1
|
Furmanek Ł, Czarnota P, Tekiela A, Kapusta I, Seaward MRD. A spectrophotometric analysis of extracted water-soluble phenolic metabolites of lichens. PLANTA 2024; 260:40. [PMID: 38954049 PMCID: PMC11219455 DOI: 10.1007/s00425-024-04474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.
Collapse
Affiliation(s)
- Łukasz Furmanek
- Department of Ecology and Environmental Protection, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland.
- Unit for Assessment of Chemical, Pharmaceutical and Biological Documentation, Department for Assessment of Medicinal Products Documentation, The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Al. Jerozolimskie 181C, Warsaw, Poland.
| | - Paweł Czarnota
- Department of Ecology and Environmental Protection, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland
| | - Agata Tekiela
- Department of Agroecology and Forest Utilization, University of Rzeszów, Ćwiklińskiej 1A Street, 35-601, Rzeszów, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1 Street, 35-601, Rzeszów, Poland
| | - Mark R D Seaward
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
2
|
Jung P, Baumann K, Emrich D, Schermer M, Eckhardt KU, Jandl G, Leinweber P, Harion F, Wruck A, Grube M, Büdel B, Lakatos M. The dark side of orange: Multiorganismic continuum dynamics within a lichen of the Atacama Desert. Mycologia 2024; 116:44-58. [PMID: 37955984 DOI: 10.1080/00275514.2023.2263148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023]
Abstract
Over the decades our understanding of lichens has shifted to the fact that they are multiorganismic, symbiotic microecosystems, with their complex interactions coming to the fore due to recent advances in microbiomics. Here, we present a mutualistic-parasitic continuum dynamics scenario between an orange lichen and a lichenicolous fungus from the Atacama Desert leading to the decay of the lichen's photobiont and leaving behind a black lichen thallus. Based on isolation, sequencing, and ecophysiological approaches including metabolic screenings of the symbionts, we depict consequences upon infection with the lichenicolous fungus. This spans from a loss of the lichen's photosynthetic activity and an increased roughness of its surface to an inhibition of the parietin synthesis as a shared pathway between the photobiont and the mycobiont, including a shift of secondary metabolism products. This degree of relations has rarely been documented before, although lichenicolous fungi have been studied for over 200 years, adding an additional level to the view of interactions within lichens.
Collapse
Affiliation(s)
- Patrick Jung
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, Pirmasens 66953, Germany
| | - Karen Baumann
- Soil Science, Faculty of Agricultural and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, Rostock 18051, Germany
| | - Dina Emrich
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, Freiburg 79106, Germany
| | - Michael Schermer
- Biology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Erwin-Schrödinger Str. 52, Kaiserslautern 67663, Germany
| | - Kai-Uwe Eckhardt
- Soil Science, Faculty of Agricultural and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, Rostock 18051, Germany
| | - Gerald Jandl
- Soil Science, Faculty of Agricultural and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, Rostock 18051, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, Rostock 18051, Germany
| | - Felix Harion
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, Pirmasens 66953, Germany
| | - Andreas Wruck
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, Pirmasens 66953, Germany
| | - Martin Grube
- Institute of Biology, University of Graz, Holteigasse 6, Graz 8010, Austria
| | - Burkhard Büdel
- Department of Biology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Erwin-Schrödinger Str. 52, Kaiserslautern 67663, Germany
| | - Michael Lakatos
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, Pirmasens 66953, Germany
| |
Collapse
|
3
|
Paguirigan JAG, Kim JA, Hur JS, Kim W. Identification of a biosynthetic gene cluster for a red pigment cristazarin produced by a lichen-forming fungus Cladonia metacorallifera. PLoS One 2023; 18:e0287559. [PMID: 37352186 PMCID: PMC10289310 DOI: 10.1371/journal.pone.0287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs). Here, we identified a putative BGC that is implicated in production of a red pigment, cristazarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was shown to be specifically induced in growth media containing fructose as a sole carbon source. Thus, we performed transcriptome analysis of C. metacorallifera growing on different carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyketide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS (coined crz7) was highly expressed in growth media containing either fructose or glucose. The borders of a cristazarin gene cluster were delimited by co-expression patterns of neighboring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in C. borealis and C. macilenta, indicating that these related species also have metabolic potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under inducing and non-inducing conditions is an effective strategy for linking metabolites of interest to biosynthetic genes.
Collapse
Affiliation(s)
- Jaycee Augusto Gumiran Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Jung A. Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
4
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
5
|
Fan D, Liu L, Cao S, Liao R, Liu C, Zhou Q. Transcriptional analysis of the dimorphic fungus Umbilicaria muehlenbergii reveals the molecular mechanism of phenotypic transition. World J Microbiol Biotechnol 2023; 39:170. [PMID: 37185920 DOI: 10.1007/s11274-023-03618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The lichen-forming fungus Umbilicaria muehlenbergii undergoes a phenotypic transition from a yeast-like to a pseudohyphal form. However, it remains unknown if a common mechanism is involved in the phenotypic switch of U. muehlenbergii at the transcriptional level. Further, investigation of the phenotype switch molecular mechanism in U. muehlenbergii has been hindered by incomplete genomic sequencing data. Here, the phenotypic characteristics of U. muehlenbergii were investigated after cultivation on several carbon sources, revealing that oligotrophic conditions due to nutrient stress (reduced strength PDA (potato dextrose agar) media) exacerbated the pseudohyphal growth of U. muehlenbergii. Further, the addition of sorbitol, ribitol, and mannitol exacerbated the pseudohyphal growth of U. muehlenbergii regardless of PDA medium strength. Transcriptome analysis of U. muehlenbergii grown in normal and nutrient-stress conditions revealed the presence of several biological pathways with altered expression levels during nutrient stress and related to carbohydrate, protein, DNA/RNA and lipid metabolism. Further, the results demonstrated that altered biological pathways can cooperate during pseudohyphal growth, including pathways involved in the production of protectants, acquisition of other carbon sources, or adjustment of energy metabolism. Synergistic changes in the functioning of these pathways likely help U. muehlenbergii cope with dynamic stimuli. These results provide insights into the transcriptional response of U. muehlenbergii during pseudohyphal growth under oligotrophic conditions. Specifically, the transcriptomic analysis indicated that pseudohyphal growth is an adaptive mechanism of U. muehlenbergii that facilitates its use of alternative carbon sources to maintain survival.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lushan Liu
- Emergency Department of China Rehabilitation Research Center, Capital medical University, Fengtai District, No. 10 Jiaomen North Street, Beijing, 100068, China
| | - Shunan Cao
- Key Laboratory for Polar Science MNR, Polar Research Institute of China, NO.1000 Xuelong Road, Pudong, Shanghai, China
| | - Rui Liao
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China.
| | - Qiming Zhou
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China.
| |
Collapse
|
6
|
Ren M, Jiang S, Wang Y, Pan X, Pan F, Wei X. Discovery and excavation of lichen bioactive natural products. Front Microbiol 2023; 14:1177123. [PMID: 37138611 PMCID: PMC10149937 DOI: 10.3389/fmicb.2023.1177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Lichen natural products are a tremendous source of new bioactive chemical entities for drug discovery. The ability to survive in harsh conditions can be directly correlated with the production of some unique lichen metabolites. Despite the potential applications, these unique metabolites have been underutilized by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability, and technical challenges involved in their artificial cultivation. At the same time, DNA sequence data have revealed that the number of encoded biosynthetic gene clusters in a lichen is much higher than in natural products, and the majority of them are silent or poorly expressed. To meet these challenges, the one strain many compounds (OSMAC) strategy, as a comprehensive and powerful tool, has been developed to stimulate the activation of silent or cryptic biosynthetic gene clusters and exploit interesting lichen compounds for industrial applications. Furthermore, the development of molecular network techniques, modern bioinformatics, and genetic tools is opening up a new opportunity for the mining, modification, and production of lichen metabolites, rather than merely using traditional separation and purification techniques to obtain small amounts of chemical compounds. Heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offer a promising means for a sustainable supply of specialized metabolites. In this review, we summarized the known lichen bioactive metabolites and highlighted the application of OSMAC, molecular network, and genome mining-based strategies in lichen-forming fungi for the discovery of new cryptic lichen compounds.
Collapse
Affiliation(s)
- Meirong Ren
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Shuhua Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Kello M, Goga M, Kotorova K, Sebova D, Frenak R, Tkacikova L, Mojzis J. Screening Evaluation of Antiproliferative, Antimicrobial and Antioxidant Activity of Lichen Extracts and Secondary Metabolites In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:611. [PMID: 36771693 PMCID: PMC9919983 DOI: 10.3390/plants12030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Lichen metabolites represent a wide range of substances with a variety of biological effects. The present study was designed to analyze the potential antiproliferative, antimicrobial and antioxidative effects of several extracts from lichens (Pseudevernia furfuracea, Lobaria pulmonaria, Cetraria islandica, Evernia prunastri, Stereocaulon tomentosum, Xanthoria elegans and Umbilicaria hirsuta) and their secondary metabolites (atranorin, physodic acid, evernic acid and gyrophoric acid). The crude extract, as well as the isolated metabolites, showed potent antiproliferative, cytotoxic activity on a broad range of cancer cell lines in 2D (monolayer) and 3D (spheroid) models. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and in vitro antimicrobial activities were assessed. Data showed that the lichen extracts, as well as the compounds present, possessed biological potential in the studied assays. It was also observed that the extracts were more efficient and their major compounds showed strong effects as antiproliferative, antioxidant and antibacterial agents. Moreover, we demonstrated the 2D and 3D models' importance to drug discovery for further in vivo studies. Despite the fact that lichen compounds have been neglected by the scientific community for long periods, nowadays they are objects of investigation based on their promising effects.
Collapse
Affiliation(s)
- Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Michal Goga
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, 041 67 Košice, Slovakia
| | - Klaudia Kotorova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Richard Frenak
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, 041 67 Košice, Slovakia
| | - Ludmila Tkacikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
8
|
Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. Lichen Depsidones with Biological Interest. PLANTA MEDICA 2022; 88:855-880. [PMID: 34034351 DOI: 10.1055/a-1482-6381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Depsidones are some of the most abundant secondary metabolites produced by lichens. These compounds have aroused great pharmacological interest due to their activities as antioxidants, antimicrobial, and cytotoxic agents. Hence, this paper aims to provide up-to-date knowledge including an overview of the potential biological interest of lichen depsidones. So far, the most studied depsidones are fumarprotocetraric acid, lobaric acid, norstictic acid, physodic acid, salazinic acid, and stictic acid. Their pharmacological activities have been mainly investigated in in vitro studies and, to a lesser extent, in in vivo studies. No clinical trials have been performed yet. Depsidones are promising cytotoxic agents that act against different cell lines of animal and human origin. Moreover, these compounds have shown antimicrobial activity against both Gram-positive and Gram-negative bacteria and fungi, mainly Candida spp. Furthermore, depsidones have antioxidant properties as revealed in oxidative stress in vitro and in vivo models. Future research should be focused on further investigating the mechanism of action of depsidones and in evaluating new potential actions as well as other depsidones that have not been studied yet from a pharmacological perspective. Likewise, more in vivo studies are prerequisite, and clinical trials for the most promising depsidones are encouraged.
Collapse
Affiliation(s)
- Isabel Ureña-Vacas
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| | - Pradeep Kumar Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| | - M Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (Spain)
| |
Collapse
|
9
|
Srinivasan M, Shanmugam K, Neelakantan HG. Natural Product Investigation in Lichens: Extraction and HPLC Analysis of Secondary Compounds in Mycobiont Cultures. Methods Mol Biol 2022; 2489:459-468. [PMID: 35524065 DOI: 10.1007/978-1-0716-2273-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatography techniques facilitate separation, purification, and identification of secondary compounds (natural products) in lichens and their mycobiont cultures. In particular, high-performance liquid chromatography (HPLC) plays a vital role in the identification of lichen substances because of its high sensitivity, speed, and reliability with the minimal sample. Therefore, we describe the extraction and HPLC protocol for the investigation of secondary compounds with a special focus on lichen mycobiont cultures.
Collapse
Affiliation(s)
- Muthukumar Srinivasan
- Lichen Ecology and Bioprospecting Laboratory, Biotechnology Programme, M.S. Swaminathan Research Foundation, Chennai, India
| | - Karthik Shanmugam
- Lichen Ecology and Bioprospecting Laboratory, Biotechnology Programme, M.S. Swaminathan Research Foundation, Chennai, India
| | | |
Collapse
|
10
|
Shanmugam K, Srinivasan M, Neelakantan HG. Insights into in vitro phenotypic plasticity, growth and secondary metabolites of the mycobiont isolated from the lichen Platygramme caesiopruinosa. Arch Microbiol 2021; 204:90. [DOI: 10.1007/s00203-021-02685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/01/2022]
|
11
|
Metabolic processes involved with sugar alcohol and secondary metabolite production in the hyperaccumulator lichen Diploschistes muscorum reveal its complex adaptation strategy against heavy-metal stress. Fungal Biol 2021; 125:999-1008. [PMID: 34776237 DOI: 10.1016/j.funbio.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
The synthesis of various unique secondary metabolites by lichens is the result of mutualistic symbiotic association between the mycobiont and autotrophic photobiont. The function of these compounds and causal factors for their production are not fully understood. This paper examines the effect of heavy-metal bioaccumulation and physiological parameters related to photosynthesis and carbon metabolism on the production of lichen substances in hyperaccumulator Diploschistes muscorum. The obtained model of secondary metabolite concentrations in the thalli demonstrates that the carbon source provided by the photobiont and associated polyols produced by the mycobiont have positive impact on the production; on the contrary, the increased intracellular load of heavy metals and excessive loss of cell membrane integrity adversely affected secondary metabolite contents. Additionally, the production of secondary metabolites appears to be more dependent on intracellular metal concentrations than on soil pollution level. To compensate for metal stress, both efficient functioning of algal component and sufficient production of secondary metabolites are required. The balanced physiological functioning of mycobiont and photobiont constitutes the complex protective mechanism to alleviate the harmful effects of heavy metal stress on primary and secondary metabolism of lichens.
Collapse
|
12
|
Jeong MH, Park CH, Kim JA, Choi ED, Kim S, Hur JS, Park SY. Production and Activity of Cristazarin in the Lichen-Forming Fungus Cladonia metacorallifera. J Fungi (Basel) 2021; 7:601. [PMID: 34436140 PMCID: PMC8397021 DOI: 10.3390/jof7080601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Lichens are a natural source of bioactive compounds. Cladonia metacorallifera var. reagens KoLRI002260 is a rare lichen known to produce phenolic compounds, such as rhodocladonic, thamnolic, and didymic acids. However, these metabolites have not been detected in isolated mycobionts. We investigated the effects of six carbon sources on metabolite biosynthesis in the C. metacorallifera mycobiont. Red pigments appeared only in Lilly and Barnett's media with fructose at 15 °C after 3 weeks of culture and decreased after 6 weeks. We purified these red pigments using preparative-scale high performance liquid chromatography and analyzed them via nuclear magnetic resonance. Results indicated that 1% fructose-induced cristazarin and 6-methylcristazarin production under light conditions. In total, 27 out of 30 putative polyketide synthase genes were differentially expressed after 3 weeks of culture, implying that these genes may be required for cristazarin production in C. metacorallifera. Moreover, the white collar genes Cmwc-1 and Cmwc-2 were highly upregulated at all times under light conditions, indicating a possible correlation between cristazarin production and gene expression. The cancer cell lines AGS, CT26, and B16F1 were sensitive to cristazarin, with IC50 values of 18.2, 26.1, and 30.9 μg/mL, respectively, which highlights the value of cristazarin. Overall, our results suggest that 1% fructose under light conditions is required for cristazarin production by C. metacorallifera mycobionts, and cristazarin could be a good bioactive compound.
Collapse
Affiliation(s)
- Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Sunchoeon 57922, Korea; (M.-H.J.); (C.-H.P.)
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea;
| | - Chan-Ho Park
- Korean Lichen Research Institute, Sunchon National University, Sunchoeon 57922, Korea; (M.-H.J.); (C.-H.P.)
| | - Jung A Kim
- National Institute of Biological Resources, Incheon 22689, Korea; (J.A.K.); (S.K.)
| | - Eu Ddeum Choi
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea;
| | - Soonok Kim
- National Institute of Biological Resources, Incheon 22689, Korea; (J.A.K.); (S.K.)
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchoeon 57922, Korea; (M.-H.J.); (C.-H.P.)
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
13
|
Kim W, Liu R, Woo S, Kang KB, Park H, Yu YH, Ha HH, Oh SY, Yang JH, Kim H, Yun SH, Hur JS. Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression. mBio 2021; 12:e0111121. [PMID: 34154413 PMCID: PMC8262933 DOI: 10.1128/mbio.01111-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sunmin Woo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Ji Ho Yang
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
14
|
Kim W, Jeong MH, Yun SH, Hur JS. Transcriptome Analysis Identifies a Gene Cluster for the Biosynthesis of Biruloquinone, a Rare Phenanthraquinone, in a Lichen-Forming Fungus Cladonia macilenta. J Fungi (Basel) 2021; 7:398. [PMID: 34065383 PMCID: PMC8161216 DOI: 10.3390/jof7050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Lichens are prolific producers of natural products of polyketide origin. We previously described a culture of lichen-forming fungus (LFF) Cladonia macilenta that produces biruloquinone, a purple pigment that is a phenanthraquinone rarely found in nature. However, there was no genetic information on the biosynthesis of biruloquinone. To identify a biosynthetic gene cluster for biruloquinone, we mined polyketide synthase (PKS) genes from the genome sequence of a LFF isolated from thalli of C. macilenta. The 38 PKS in C. macilenta are highly diverse, many of which form phylogenetic clades with PKS previously characterized in non-lichenized fungi. We compared transcriptional profiles of the 38 PKS genes in two chemotypic variants, one producing biruloquinone and the other producing no appreciable metabolite in vitro. We identified a PKS gene (hereafter PKS21) that was highly upregulated in the LFF that produces biruloquinone. The boundaries of a putative biruloquinone gene cluster were demarcated by co-expression patterns of six clustered genes, including the PKS21. Biruloquinone gene clusters exhibited a high degree of synteny between related species. In this study we identified a novel PKS family responsible for the biosynthesis of biruloquinone through whole-transcriptome analysis.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
15
|
Axenic culture and biosynthesis of secondary compounds in lichen symbiotic fungi, the Parmeliaceae. Symbiosis 2020. [DOI: 10.1007/s13199-020-00719-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Phytochemical and biological evaluation of metabolites produced by alginate-immobilized Bionts isolated from the lichen Cladonia substellata vain. Fitoterapia 2018; 131:23-34. [PMID: 30304706 DOI: 10.1016/j.fitote.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
In this work, new biotechnological procedures have been optimized on the basis of immobilization in alginate of bionts isolated from the lichen C. substellata. From these immobilizates, soluble and biologically active phenolics can be obtained. During bionts-immobilization, stictic, norstictic and usnic acids were secreted to the medium. The amount produced of each of them differed depending on the immobilization time, the precursor supplied and the type of biont used. Greater amounts of stictic acid were detected and maintained over time in all bioreactors. The opposite occurs in non-immobilized thallus. Virtually, all lichen phenols exhibit antioxidant activity to a greater or lesser degree, so that the antioxidant capacity of stictic acid (82.13% oxidation inhibition) was tested. The soluble extract of immobilized algae co-incubated in sodium acetate with fungal hyphae contained carbohydrates and exhibited a potent antioxidant capacity after 13 days of immobilization (94.87%). Therefore, attempts have been made to relate both parameters. On the other hand, the growth of Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae was inhibited by phenolic compounds produced by immobilizates, although the organic extract of the whole lichen showed the highest activity due to a possible synergy with other indeterminate compounds. Thus, C. substellata immobilized bionts are a potential source of different natural antioxidant and antimicrobial compounds.
Collapse
|
17
|
A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi. J Ind Microbiol Biotechnol 2018; 45:1067-1081. [PMID: 30206732 DOI: 10.1007/s10295-018-2080-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.
Collapse
|
18
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential. JOURNAL OF NATURAL PRODUCTS 2018; 81:723-731. [PMID: 29485276 DOI: 10.1021/acs.jnatprod.7b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
19
|
Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47:1730-1760. [PMID: 29094129 DOI: 10.1039/c7cs00431a] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
20
|
Fazio AT, Adler MT, Parnmen S, Lücking R, Maier MS. Production of the bioactive pigment elsinochrome A by a cultured mycobiont strain of the lichen Graphis elongata. Mycol Prog 2018. [DOI: 10.1007/s11557-017-1374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Felczykowska A, Pastuszak-Skrzypczak A, Pawlik A, Bogucka K, Herman-Antosiewicz A, Guzow-Krzemińska B. Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming fungi. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:300. [PMID: 28592323 PMCID: PMC5463493 DOI: 10.1186/s12906-017-1819-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/31/2017] [Indexed: 11/10/2022]
Abstract
Background Lichens that were used in traditional medicine for ages produce numerous secondary metabolites, however our knowledge about biological activities of substances secreted by separated bionts is scarce. The main objectives of this study were to isolate and find optimal conditions for the growth of mycelia from three common lichen-forming fungi, i.e. Caloplaca pusilla, Protoparmeliopsis muralis and Xanthoria parietina and to evaluate antibacterial and antiproliferative activities of their acetone extracts. Methods Agar disc diffusion and broth microdilution methods were used to test antimicrobial activity against six species of bacteria. MTT method, flow cytometry assay and DAPI staining were applied to test antiproliferative activity of selected extracts against MCF-7 (human breast adenocarcinoma), PC-3 (human prostate cancer) and HeLa (human cervix adenocarcinoma) cancer cells. Results P. muralis strongly inhibited the growth of Gram-positive bacteria, i.e. Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis (MICs from 6.67 to 100.00 μg mL−1). X. parietina grown on PDA and G-LBM media decreased HeLa or MCF-7 cancer cells viability with IC50 values of about 8 μg mL−1, while C. pusilla grown on G-LBM medium showed the highest potency in decreasing MCF-7 (7.29 μg mL−1), PC-3 (7.96 μg mL−1) and HeLa (6.57 μg mL−1) cancer cells viability. We also showed induction of apoptosis in HeLa, PC-3 and MCF-7 cell lines treated with increasing concentrations of C. pusilla extract. Conclusion We showed that selected acetone extracts demonstrated a strong antimicrobial and anticancer effects that suggests that aposymbiotically cultured lichen-forming fungi can be a source of antibacterial and antiproliferative compounds.
Collapse
|
22
|
Muggia L, Kopun T, Grube M. Effects of Growth Media on the Diversity of Culturable Fungi from Lichens. Molecules 2017; 22:E824. [PMID: 28513562 PMCID: PMC6154544 DOI: 10.3390/molecules22050824] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy.
| | - Theodora Kopun
- Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria.
| | - Martin Grube
- Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria.
| |
Collapse
|
23
|
Muggia L, Fernández-Brime S, Grube M, Wedin M. Schizoxylon as an experimental model for studying interkingdom symbiosis. FEMS Microbiol Ecol 2016; 92:fiw165. [PMID: 27507738 DOI: 10.1093/femsec/fiw165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Experiments to re-synthesise lichens so far focused on co-cultures of fungal and algal partners. However, recent studies have revealed that bacterial communities colonise lichens in a stable and host-specific manner. We were therefore interested in testing how lichenised fungi and algae interact with selected bacteria in an experimental setup. We selected the symbiotic system of Schizoxylon albescens and the algal genera Coccomyxa and Trebouxia as a suitable model. We isolated bacterial strains from the naturally occurring bacterial fraction of freshly collected specimens and established tripartite associations under mixed culture experiments. The bacteria belong to Actinobacteria, Firmicutes and Proteobacteria and corresponded to groups already found associated with fungi including lichens. In mixed cultures with Coccomyxa, the fungus formed a characteristic filamentous matrix and tightly contacted the algae; the bacteria distributed in small patches between the algal cells and attached to the cell walls. In mixed cultures with Trebouxia, the fungus did not develop the filamentous matrix, but bacterial cells were observed to be tightly adhering to the fungal hyphae. Our experiments show that this tripartite fungal-algal-bacterial model system can be maintained in culture and can offer multiple opportunities for functional studies based on experiments under controlled conditions in the laboratory.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Science, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Samantha Fernández-Brime
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden
| | - Martin Grube
- Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden
| |
Collapse
|
24
|
Elshobary ME, Osman ME, Abo-Shady AM, Komatsu E, Perreault H, Sorensen J, Piercey-Normore MD. Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina. Mycologia 2016; 108:646-656. [PMID: 27091386 DOI: 10.3852/15-263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023]
Abstract
Lichen secondary metabolites (polyketides) are produced by the fungal partner, but the role of algal carbohydrates in polyketide biosynthesis is not clear. This study examined whether the type and concentration of algal carbohydrate explained differences in polyketide production and gene transcription by a lichen fungus (Cladonia rangiferina). The carbohydrates identified from a free-living cyanobacterium (Spirulina platensis; glucose), a lichen-forming alga (Diplosphaera chodatii; sorbitol) and the lichen alga that associates with C. rangiferina (Asterochloris sp.; ribitol) were used in each of 1%, 5% and 10% concentrations to enrich malt yeast extract media for culturing the mycobiont. Polyketides were determined by high performance liquid chromatography (HPLC), and polyketide synthase (PKS) gene transcription was measured by quantitative PCR of the ketosynthase domain of four PKS genes. The lower concentrations of carbohydrates induced the PKS gene expression where ribitol up-regulated CrPKS1 and CrPKS16 gene transcription and sorbitol up-regulated CrPKS3 and CrPKS7 gene transcription. The HPLC results revealed that lower concentrations of carbon sources increased polyketide production for three carbohydrates. One polyketide from the natural lichen thallus (fumarprotocetraric acid) also was produced by the fungal culture in ribitol supplemented media only. This study provides a better understanding of the role of the type and concentration of the carbon source in fungal polyketide biosynthesis in the lichen Cladonia rangiferina.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2; and Department of Botany, University of Tanta, Egypt
| | - Mohamed E Osman
- Department of Botany, Faculty of Science, University of Tanta, Egypt
| | - Atef M Abo-Shady
- Department of Botany, Faculty of Science, University of Tanta, Egypt
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - John Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | | |
Collapse
|
25
|
Shanmugam K, Srinivasan M, Hariharan GN. Developmental stages and secondary compound biosynthesis of mycobiont and whole thallus cultures of Buellia subsororioides. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1184-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Abdel-Hameed M, Bertrand RL, Piercey-Normore MD, Sorensen JL. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus. Fungal Biol 2015; 120:306-16. [PMID: 26895859 DOI: 10.1016/j.funbio.2015.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 11/29/2022]
Abstract
To identify the biosynthetic gene cluster responsible for the biosynthesis of the polyketide usnic acid we carried out the de novo genome sequencing of the fungal partner of Cladonia uncialis. This was followed by comprehensive in silico annotation of polyketide synthase (PKS) genes. The biosynthesis of usnic acid requires a non-reducing PKS possessing a carbon methylation (CMeT) domain, a terminal Claisen cyclase (CLC) domain, and an accompanying oxidative enzyme that dimerizes methylphloracetophenone to usnic acid. Of the 32 candidate PKS genes identified in the mycobiont genome, only one was identified as consistent with these biosynthetic requirements. This gene cluster contains two genes encoding a non-reducing PKS and a cytochrome p450, which have been respectively named methylphloracetophenone synthase (MPAS) and methylphloracetophenone oxidase (MPAO). Both mpas and mpao were demonstrated to be transcriptionally active by reverse transcriptase-PCR of the mRNA in a lichen sample that was observed by HPLC to produce usnic acid. Phylogenetic analysis of the bioinformatically identified ketosynthase (KS) and CLC domains of MPAS demonstrated that mpas grouped within a unique clade and that mpas could be used as a phylogenetic probe to identify other MPAS genes.
Collapse
Affiliation(s)
- Mona Abdel-Hameed
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Robert L Bertrand
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | | - John L Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
27
|
Molina MC, Divakar PK, González N. Success in the isolation and axenic culture of Anaptychia ciliaris (Physciaceae, Lecanoromycetes) mycobiont. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Relationship between the algal partners and the growth of lichen-forming fungus Porpidia crustulata. Symbiosis 2014. [DOI: 10.1007/s13199-014-0275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Meessen J, Sánchez FJ, Sadowsky A, de la Torre R, Ott S, de Vera JP. Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. ORIGINS LIFE EVOL B 2013; 43:501-26. [PMID: 24362711 DOI: 10.1007/s11084-013-9348-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/25/2013] [Indexed: 10/25/2022]
Abstract
Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.
Collapse
Affiliation(s)
- J Meessen
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Universitätsstr.1, 40225, Düsseldorf, Germany,
| | | | | | | | | | | |
Collapse
|
30
|
Timsina BA, Sorensen JL, Weihrauch D, Piercey-Normore MD. Effect of aposymbiotic conditions on colony growth and secondary metabolite production in the lichen-forming fungus Ramalina dilacerata. Fungal Biol 2013; 117:731-43. [PMID: 24295912 DOI: 10.1016/j.funbio.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022]
Affiliation(s)
- Brinda A Timsina
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | |
Collapse
|
31
|
Leavitt SD, Esslinger TL, Divakar PK, Lumbsch HT. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evol Biol 2012; 12:176. [PMID: 22963132 PMCID: PMC3499221 DOI: 10.1186/1471-2148-12-176] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/30/2012] [Indexed: 01/22/2023] Open
Abstract
Background Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. Results We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different demographic histories between sexually and vegetatively reproducing lineages. Conclusions Our results contribute to the understanding of how major changes during the Miocene and Pliocene have been important in promoting diversification within common lichen-forming fungi in the northern Hemisphere. Additionally, we provide evidence that glacial oscillations have influenced current population structure of broadly distributed lichenized fungal species throughout the Holarctic.
Collapse
|
32
|
Contents of carbon based defence compounds in the old forest lichen Lobaria pulmonaria vary along environmental gradients. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2011.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Leavitt SD, Johnson LA, Goward T, St. Clair LL. Species delimitation in taxonomically difficult lichen-forming fungi: An example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol Phylogenet Evol 2011; 60:317-32. [DOI: 10.1016/j.ympev.2011.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/03/2023]
|
34
|
Complex patterns of speciation in cosmopolitan “rock posy” lichens – Discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evol 2011; 59:587-602. [DOI: 10.1016/j.ympev.2011.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
|
35
|
Leavitt SD, Johnson L, St Clair LL. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. AMERICAN JOURNAL OF BOTANY 2011; 98:175-188. [PMID: 21613107 DOI: 10.3732/ajb.1000230] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Accurate species delimitation is important for understanding the diversification of biota and has critical implications for ecological and conservation studies. However, a growing body of evidence indicates that morphology-based species circumspection in lichenized fungi misrepresents fungal diversity. The foliose lichen genus Xanthoparmelia includes over 800 species displaying a complex array of morphological and secondary metabolite diversity. METHODS We used a multifaceted approach, applying phylogenetic, population genetic, and genealogical analyses to delimit species in a single well-supported monophyletic clade containing 10 morphologically and chemically diverse Xanthoparmelia species in western North America. Sequence data from four ribosomal and two low-copy, protein-coding markers, along with chemical and morphological data were used to assess species diversity. KEY RESULTS We found that traditionally circumscribed species are not supported by molecular data. Rather, all sampled taxa were better represented by three polymorphic population clusters. Our results suggest that secondary metabolite variation may have limited utility in diagnosing lineages within this group, while identified populations clusters did not reflect major phylogeographic or ecological patterns. CONCLUSIONS In contrast to studies revealing previously undiscovered fungal lineages masked within lichen species circumscribed by traditional morphological and chemical concepts, the present study suggests that species diversity has been overestimated in the species-rich genus Xanthoparmelia.
Collapse
Affiliation(s)
- Steven D Leavitt
- Department of Biology and the M. L. Bean Life Science Museum, 401 WIDB, Brigham Young University, Provo, Utah 84602, USA.
| | | | | |
Collapse
|
36
|
Abstract
AbstractThe methanol extracts of four Parmeliaceae lichens (Hypogymnia physodes, Evernia prunastri, Flavoparmelia caperata and Parmelia sulcata) were screened for antioxidant properties and total phenol content. The H. physodes extract was the most effective at reducing iron(III) and scavenging 1,1-diphenyl-2-picrylhydrazyl radicals, while the P. sulcata extract was the most effective in reducing molybdenum(VI) in an acidic medium. The E. prunastri and H. physodes extracts contained more Folin-Ciocalteu reagent reactive substances than the F. caperata and P. sulcata extracts. Significant activity of the H. physodes extract in DPPH and reducing Fe(III) assays suggest that this lichen can be considered as a potential source of antioxidants.
Collapse
|
37
|
Koyama J, Takeuchi A, Morita I, Nishino Y, Shimizu M, Inoue M, Kobayashi N. Characterization of emodin metabolites in Raji cells by LC–APCI-MS/MS. Bioorg Med Chem 2009; 17:7493-9. [DOI: 10.1016/j.bmc.2009.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
|
38
|
Brunauer G, Muggia L, Stocker-Wörgötter E, Grube M. A transcribed polyketide synthase gene from Xanthoria elegans. ACTA ACUST UNITED AC 2008; 113:82-92. [PMID: 18822374 DOI: 10.1016/j.mycres.2008.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 07/23/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
Abstract
We characterize the transcript of a polyketide synthase gene (PKS) from the cultured mycobiont of Xanthoria elegans (XePKS1) using SMART-rapid amplification of cDNA ends (RACE) cDNA synthesis. Sequence analysis of the cloned cDNA reveals an open reading frame of 2144 amino acid residues. It contains features of a non-reducing fungal type I PKS with an N-terminal starter unit: acyl carrier protein (ACP) transacetylase domain, ketosynthase, acyltransferase, two acyl carrier protein domains, and a thioesterase domain. XePKS1 was the only paralogue detected in the cDNA and the genomic DNA of the cultured X. elegans mycobiont by using a degenerate PCR approach targeted at the conserved regions of non-reducing type I PKS genes. The hypothetical protein is phylogenetically related to genes that are basal to a clade of dihydroxynaphthalene synthases (non-reducing clade II) and anthraquinone type synthases of non-lichenized fungi (non-reducing clade I). According to hplc and tlc analyses, the cultured mycobiont exclusively produced anthraquinones and its precursors. Therefore, we discuss whether the characterized paralogue is involved in anthraquinone production, which raises the possibility of a paraphyletic origin of lichen anthraquinone biosynthesis. The cDNA of XePKS1 was the first full-length coding sequence of a lichen PKS to be published. This proves SMART RACE to be a suitable tool for obtaining full-length coding sequences of genes from environmental samples and organisms, which are hardly amenable to standard molecular approaches or genomic sequencing.
Collapse
Affiliation(s)
- Georg Brunauer
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
39
|
Chooi YH, Stalker DM, Davis MA, Fujii I, Elix JA, Louwhoff SH, Lawrie AC. Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. ACTA ACUST UNITED AC 2008; 112:147-61. [DOI: 10.1016/j.mycres.2007.08.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/13/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
|
40
|
Hager A, Brunauer G, Türk R, Stocker-Wörgötter E. Production and Bioactivity of Common Lichen Metabolites as Exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 2007; 34:113-20. [DOI: 10.1007/s10886-007-9408-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/04/2007] [Accepted: 11/20/2007] [Indexed: 11/25/2022]
|