOI: 10.1002/jsfa.8201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. RESULTS Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. CONCLUSION Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui S Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto, Porto, Portugal
| | - Patrícia Carvalho
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto, Porto, Portugal
| | - Guilhermina Marques
- University of Trás-os-Montes e Alto Douro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (UTAD-CITAB), Vila Real, Portugal
| | - Luís Ferreira
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Mafalda Nunes
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto, Porto, Portugal
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Miroslav Vosátka
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Charles University, Faculty of Science, Viničná 5, Praha 2, Czech Republic
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Wang X, Teng Y, Zhang N, Christie P, Li Z, Luo Y, Wang J. Rhizobial symbiosis alleviates polychlorinated biphenyls-induced systematic oxidative stress via brassinosteroids signaling in alfalfa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:68-77. [PMID: 28314132 DOI: 10.1016/j.scitotenv.2017.03.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 05/10/2023]
Abstract
The role of symbiotic rhizobia in the alleviation of polychlorinated biphenyl (PCB)-induced phytotoxicity in alfalfa and the brassinosteroid (BR) hormone signaling involved were investigated during phytoremediation. The association between alfalfa and Sinorhizobium meliloti was adopted as a remediation model. Phytotoxicity due to PCB 77 (3,3',4,4'-tetrachlorobiphenyl) exerted adverse impacts on plant performance (biomass accumulation and photosynthesis) and elicited cellular oxidative stress (overproduction of reactive oxygen species, lipid peroxidation, and cell necrosis) which was largely attenuated by pre-inoculation with S. meliloti strain NM. The protective role may have been achieved as a result of strengthening of basic antioxidant defense before stress as evidenced by the augmented activity and gene expression of antioxidative enzymes (peroxidase, glutathione reductase, superoxide dismutase, catalase, and ascorbate peroxidase) of both leaves and roots. In nodulated seedlings peroxidase showed additive increased activity following PCB exposure but the activities of the other four enzymes tended to remain stable after stress. Furthermore, application of strain NM and brassinolide both triggered the accumulation of endogenous BRs and the antioxidant network, while pre-treatment of seedlings with a biosynthetic inhibitor of BRs, brassinazole, abolished the rhizobia-induced activation of detoxification responses towards PCB. These observations indicate that association with S. meliloti NM enhanced the systemic antioxidant defenses of alfalfa to detoxify PCB, at least in part, via BR-dependent signaling pathways. These results contribute to our knowledge of the 'logistic role' played by rhizobia in assisting the phytoremediation of PCB-contaminated soils and suggest an optimum manipulation strategy for bioremediation.
Collapse
Affiliation(s)
- Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ning Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Wang
- Chongqing Research Academy of Environmental Sciences, Chongqing 401147, China
| |
Collapse
|
13
|
Egamberdieva D, Wirth S, Abd-Allah EF. Tripartite Interaction Among Root-Associated Beneficial Microbes Under Stress. RHIZOTROPHS: PLANT GROWTH PROMOTION TO BIOREMEDIATION 2017:219-236. [DOI: 10.1007/978-981-10-4862-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Bertrand A, Bipfubusa M, Dhont C, Chalifour FP, Drouin P, Beauchamp CJ. Rhizobial strains exert a major effect on the amino acid composition of alfalfa nodules under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:344-352. [PMID: 27508354 DOI: 10.1016/j.plaphy.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Specific amino acids have protective functions in plants under stress conditions. This study assessed the effects of rhizobial strains on the amino acid composition in alfalfa under salt stress. Two alfalfa cultivars (Medicago sativa L. cv Apica and salt-tolerant cv Halo) in association with two Sinorhizobium meliloti strains with contrasting growth under salt stress (strain A2 and salt-tolerant strain Rm1521) were exposed to different levels of NaCl (0, 20, 40, 80 or 160 mM NaCl) under controlled conditions. We compared root and shoot biomasses, as well as root:shoot ratio for each association under these conditions as indicators of the salt tolerance of the symbiosis. Amino acid concentrations were analyzed in nodules, leaves and roots. The total concentration of free amino acids in nodules was mostly rhizobial-strain dependent while in leaves and roots it was mostly responsive to salt stress. For both cultivars, total and individual concentrations of amino acids including asparagine, proline, glutamine, aspartate, glutamate, γ-aminobutyric acid (GABA), histidine and ornithine were higher in Rm1521 nodules than in A2 nodules. Conversely, lysine and methionine were more abundant in A2 nodules than in Rm1521 nodules. Proline, glutamine, arginine, GABA and histidine substantially accumulated in salt-stressed nodules, suggesting an enhanced production of amino acids associated with osmoregulation, N storage or energy metabolism to counteract salt stress. Combining the salt-tolerant strain Rm1521 and the salt-tolerant cultivar Halo enhanced the root:shoot ratios and amino acid concentrations involved in plant protection which could be in part responsible for the enhancement of salt tolerance in alfalfa.
Collapse
Affiliation(s)
- Annick Bertrand
- Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, Québec, G1V 2J3, QC, Canada.
| | - Marie Bipfubusa
- Departement de phytologie, 2425 rue de l'agriculture, Université Laval, Québec, G1V 0A6, QC, Canada.
| | - Catherine Dhont
- Departement de phytologie, 2425 rue de l'agriculture, Université Laval, Québec, G1V 0A6, QC, Canada.
| | - François-P Chalifour
- Departement de phytologie, 2425 rue de l'agriculture, Université Laval, Québec, G1V 0A6, QC, Canada.
| | - Pascal Drouin
- Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, J9X 5E4, QC, Canada.
| | - Chantal J Beauchamp
- Departement de phytologie, 2425 rue de l'agriculture, Université Laval, Québec, G1V 0A6, QC, Canada.
| |
Collapse
|
15
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
16
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
17
|
Cardoso P, Freitas R, Figueira E. Salt tolerance of rhizobial populations from contrasting environmental conditions: understanding the implications of climate change. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:143-152. [PMID: 25318616 DOI: 10.1007/s10646-014-1366-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
It is predicted that global climate change may alter environmental parameters such as rainfall distribution which in turn may alter the salinity of soils with unpredictable effects upon soil microbial populations. In the present work the tolerance to salinity of rhizobia, isolated from locations with contrasting climatic conditions, and the potential of strains to fix nitrogen symbiotically under saline conditions were investigated. Since plasmids may encode key genes related to growth and survival under environmental stress conditions, which will reflect on protein synthesis, both the plasmid and protein profiles were analyzed. A multivariate statistical approach related salt tolerance to the origin of the isolates, identifying rainfall and water availability as a possible factor explaining the differences in salt tolerance displayed by rhizobia isolates. The classification analysis allowed the subdivision of isolates in terms of salt tolerance into extremely sensitive (≤0.15 %), sensitive (0.15-0.6 %), moderately tolerant (0.9-1.5 %), tolerant (2.1-3.6 %) and extremely tolerant (≥5.4 %). Taken all together it was shown that plasmids are involved in salt tolerance and that the impact of salinity on the protein profile and nitrogen fixation varied according to the salt tolerance of the strains, evidencing the susceptibility of rhizobial communities to changes in rainfall regimes.
Collapse
Affiliation(s)
- Paulo Cardoso
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal,
| | | | | |
Collapse
|
18
|
Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:387-97. [PMID: 24267445 DOI: 10.1111/pbi.12146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 05/16/2023]
Abstract
Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N₂ inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N₂ fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N₂ fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N₂ versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Antioxidant responses of halophyte plant Aeluropus littoralis under long-term salinity stress. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0338-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM, Zhang JL, Wu YN, Pang XP, Xu WB, Wang ZL. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. FRONTIERS IN PLANT SCIENCE 2014; 5:525. [PMID: 25339966 PMCID: PMC4189326 DOI: 10.3389/fpls.2014.00525] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/16/2014] [Indexed: 05/20/2023]
Abstract
Soil salinity is an increasingly serious problem worldwide that reduces agricultural output potential. Selected beneficial soil bacteria can promote plant growth and augment tolerance to biotic and abiotic stresses. Bacillus subtilis strain GB03 has been shown to confer growth promotion and abiotic stress tolerance in the model plant Arabidopsis thaliana. Here we examined the effect of this beneficial soil bacterium on salt tolerance in the legume forage crop, white clover. Plants of white clover (Trifolium repens L. cultivar Huia) were grown from seeds with or without soil inoculation of the beneficial soil bacterium Bacillus subtilis GB03 supplemented with 0, 50, 100, or 150 mM NaCl water into soil. Growth parameters, chlorophyll content, malondialdehyde (MDA) content and osmotic potential were monitored during the growth cycle. Endogenous Na(+) and K(+) contents were determined at the time of harvest. White clover plants grown in GB03-inoculated soil were significantly larger than non-inoculated controls with respect to shoot height, root length, plant biomass, leaf area and chlorophyll content; leaf MDA content under saline condition and leaf osmotic potential under severe salinity condition (150 mM NaCl) were significantly decreased. Furthermore, GB03 significantly decreased shoot and root Na(+) accumulation and thereby improved K(+)/Na(+) ratio when GB03-inoculated plants were grown under elevated salt conditions. The results indicate that soil inoculation with GB03 promotes white clover growth under both non-saline and saline conditions by directly or indirectly regulating plant chlorophyll content, leaf osmotic potential, cell membrane integrity and ion accumulation.
Collapse
Affiliation(s)
- Qing-Qing Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xin-Pei Lü
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jiang-Ping Bai
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Yan Qiao
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech UniversityLubbock, TX, USA
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- *Correspondence: Jin-Lin Zhang, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 West Jiayuguan Road, Chengguan District, Lanzhou 730020, Gansu, China e-mail:
| | - Yong-Na Wu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xiao-Pan Pang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wen-Bo Xu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Zhi-Liang Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| |
Collapse
|
21
|
Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene inMesorhizobiumspp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 2013; 349:46-53. [DOI: 10.1111/1574-6968.12294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Clarisse Brígido
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| | - Francisco X. Nascimento
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| | - Jin Duan
- Department of Biology; University of Waterloo; Waterloo ON Canada
| | - Bernard R. Glick
- Department of Biology; University of Waterloo; Waterloo ON Canada
| | - Solange Oliveira
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| |
Collapse
|
22
|
Chihaoui SA, Mhadhbi H, Mhamdi R. The antibiosis of nodule-endophytic agrobacteria and its potential effect on nodule functioning of Phaseolus vulgaris. Arch Microbiol 2012; 194:1013-21. [DOI: 10.1007/s00203-012-0837-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/04/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
23
|
Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 2012; 135:1065-70. [PMID: 22953825 DOI: 10.1016/j.foodchem.2012.05.068] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/12/2012] [Accepted: 05/16/2012] [Indexed: 12/20/2022]
Abstract
The effect of salinity stress on the nutritional quality of buckwheat sprouts cultivated for 1, 3, 5, and 7d was investigated by analysis of the antioxidant activity and levels of phenolic compounds and carotenoids. Treatment with various concentrations of NaCl (10, 50, 100, and 200mM) resulted in an increase in the amount of phenolic compounds and carotenoids in the sprouts compared with the control (0mM). The phenolic contents of sprouts treated with 10, 50, and 100mM after 7d of cultivation were 57%, 121%, and 153%, respectively, higher than that of the control (0mM NaCl). Moreover, the accumulation of phenolic compounds was primarily caused by an increase in the levels of 4 compounds: isoorientin, orientin, rutin, and vitexin. The carotenoid content of sprouts treated with 50 and 100mM NaCl was twice higher than that of the control. In addition, the antioxidant activity of ethanol extracts of the sprouts was increased by NaCl treatment. Although the growth rate of sprouts decreased with >50mM NaCl, these results suggest that treatment of an appropriate concentration of NaCl improves the nutritional quality of sprouts, including the level of phenolic compounds, carotenoids, and antioxidant activity.
Collapse
Affiliation(s)
- Jeong-Ho Lim
- Korea Food Research Institute, Seongnam, Gyeonggi 463-746, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN. Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. PHYSIOLOGIA PLANTARUM 2011; 141:201-214. [PMID: 21114673 DOI: 10.1111/j.1399-3054.2010.01433.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Antioxidant responses and nodule function of Medicago truncatula genotypes differing in salt tolerance were studied. Salinity effects on nodules were analysed on key nitrogen fixation proteins such as nitrogenase and leghaemoglobin as well as estimating lipid peroxidation levels, and were found more dramatic in the salt-sensitive genotype. Antioxidant enzyme assays for catalase (CAT, EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) were analysed in nodules, roots and leaves treated with increasing concentrations of NaCl for 24 and 48 h. Symbiosis tolerance level, depending essentially on plant genotype, was closely correlated with differences of enzyme activities, which increased in response to salt stress in nodules (except CAT) and roots, whereas a complex pattern was observed in leaves. Gene expression responses were generally correlated with enzymatic activities in 24-h treated roots in all genotypes. This correlation was lost after 48 h of treatment for the sensitive and the reference genotypes, but it remained positively significant for the tolerant one that manifested a high induction for all tested genes after 48 h of treatment. Indeed, tolerance behaviour could be related to the induction of antioxidant genes in plant roots, leading to more efficient enzyme stimulation and protection. High induction of CAT gene was also distinct in roots of the tolerant genotype and merits further consideration. Thus, part of the salinity tolerance in M. truncatula is related to induction and sustained expression of highly regulated antioxidant mechanisms.
Collapse
Affiliation(s)
- Haythem Mhadhbi
- Laboratory of Legumes (LL), CBBC, BP 901, 2050 Hammam lif, Tunisia INA, CERTH, 6th km Charilaou-Thermis Road, 57001 Thermi, Greece.
| | | | | | | | | | | |
Collapse
|
25
|
Salt tolerance of a Sinorhizobium meliloti strain isolated from dry lands: growth capacity and protein profile changes. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0153-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Ben Salah I, Albacete A, Martínez Andújar C, Haouala R, Labidi N, Zribi F, Martinez V, Pérez-Alfocea F, Abdelly C. Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:477-88. [PMID: 18804311 DOI: 10.1016/j.jplph.2008.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/02/2008] [Accepted: 06/25/2008] [Indexed: 05/08/2023]
Abstract
The effect of salt stress on nitrogen fixation, in relation to sucrose transport towards nodules and other sink organs and the potential of sucrose breakdown by nodules, was investigated in two lines of Medicago ciliaris. Under salt stress conditions, the two lines showed a decrease of total biomass production, but TNC 1.8 was less affected by salt than TNC 11.9. The chlorophyll content was not changed in TNC 1.8, in contrast to TNC 11.9. Shoot, root, and nodule biomass were also affected in the two lines, but TNC 1.8 exhibited the higher potentialities of biomass production of these organs. Nitrogen fixation also decreased in the two lines, and was more sensitive to salt than growth parameters. TNC 1.8 consistently exhibited the higher values of nitrogen fixation. Unlike nodules, leaves of both lines were well supplied in nutrients with some exceptions. Specifically, the calcium content decreased in the sensitive line leaves, and the nodule magnesium content was not changed in either line. The tolerant line accumulated more sodium in its leaves. The two lines did not show any differences in the nodule sodium content. Sucrose allocation towards nodules was affected by salt in the two lines, but this constraint did not seem to affect the repartition of sucrose between sink organs. Salt stress induced perturbations in nodule sucrolytic activities in the two lines. It inhibited sucrose synthase, but the inhibition was more marked in TNC 11.9; alkaline/neutral activity was not altered in TNC 1.8, whereas it decreased more than half in TNC 11.9. Thus, the relative tolerance of TNC 1.8 to salt stress could be attributed to a better use of these photoassimilates by nodules and a better supply of bacteroids in malate. The hypothesis of a competition for sucrose between nodules and other sink organs under salt stress could not be verified.
Collapse
Affiliation(s)
- Imène Ben Salah
- Laboratoire d'Adaptation des Plantes aux Stress Abiotiques, CBBC, Hammam-Lif, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Talebi MB, Bahar M, Saeidi G, Mengoni A, Bazzicalupo M. Diversity of Sinorhizobium strains nodulating Medicago sativa from different Iranian regions. FEMS Microbiol Lett 2009; 288:40-6. [PMID: 18783438 DOI: 10.1111/j.1574-6968.2008.01329.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alfalfa is believed to have originated in north-western Iran and has a long history of coexistence with its bacterial symbiont Sinorhizobium in soils of Iran. However, little is known about the diversity of Sinorhizobium strains nodulating Iranian alfalfa genotypes. In this study, Sinorhizobium populations were sampled from eight different Iranian sites using three cultivars of Medicago sativa as trap host plants. A total of 982 rhizobial strains were isolated and species were identified showing a large prevalence of Sinorhizobium meliloti over Sinorhizobium medicae. Analysis of salt tolerance demonstrated a great phenotypic diversity. The genetic diversity of the Sinorhizobium isolates was analysed using BOX-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR. Patterns ofBOX-PCR fingerprinting were statistically analysed with AMOVA to evaluate the role of plant variety and site of origin in the genetic variance observed. Results indicated that most of the total molecular variance was attributable to divergence among strains isolated from different sites and cultivars (intrapopulation, strain-by-strain variance). Moreover, the analysis showed the presence of two geographic populations (west and northwest), indicating that the effect of the site of origin could be more relevant in shaping population genetic diversity than the effect of cultivar or individual plant.
Collapse
|
28
|
Kim HJ, Fonseca JM, Choi JH, Kubota C, Kwon DY. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3772-6. [PMID: 18439016 DOI: 10.1021/jf0733719] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The influence of salinity stress on the growth, appearance, and nutritional compounds, especially phenolic compounds and carotenoids, of romaine lettuce (Lactuca sativa L.), a low salt tolerant plant, was studied. The dry weight, height, and color of the lettuce plants were significantly changed by long-term irrigation (15 days) with higher NaCl concentration (i.e., >100 mM). However, no significant differences were observed in the growth and appearance among the control, all short-term treatments (2 days; 50, 100, 500, and 1000 mM), and long-term irrigation with low salt concentration. Moreover, in romaine lettuce treated with long-term irrigation with 5 mM NaCl, the total carotenoid content increased without color change, and the contents of major carotenoids in romaine lettuce, lutein and beta-carotene, increased 37 and 80%, respectively. No differences were observed in lutein and beta-carotene contents in short-term-treated lettuce. The phenolic content of the romaine lettuce declined with short-term salt irrigation, whereas there were no significant differences among treatments exposed to long-term irrigation. This research indicates that long-term irrigation with relatively low salt concentration, rather than short-term irrigation with high salt concentration, can increase carotenoid content in romaine lettuce without causing a tradeoff in yield or visual quality.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Yuma Agricultural Research Center, Department of Plant Sciences, The University of Arizona, Yuma, Arizona 85364, USA.
| | | | | | | | | |
Collapse
|
29
|
Kohler J, Hernández JA, Caravaca F, Roldán A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:141-151. [PMID: 32688765 DOI: 10.1071/fp07218] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 01/14/2008] [Indexed: 05/15/2023]
Abstract
This study examined the effect of inoculation with the plant-growth-promoting rhizobacterium (PGPR) Pseudomonas mendocina Palleroni, alone or in combination with an arbuscular mycorrhizal (AM) fungus, Glomus intraradices (Schenk & Smith) or Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, on antioxidant enzyme activities (superoxide dismutase, catalase and total peroxidase activities), phosphatase and nitrate reductase activities and solute accumulation in leaves of Lactuca sativa L. cv. Tafalla affected by three different levels of water stress. At moderate drought, bacterial inoculation and mycorrhizal inoculation with G. intraradices, alone or in combination, stimulated significantly nitrate reductase activity. At severe drought, fertilisation and P. mendocina inoculation, alone or in combination with either of the selected AM fungi, increased significantly phosphatase activity in lettuce roots and proline accumulation in leaves. Total peroxidase (POX) and catalase (CAT) activities increased in response to drought, whereas superoxide dismutase activity decreased. Inorganic fertilisation and both combined treatments of PGPR and AM fungus showed the highest values of leaf POX activity under severe drought. The highest CAT activity was recorded in the fertilised plants followed by the P. mendocina-inoculated plants grown under severe stress conditions. These results support the potential use of a PGPR as an inoculant to alleviate the oxidative damage produced under water stress.
Collapse
Affiliation(s)
- Josef Kohler
- Department of Soil and Water Conservation, CSIC-Centro de Edafologia y Biologia Aplicada del Segura, PO Box 164, Campus de Espinardo, Murcia 30100, Spain
| | - José Antonio Hernández
- Department of Plant Breeding, CSIC-Centro de Edafologia y Biologia Aplicada del Segura, PO Box 164, Campus de Espinardo, Murcia 30100, Spain
| | - Fuensanta Caravaca
- Department of Soil and Water Conservation, CSIC-Centro de Edafologia y Biologia Aplicada del Segura, PO Box 164, Campus de Espinardo, Murcia 30100, Spain.
| | - Antonio Roldán
- Department of Soil and Water Conservation, CSIC-Centro de Edafologia y Biologia Aplicada del Segura, PO Box 164, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|
30
|
Mhadhbi H, Jebara M, Zitoun A, Limam F, Aouani ME. Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea–rhizobia associations. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9571-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Chen DS, Li YG, Zhou JC. The symbiosis phenotype and expression patterns of five nodule-specific genes of Astragalus sinicus under ammonium and salt stress conditions. PLANT CELL REPORTS 2007; 26:1421-30. [PMID: 17415569 DOI: 10.1007/s00299-007-0346-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/04/2007] [Accepted: 03/10/2007] [Indexed: 05/14/2023]
Abstract
In previous works, we isolated 14 nodule-specific or nodule-enhanced genes from Astragalus sinicus by suppressive subtractive hybridization. In this study, we have further identified the expression patterns of five nodule-specific genes of A. sinicus under salt and ammonium stress. Transcription levels of genes tested were quantified by quantitative fluorescence real-time RT-PCR. Results showed that: (1) About 80 mM NaCl and all stress treatments containing (NH(4))(2)SO(4) significantly inhibited nitrogen-fixing capacity of inoculated plants. About 40 mM NaCl showed relative lighter inhibition. (2) Compare with positive control at normal conditions, the expressions of all genes were significantly reduced by all ammonium stress. (3) Under salt stress without exogenous nitrogen, transcription levels of AsIIA255 and AsE246 were significantly increased after treatment for 3 days. But expressions of AsG2411, AsIIC2512, and AsB2510 were suppressed by 80 mM NaCl and not significantly affected by 40 mM NaCl. (4) Under salt stress with exogenous nitrogen, expressions of AsG2411, AsIIC2512, AsB2510, and AsIIA255 were significantly suppressed. While, the transcription level of AsE246 under 80 mM NaCl containing 1 mM (NH(4))(2)SO(4) was still higher than that of positive control. The correlation of the expression profiles of three cysteine cluster protein (CCP) genes (AsG2411, AsIIC2512, AsIIA255) and one lipid transfer protein (LTP) gene (AsE246) with the nitrogen-fixing capacities of nodules in each treatments may explain the molecular mechanisms of their supposed functions in symbiosis and nitrogen-fixing process. Our results also implied that AsIIA255 and AsE246 might play a role in the response of A. sinicus to salt stress to facilitate the nitrogen-fixation process.
Collapse
Affiliation(s)
- Da-Song Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | |
Collapse
|