1
|
Kazemzadeh S, Farrokhi N, Ahmadikhah A, Tabar Heydar K, Gilani A, Askari H, Ingvarsson PK. Genome-wide association study and genotypic variation for the major tocopherol content in rice grain. FRONTIERS IN PLANT SCIENCE 2024; 15:1426321. [PMID: 39439508 PMCID: PMC11493719 DOI: 10.3389/fpls.2024.1426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Rice tocopherols, vitamin E compounds with antioxidant activity, play essential roles in human health. Even though the key genes involved in vitamin E biosynthetic pathways have been identified in plants, the genetic architecture of vitamin E content in rice grain remains unclear. A genome-wide association study (GWAS) on 179 genotypically diverse rice accessions with 34,323 SNP markers was conducted to detect QTLs that define total and α- tocopherol contents in rice grains. Total and α-tocopherol contents had a strong positive correlation and varied greatly across the accessions, ranging from 0.230-31.76 and 0.011-30.83 (μg/g), respectively. A total of 13 QTLs were identified, which were spread across five of the rice chromosomes. Among the 13 QTLs, 11 were considered major with phenotypic variation explained (PVE) greater than 10%. Twelve transcription factor (TF) genes, one microprotein (miP), and a transposon were found to be associated with the QTLs with putative roles in controlling tocopherol contents. Moreover, intracellular transport proteins, ABC transporters, nonaspanins, and SNARE, were identified as associated genes on chromosomes 1 and 8. In the vicinity of seven QTLs, protein kinases were identified as key signaling factors. Haplotype analysis revealed the QTLs qAlph1.1, qTot1.1, qAlph2.1, qAlph6.1, qTot6.1, and qTot8.3 to have significant haplogroups. Quantitative RT-PCR validated the expression direction and magnitude of WRKY39 (Os02g0265200), PIP5Ks (Os08g0450800), and MADS59 (Os06g0347700) in defining the major tocopherol contents. This study provides insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in rice and other cereals.
Collapse
Affiliation(s)
- Sara Kazemzadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolali Gilani
- Agricultural and Natural Resources Research Institute of Khuzestan, Ahwaz, Iran
| | - Hossein Askari
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
S GB, Gohil DS, Roy Choudhury S. Genome-wide identification, evolutionary and expression analysis of the cyclin-dependent kinase gene family in peanut. BMC PLANT BIOLOGY 2023; 23:43. [PMID: 36658501 PMCID: PMC9850575 DOI: 10.1186/s12870-023-04045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases that have multi-faceted functions in eukaryotes. The plant CDK members have well-known roles in cell cycle progression, transcriptional regulation, DNA repair, abiotic stress and defense responses, making them promising targets for developing stress adaptable high-yielding crops. There is relatively sparse information available on the CDK family genes of cultivated oilseed crop peanut and its diploid progenitors. RESULTS We have identified 52 putative cyclin-dependent kinases (CDKs) and CDK-like (CDKLs) genes in Arachis hypogaea (cultivated peanut) and total 26 genes in each diploid parent of cultivated peanut (Arachis duranensis and Arachis ipaensis). Both CDK and CDKL genes were classified into eight groups based on their cyclin binding motifs and their phylogenetic relationship with Arabidopsis counterparts. Genes in the same subgroup displayed similar exon-intron structure and conserved motifs. Further, gene duplication analysis suggested that segmental duplication events played major roles in the expansion and evolution of CDK and CDKL genes in cultivated peanuts. Identification of diverse cis-acting response elements in CDK and CDKL genes promoter indicated their potential fundamental roles in multiple biological processes. Various gene expression patterns of CDKs and CDKLs in different peanut tissues suggested their involvement during growth and development. In addition, qRT-PCR analysis demonstrated that most representing CDK and CDKL gene family members were significantly down-regulated under ABA, PEG and mannitol treatments. CONCLUSIONS Genome-wide analysis offers a comprehensive understanding of the classification, evolution, gene structure, and gene expression profiles of CDK and CDKL genes in cultivated peanut and their diploid progenitors. Additionally, it also provides cell cycle regulatory gene resources for further functional characterization to enhance growth, development and abiotic stress tolerance.
Collapse
Affiliation(s)
- Gokul Babu S
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Deependra Singh Gohil
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
3
|
Li L, Shi Q, Li Z, Gao J. Genome-wide identification and functional characterization of the PheE2F/DP gene family in Moso bamboo. BMC PLANT BIOLOGY 2021; 21:158. [PMID: 33781213 PMCID: PMC8008544 DOI: 10.1186/s12870-021-02924-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/11/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND E2F/DP proteins have been shown to regulate genes implicated in cell cycle control and DNA repair. However, to date, research into the potential role of the Moso bamboo E2F/DP family has been limited. RESULTS Here, we identified 23 E2F/DPs in the Moso bamboo genome, including nine E2F genes, six DP genes, eight DEL genes and one gene with a partial E2F domain. An estimation of the divergence time of the paralogous gene pairs suggested that the E2F/DP family expansion primarily occurred through a whole-genome duplication event. A regulatory element and coexpression network analysis indicated that E2F/DP regulated the expression of cell cycle-related genes. A yeast two-hybrid assay and expression analysis based on transcriptome data and in situ hybridization indicated that the PheE2F-PheDP complex played important roles in winter Moso bamboo shoot growth. The qRT-PCR results showed that the PheE2F/DPs exhibited diverse expression patterns in response to drought and salt treatment and diurnal cycles. CONCLUSION Our findings provide novel insights into the Moso bamboo E2F/DP family and partial experimental evidence for further functional verification of the PheE2F/DPs.
Collapse
Affiliation(s)
- Long Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhouqi Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, China.
| |
Collapse
|
4
|
Liu Y, Wang B, Li J, Song Z, Lu B, Chi M, Yang B, Qin D, Lam YW, Li J, Xu D. Salt Response Analysis in Two Rice Cultivars at Seedling Stage. ACTA PHYSIOLOGIAE PLANTARUM 2017; 39:215. [PMID: 31736527 PMCID: PMC6858053 DOI: 10.1007/s11738-017-2514-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 05/03/2023]
Abstract
In order to explore the salt-stress responses of two rice varieties, the physiological responses and biochemical responses were investigated using proteomics and classical biochemical methods. The results showed that the seedling growth was inhibited under salt condition in two rice varieties, the seedling growth in the tolerant variety was better than the sensitive variety. The sensitive variety(L7) appeared obvious salt-injury under 3-day salt stress, the tolerant variety (T07339) keep normal growth under 7-day salt stress except that the shoot length was decreased. Through the growth-parameters analysis, most of them in L7 were restrained by salinity and most in T07339 were unaffected. In T07339, the fresh root weight, the content of chlorophyll and the fresh shoot weight were even increased after 7 days of salt stress. A comparison of two-dimensional gel electrophoresis (2-DGE) protein profiles revealed 8 differently expressed proteins. Four proteins were expressed in different pattern between sensitive and tolerant varieties. These results provide novel insights into the investigations of the salt-response proteins that involved in improved salt tolerance.
Collapse
Affiliation(s)
- Yan Liu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Jian Li
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Zhaoqiang Song
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baiguan Lu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ming Chi
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Bo Yang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Derong Qin
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ying-Wai Lam
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dayong Xu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| |
Collapse
|
5
|
Pan WJ, Tao JJ, Cheng T, Shen M, Ma JB, Zhang WK, Lin Q, Ma B, Chen SY, Zhang JS. Soybean NIMA-Related Kinase1 Promotes Plant Growth and Improves Salt and Cold Tolerance. PLANT & CELL PHYSIOLOGY 2017; 58:1268-1278. [PMID: 28444301 DOI: 10.1093/pcp/pcx060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
NEK (NIMA-related kinase) is known as a family of serine/threonine kinases which mainly participate in microtubule-related mitotic events in fungi, mammals and other eukaryotes. Our previous studies found that Arabidopsis NEK6 plays an important role in plant response to abiotic stress. We further investigated roles of the NEK family in soybean and found that at least eight members can respond to abiotic stresses. Among them, only GmNEK1, a novel NEK member which is distantly related to Arabidopsis NEK6, enhanced plant growth and promoted salt and cold tolerance in transgenic Arabidopsis plants. The growth of soybean plants harboring GmNEK1-overexpressing hairy roots under saline condition was also improved. A series of stress-related genes including RH3, CORI3 and ALDH10A8 were found to be up-regulated in GmNEK1-overexpressing Arabidopsis plants and soybean hairy roots. Moreover, soybean plants with GmRH3-overexpressing hairy roots exhibited increased salt tolerance, while soybean plants with GmRH3-RNAi (RNA interference) roots were more sensitive to salt stress than the wild-type plants. Our study uncovers a novel role for GmNEK1 in promoting plant adaptive growth under adverse conditions at least partially through up-regulation of GmRH3. Manipulation of these genes in soybean or other crops may improve growth and production under stress conditions.
Collapse
Affiliation(s)
- Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qin Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kuluev B, Avalbaev A, Nurgaleeva E, Knyazev A, Nikonorov Y, Chemeris A. Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:11-23. [PMID: 26479044 DOI: 10.1016/j.jplph.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
The Nicotiana tabacum AINTEGUMENTA-like gene (NtANTL), encoding one of AP2/ERF transcription factors, is a putative ortholog of the AtANT gene from Arabidopsis thaliana. In wild-type tobacco plants, the NtANTL gene was expressed in the actively dividing young flowers, shoot apices, and calluses, while the level of its mRNA increased considerably after treatment with exogenous 6-benzylaminopurine, indoleacetic acid and 24-epibrassinolide. We found a positive correlation among the expression levels of NtANTL, cyclin NtCYCD3;1 and cyclin-dependent kinase NtCDKB1-1 genes, suggesting possible molecular links between AINTEGUMENTA and cell cycle regulators in tobacco plants. However, no correlation was observed between NtANTL, NtCYCD3;1 and NtCDKB1-1 expression levels in response to NaCl and ABA. These observations indicate that the transcription factor NtANTL was not involved in the regulation of the cellular response to salinity nor did it affect the expression of NtCYCD3;1 and NtCDKB1-1 when tobacco plants were exposed to salt stress and ABA. In addition, we generated transgenic tobacco plants with both up-regulated and down-regulated expression of the NtANTL gene. Constitutive expression of the NtANTL gene contributed to an increase in the size of leaves and corolla of transgenic plants. Transgenic plants with reduced expression of the NtANTL gene had smaller leaves, flowers and stems, but showed a compensatory increase in the cell size of leaves and flowers. The results show the significance of the NtANTL gene for the control of organ growth by both cell division and expansion in tobacco plants.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia; Bashkir State University, Z. Validi str. 32, 450074 Ufa, Russia.
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia.
| | | | - Alexey Knyazev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Yuriy Nikonorov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Alexey Chemeris
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
7
|
Resequencing at ≥40-Fold Depth of the Parental Genomes of a Solanum lycopersicum × S. pimpinellifolium Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function. G3-GENES GENOMES GENETICS 2015; 5:971-81. [PMID: 25809074 PMCID: PMC4426381 DOI: 10.1534/g3.114.016121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A recombinant in-bred line population derived from a cross between Solanum lycopersicum var. cerasiforme (E9) and S. pimpinellifolium (L5) has been used extensively to discover quantitative trait loci (QTL), including those that act via rootstock genotype, however, high-resolution single-nucleotide polymorphism genotyping data for this population are not yet publically available. Next-generation resequencing of parental lines allows the vast majority of polymorphisms to be characterized and used to progress from QTL to causative gene. We sequenced E9 and L5 genomes to 40- and 44-fold depth, respectively, and reads were mapped to the reference Heinz 1706 genome. In L5 there were three clear regions on chromosome 1, chromosome 4, and chromosome 8 with increased rates of polymorphism. Two other regions were highly polymorphic when we compared Heinz 1706 with both E9 and L5 on chromosome 1 and chromosome 10, suggesting that the reference sequence contains a divergent introgression in these locations. We also identified a region on chromosome 4 consistent with an introgression from S. pimpinellifolium into Heinz 1706. A large dataset of polymorphisms for the use in fine-mapping QTL in a specific tomato recombinant in-bred line population was created, including a high density of InDels validated as simple size-based polymerase chain reaction markers. By careful filtering and interpreting the SnpEff prediction tool, we have created a list of genes that are predicted to have highly perturbed protein functions in the E9 and L5 parental lines.
Collapse
|
8
|
Identification and expression analysis of the E2F/DP genes under salt stress in Medicago truncatula. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0218-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Zhang B, Chen HW, Mu RL, Zhang WK, Zhao MY, Wei W, Wang F, Yu H, Lei G, Zou HF, Ma B, Chen SY, Zhang JS. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:830-43. [PMID: 21801253 DOI: 10.1111/j.1365-313x.2011.04733.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kitsios G, Doonan JH. Cyclin dependent protein kinases and stress responses in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:204-9. [PMID: 21512322 PMCID: PMC3121979 DOI: 10.4161/psb.6.2.14835] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/13/2011] [Accepted: 01/15/2011] [Indexed: 05/18/2023]
Abstract
Plants have to adjust, grow and establish themselves in various changing environmental conditions. Additionally, the sessile life-style of plants requires the development of response mechanisms for their adaptation in such environmental cues. Under biotic and abiotic stress, plant growth is negatively affected mainly as a result of cell cycle inhibition. The perception of stress involves the activation of signaling cascades that result in a prolonged S-phase and delayed entry into mitosis. Although the molecular interactions that link the cell cycle machinery to perception of stress are not fully understood, recent studies indicated the involvement of Cyclin Dependent Kinases (CDKs) in the plant response machinery. CDKs are core cell cycle regulators but their activity has been implicated in additional diverse cellular processes. Here we review the impact of different types of abiotic stress on plant cell cycle progression and CDK activity, and discuss the contribution of CDK function in the signaling control of stress tolerance.
Collapse
Affiliation(s)
- Georgios Kitsios
- Agricultural University of Athens, Agricultural Biotechnology, Athens, Greece
| | | |
Collapse
|
11
|
Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME. Leaf expansion in grasses under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1123-40. [PMID: 19467732 DOI: 10.1016/j.jplph.2009.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/29/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Restriction of leaf growth is among the earliest visible effects of many stress conditions, including salinity. Because leaves determine radiation interception and are the main photosynthetic organs, salinity effects on leaf expansion and function are directly related to yield constraints under saline conditions. The expanding zone of leaf blades spans from the meristem to the region in which cells reach their final length. Kinematic methods are used to describe cell division and cell expansion activities. Analyses of this type have indicated that the reduction in leaf expansion by salinity may be exerted through effects on both cell division and expansion. In turn, the components of vacuole-driven cell expansion may be differentially affected by salinity, and examination of salinity effects on osmotic and mechanical constraints to cell expansion have gradually led to the identification of the gene products involved in such control. The study of how reactive oxygen species affect cell expansion is an emerging topic in the study of salinity's regulation of leaf growth.
Collapse
Affiliation(s)
- Edith Taleisnik
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Argentina.
| | | | | | | | | | | |
Collapse
|