1
|
Cybulska J, Drobek M, Panek J, Cruz-Rubio JM, Kurzyna-Szklarek M, Zdunek A, Frąc M. Changes of pectin structure and microbial community composition in strawberry fruit (Fragaria × ananassa Duch.) during cold storage. Food Chem 2022; 381:132151. [PMID: 35065837 DOI: 10.1016/j.foodchem.2022.132151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/04/2022]
Abstract
Strawberry is very perishable fruit with rapid postharvest loss of quality and high susceptibility to microbial infections. In this work we study pectin modifications and microbiota and mycobiota composition in strawberry in conventional and organic cultivation systems. The enzymatic activity during postharvest storage of both types of strawberry was divided at the fifth day of storage into two phases: postharvest changes and rotting. Pectin molecules extracted from organic strawberries were longer and more branched compared to the conventional strawberries; however a more noticeable reorganization of molecular structure occurred. The sequential action of the pectinolytic enzymes had a direct effect on the molecular structure of pectin fractions. The observed changes in pectin structure relate to the synergistic activity of pectinolytic enzymes and some microorganisms. The organic system was characterized by a greater number and variety of bacteria and fungi during storage as compared to the conventional system.
Collapse
Affiliation(s)
- Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Magdalena Drobek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - José M Cruz-Rubio
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstrasse 14 A-1090, Vienna, Austria
| | | | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
2
|
Rhamnogalacturonan Endolyase Family 4 Enzymes: An Update on Their Importance in the Fruit Ripening Process. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit ripening is a process that produces fruit with top sensory qualities that are ideal for consumption. For the plant, the final objective is seed dispersal. One of the fruit characteristics observed by consumers is texture, which is related to the ripening and softening of the fruit. Controlled and orchestrated events occur to regulate the expression of genes involved in disassembling and solubilizing the cell wall. Studies have shown that changes in pectins are closely related to the loss of firmness and fruit softening. For this reason, studying the mechanisms and enzymes that act on pectins could help to elucidate the molecular events that occur in the fruit. This paper provides a review of the enzyme rhamnogalacturonan endolyase (RGL; EC 4.2.2.23), which is responsible for cleavage of the pectin rhamnogalacturonan I (RGL-I) between rhamnose (Rha) and galacturonic acid (GalA) through the mechanism of β-elimination during fruit ripening. RGL promotes the loosening and weakening of the cell wall and exposes the backbone of the polysaccharide to the action of other enzymes. Investigations into RGL and its relationship with fruit ripening have reliably demonstrated that this enzyme has an important role in this process.
Collapse
|
3
|
Méndez-Yañez A, González M, Carrasco-Orellana C, Herrera R, Moya-León MA. Isolation of a rhamnogalacturonan lyase expressed during ripening of the Chilean strawberry fruit and its biochemical characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:411-419. [PMID: 31805495 DOI: 10.1016/j.plaphy.2019.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
Fragaria chiloensis (L.) Mill. fruit has exotic organoleptic properties however commercialization is a challenge due to its fast and intensive softening. Texture modifications associated to ripening are related to cell wall metabolism. Main cell wall polysaccharides metabolized in F. chiloensis fruit are pectins, being rhamnogalacturonan I (RG-I) an abundant pectin domain in strawberry. Several enzymes belonging to the fruit molecular machinery have been described to act on different cell wall polysaccharides in F. chiloensis, but none acting on the main chain of RG-I until now. A gene sequence coding for a rhamnogalacturonan endolyase (RG-lyase) (EC 4.2.2.23) was isolated from F. chiloensis. The FchRGL1 sequence belongs to Polysaccharide Lyase family 4 and contains the three functional domains of RG-lyases: RGL4 domain, fibronectin type III and the carbohydrate binding module. In addition, it contains key amino acid residues for activity and Ca2+ coordination. qRT-PCR analyses indicate that FchRGL1 transcripts increase in fruit throughout ripening. RG-lyase activity evidences a remarkable increase as the fruit ripens. The heterologous expression of FchRGL1 in Pichia pastoris provided an active protein that allows its biochemical characterization. RG-lyase activity is optimum at pH 5.0, 25-30 °C and 2 mM Ca2+. A KM of 0.086 mg mL-1 was determined for potato RG-I, and the enzyme undergoes inhibition at high substrate concentration. The enzyme is also able to degrade the mucilage of germinating A. thaliana's seeds. Finally, the properties of FchRGL1 and its expression pattern are congruent with a crucial role in cell wall re-organization during softening of F. chiloensis fruit.
Collapse
Affiliation(s)
- Angela Méndez-Yañez
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Makarena González
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Cristian Carrasco-Orellana
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Raúl Herrera
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - María A Moya-León
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
4
|
Langer SE, Marina M, Burgos JL, Martínez GA, Civello PM, Villarreal NM. Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4003-4010. [PMID: 30723911 DOI: 10.1002/jsfa.9626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Fruit dips in calcium ions solutions have been shown as an effective treatment to extend strawberries (Fragaria × ananassa, Duch) quality during storage. In the present work, strawberry fruit were treated with 10 g L-1 calcium chloride solution and treatment effects on cell wall enzymes activities and the expression of encoding genes, as well as enzymes involved in fruit defense responses were investigated. RESULTS Calcium treatment enhanced pectin methylesterase activity while inhibited those corresponding to pectin hydrolases as polygalacturonase and β-galactosidase. The expression of key genes for strawberry pectin metabolism was up-regulated (for FaPME1) and down-regulated (for FaPG1, FaPLB, FaPLC, FaβGal1 and FaAra1) by calcium dips. In agreement, a higher firmness level and ionically-bound pectins (IBPs) amount were detected in calcium-treated fruit compared with controls. The in vitro and in vivo growth rate of fungal pathogen Botrytis cinerea was limited by calcium treatment. Moreover, the activities of polyphenol oxidases, chitinases, peroxidases and β-1,3-glucanases were enhanced by calcium ion dips. CONCLUSION News insights concerning the biochemical and molecular basis of cell wall preservation and resistance to fungal pathogens on calcium-treated strawberries are provided. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Silvia E Langer
- INTECH (CONICET-UNSAM), Instituto Tecnológico de Chascomús, Chascomús, Argentina
| | - María Marina
- INTECH (CONICET-UNSAM), Instituto Tecnológico de Chascomús, Chascomús, Argentina
| | - José L Burgos
- INTECH (CONICET-UNSAM), Instituto Tecnológico de Chascomús, Chascomús, Argentina
| | - Gustavo A Martínez
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, La Plata, Argentina
- Facultad de Ciencias Exactas, (UNLP), La Plata, Argentina
| | - Pedro M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, La Plata, Argentina
- Facultad de Ciencias Exactas, (UNLP), La Plata, Argentina
| | - Natalia M Villarreal
- INTECH (CONICET-UNSAM), Instituto Tecnológico de Chascomús, Chascomús, Argentina
| |
Collapse
|
5
|
Moya-León MA, Mattus-Araya E, Herrera R. Molecular Events Occurring During Softening of Strawberry Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:615. [PMID: 31156678 PMCID: PMC6529986 DOI: 10.3389/fpls.2019.00615] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/25/2019] [Indexed: 05/08/2023]
Abstract
Changes in fruit texture taking place during ripening, described as softening, are mainly due to alterations in structure and/or composition of the cell wall. Several non-covalent interactions between the three carbohydrate polymers of the cell wall, cellulose, pectins and hemicellulose, and many structural proteins and ions, enable a complex structure. During softening, the disassembly of the cell wall structure takes place, mediated by a complete set of cell wall degrading enzymes or proteins. Softening is a coordinated event that requires the orchestrated participation of a wide variety of proteins. Plant hormones and a set of transcription factors are the organizers of this multi-protein effort. Strawberry is a non climacteric fruit that softens intensively during the last stages of development. The Chilean strawberry fruit (Fragaria chiloensis), the maternal relative of the commercial strawberry (F. × ananassa), softens even faster than commercial strawberry. Softening of the Chilean strawberry fruit has been studied at different levels: changes in cell wall polymers, activity of cell wall degrading enzymes and transcriptional changes of their genes, providing a general view of the complex process. The search for the 'orchestra director' that could coordinate softening events in strawberry fruit has been focussed on hormones like ABA and auxins, and more precisely the relation ABA/AUX. These hormones regulate the expression of many cell wall degrading enzyme genes, and this massive transcriptional change that takes place involves the participation of key transcriptional factors (TF). This review provides an update of the present knowledge regarding the softening of strawberry fruit. Nevertheless, the entire softening process is still under active research especially for the great influence of texture on fruit quality and its high impact on fruit shelf life, and therefore it is expected that new and promising information will illuminate the field in the near future.
Collapse
Affiliation(s)
| | | | - Raul Herrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Langer SE, Oviedo NC, Marina M, Burgos JL, Martínez GA, Civello PM, Villarreal NM. Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:334-344. [PMID: 30053739 DOI: 10.1016/j.plaphy.2018.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Modification of cell wall polymers composition and structure is one of the main factors contributing to textural changes during strawberry (Fragaria x ananassa, Duch.) fruit ripening and storage. The present study aimed to provide new data to understand the molecular basis underlying the postharvest preservation of strawberry cell wall structure by heat treatment. Ripe fruit (cv. Aroma) were heat-treated in air oven (3 h at 45 °C) and then stored 8 days at 4 °C + 2 days at 20 °C, while maintaining a set of non-treated fruit as controls. The effect of heat stress on the expression pattern of key genes controlling strawberry cell wall metabolism, as well as some enzymatic activities was investigated. The expression of genes proved to be relevant for pectin disassembly and fruit softening process (FaPG1, FaPLB, FaPLC, FaAra1, FaβGal4) were down-regulated by heat treatment, while the expression of genes being involved in the reinforcement of cell wall as pectin-methylesterase (FaPME1) and xyloglucan endo-transglycosilase (FaXTH1) was up-regulated. Total cell wall amount as well as cellulose, hemicellulose, neutral sugars and ionically and covalently bounded pectins were higher in heat-stressed fruit compared to controls, which might be related to higher firmness values. Interestingly, heat stress was able to arrest the in vitro cell wall swelling process during postharvest fruit ripening, suggesting a preservation of cell wall structure, which was in agreement with a lower growth rate of Botrytis cinerea on plates containing cell walls from heat-stressed fruit when compared to controls.
Collapse
Affiliation(s)
- Silvia E Langer
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - Natalia C Oviedo
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - María Marina
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - José Luis Burgos
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| | - Gustavo A Martínez
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 N° 495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| | - Pedro M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 N° 495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| | - Natalia M Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina.
| |
Collapse
|
7
|
Wang D, Yeats TH, Uluisik S, Rose JKC, Seymour GB. Fruit Softening: Revisiting the Role of Pectin. TRENDS IN PLANT SCIENCE 2018; 23:302-310. [PMID: 29429585 DOI: 10.1016/j.tplants.2018.01.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 05/18/2023]
Abstract
Fruit softening, which is a major determinant of shelf life and commercial value, is the consequence of multiple cellular processes, including extensive remodeling of cell wall structure. Recently, it has been shown that pectate lyase (PL), an enzyme that degrades de-esterified pectin in the primary wall, is a major contributing factor to tomato fruit softening. Studies of pectin structure, distribution, and dynamics have indicated that pectins are more tightly integrated with cellulose microfibrils than previously thought and have novel structural features, including branches of the main polymer backbone. Moreover, recent studies of the significance of pectinases, such as PL and polygalacturonase, are consistent with a causal relationship between pectin degradation and a major effect on fruit softening.
Collapse
Affiliation(s)
- Duoduo Wang
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Trevor H Yeats
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Selman Uluisik
- Colemerik Vocational School, Hakkari University, University Street, Karsiyaka Neighborhood 30000, Hakkari, Turkey
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Graham B Seymour
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK.
| |
Collapse
|
8
|
Paniagua C, Santiago-Doménech N, Kirby AR, Gunning AP, Morris VJ, Quesada MA, Matas AJ, Mercado JA. Structural changes in cell wall pectins during strawberry fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:55-63. [PMID: 28618373 DOI: 10.1016/j.plaphy.2017.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 05/23/2023]
Abstract
Strawberry (Fragaria × anannasa Duch.) is one of the most important soft fruit. Rapid loss of firmness occurs during the ripening process, resulting in a short shelf life and high economic losses. To get insight into the role of pectin matrix in the softening process, cell walls from strawberry fruit at two developmental stages, unripe-green and ripe-red, were extracted and sequentially fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material as well as the per fresh weight contents of the different fractions decreased in ripe fruit. The largest reduction was observed in the pectic fractions extracted with a chelating agent (trans-1,2- diaminocyclohexane-N,N,N'N'-tetraacetic acid, CDTA fraction) and those covalently bound to the wall (extracted with Na2CO3). Uronic acid content of these two fractions also decreased significantly during ripening, but the amount of soluble pectins extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruit. Fourier transform infrared spectroscopy of the different fractions showed that the degree of esterification decreased in CDTA pectins but increased in soluble fractions at ripen stage. The chromatographic analysis of pectin fractions by gel filtration revealed that CDTA, water and, mainly PAW polyuronides were depolymerised in ripe fruit. By contrast, the size of Na2CO3 pectins was not modified. The nanostructural characteristics of CDTA and Na2CO3 pectins were analysed by atomic force microscopy (AFM). Isolated pectic chains present in the CDTA fractions were significantly longer and more branched in samples from green fruit than those from red fruit. No differences in contour length were observed in Na2CO3 strands between samples of both stages. However, the percentage of branched chains decreased from 19.7% in unripe samples to 3.4% in ripe fruit. The number of pectin aggregates was higher in green fruit samples of both fractions. These results show that the nanostructural complexity of pectins present in CDTA and Na2CO3 fractions diminishes during fruit development, and this correlates with the solubilisation of pectins and the softening of the fruit.
Collapse
Affiliation(s)
- Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Nieves Santiago-Doménech
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Andrew R Kirby
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - A Patrick Gunning
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Victor J Morris
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Miguel A Quesada
- Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Antonio J Matas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - José A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
9
|
Villarreal NM, Marina M, Nardi CF, Civello PM, Martínez GA. Novel insights of ethylene role in strawberry cell wall metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:1-11. [PMID: 27717444 DOI: 10.1016/j.plantsci.2016.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 05/23/2023]
Abstract
Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process.
Collapse
Affiliation(s)
- Natalia M Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - María Marina
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - Cristina F Nardi
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - Pedro M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 y Calle 61, n°495-C.c 327, 1900 La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900 La Plata, Argentina
| | - Gustavo A Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2 (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
10
|
Sin IN, Perini MA, Martínez GA, Civello PM. Analysis of the carbohydrate-binding-module from Fragaria x ananassa α-L-arabinofuranosidase 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:96-103. [PMID: 27262101 DOI: 10.1016/j.plaphy.2016.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
α-L-arabinofuranosidases (EC 3.2.1.55) are enzymes involved in the catabolism of several cell-wall polysaccharides such as pectins and hemicelluloses, catalyzing the hydrolysis of terminal non-reducing α-L-arabinofuranosil residues. Bioinformatic analysis of the aminoacidic sequences of Fragaria x ananassa α-L-arabinofuranosidases predict a putative carbohydrate-binding-module of the family CBM_4_9, associated to a wide range of carbohydrate affinities. In this study, we report the characterization of the binding affinity profile to different cell wall polysaccharides of the putative CBM of α-L-arabinofuranosidase 1 from Fragaria x ananassa (CBM-FaARA1). The sequence encoding for the putative CBM was cloned and expressed in Escherichia coli, and the resultant recombinant protein was purified from inclusion bodies by a Nickel affinity chromatography under denaturing conditions. The refolded recombinant protein was then subjected to binding assays and affinity gel electrophoresis, which indicated its ability to bind cellulose and also high affinity for homogalacturonans.
Collapse
Affiliation(s)
- I N Sin
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina
| | - M A Perini
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina
| | - G A Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina
| | - P M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
11
|
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3519-50. [PMID: 23956409 DOI: 10.1093/jxb/ert201] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant cell-wall matrix is equipped with more than 20 glycosylhydrolase activities, including both glycosidases and glycanases (exo- and endo-hydrolases, respectively), which between them are in principle capable of hydrolysing most of the major glycosidic bonds in wall polysaccharides. Some of these enzymes also participate in the 'cutting and pasting' (transglycosylation) of sugar residues-enzyme activities known as transglycosidases and transglycanases. Their action and biological functions differ from those of the UDP-dependent glycosyltransferases (polysaccharide synthases) that catalyse irreversible glycosyl transfer. Based on the nature of the substrates, two types of reaction can be distinguished: homo-transglycosylation (occurring between chemically similar polymers) and hetero-transglycosylation (between chemically different polymers). This review focuses on plant cell-wall-localized glycosylhydrolases and the transglycosylase activities exhibited by some of these enzymes and considers the physiological need for wall polysaccharide modification in vivo. It describes the mechanism of transglycosylase action and the classification and phylogenetic variation of the enzymes. It discusses the modulation of their expression in plants at the transcriptional and translational levels, and methods for their detection. It also critically evaluates the evidence that the enzyme proteins under consideration exhibit their predicted activity in vitro and their predicted action in vivo. Finally, this review suggests that wall-localized glycosylhydrolases with transglycosidase and transglycanase abilities are widespread in plants and play important roles in the mechanism and control of plant cell expansion, differentiation, maturation, and wall repair.
Collapse
Affiliation(s)
- Lenka Franková
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
12
|
Yan Q, Tang L, Yang S, Zhou P, Zhang S, Jiang Z. Purification and characterization of a novel thermostable α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. The Strawberry Plant Defense Mechanism: A Molecular Review. ACTA ACUST UNITED AC 2011; 52:1873-903. [DOI: 10.1093/pcp/pcr136] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Osorio S, Bombarely A, Giavalisco P, Usadel B, Stephens C, Aragüez I, Medina-Escobar N, Botella MA, Fernie AR, Valpuesta V. Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2855-73. [PMID: 21273336 DOI: 10.1093/jxb/erq465] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ectopic expression of the strawberry (Fragaria×ananassa) gene FaPE1 encoding pectin methyl esterase produced in the wild species Fragaria vesca partially demethylated oligogalacturonides (OGAs), which conferred partial resistance of ripe fruits to the fungus Botrytis cinerea. Analyses of metabolic and transcriptional changes in the receptacle of the transgenic fruits revealed channelling of metabolites to aspartate and aromatic amino acids as well as phenolics, flavanones, and sesquiterpenoids, which was in parallel with the increased expression of some genes related to plant defence. The results illustrate the changes associated with resistance to B. cinerea in the transgenic F. vesca. These changes were accompanied by a significant decrease in the auxin content of the receptacle of the ripe fruits of transgenic F. vesca, and enhanced expression of some auxin-repressed genes. The role of these OGAs in fruit development was revealed by the larger size of the ripe fruits in transgenic F. vesca. When taken together these results show that in cultivated F. ananassa FaPE1 participates in the de-esterification of pectins and the generation of partially demethylated OGAs, which might reinforce the plant defence system and play an active role in fruit development.
Collapse
Affiliation(s)
- Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tyler L, Bragg JN, Wu J, Yang X, Tuskan GA, Vogel JP. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. BMC Genomics 2010; 11:600. [PMID: 20973991 PMCID: PMC3091745 DOI: 10.1186/1471-2164-11-600] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/25/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. RESULTS We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51), we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. CONCLUSIONS This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a grass model for investigations of these enzymes and their diverse roles in planta. Insights gained from Brachypodium will inform translational research studies, with applications for the improvement of cereal crops and bioenergy grasses.
Collapse
Affiliation(s)
- Ludmila Tyler
- USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer N Bragg
- USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Jiajie Wu
- USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Xiaohan Yang
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John P Vogel
- USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
16
|
Alleva K, Marquez M, Villarreal N, Mut P, Bustamante C, Bellati J, Martínez G, Civello M, Amodeo G. Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3935-45. [PMID: 20663858 PMCID: PMC2935871 DOI: 10.1093/jxb/erq210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 05/18/2023]
Abstract
In strawberry, the putative participation of aquaporins should be considered during fruit ripening. Furthermore, the availability of different firmness cultivars in this non-climacteric fruit is a very useful tool to determine their involvement in softening. In a previous work, the cloning of a strawberry fruit-specific aquaporin, FaPIP1;1, which showed an expression profile associated with fruit ripening was reported. Here, FaPIP2;1, an aquaporin subtype of PIP2 was cloned and its functional characterization in Xenopus oocytes determined. The FaPIP2;1 gene encodes a water channel with high water permeability (P(f)) that is regulated by cytosolic pH. Interestingly, the co-expression of both FaPIP subtypes resulted in an enhancement of water permeability, showing P(f) values that exceeds their individual contribution. The expression pattern of both aquaporin subtypes in two cultivars with contrasting fruit firmness showed that the firmer cultivar (Camarosa) has a higher accumulation of FaPIP1 and FaPIP2 mRNAs during fruit ripening when compared with the softer cultivar (Toyonoka). In conclusion, not only FaPIP aquaporins showed an expression pattern associated with fruit firmness but it was also shown that the enhancement of water transfer through the plasma membrane is coupled to the presence/absence of the co-expression of both subtypes.
Collapse
Affiliation(s)
- Karina Alleva
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mercedes Marquez
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Paula Mut
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Jorge Bellati
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | - Gabriela Amodeo
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4° Piso, C1428EHA Buenos Aires, Argentina
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
17
|
Liu DJ, Chen JY, Lu WJ. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 2010; 38:1187-93. [PMID: 20563652 DOI: 10.1007/s11033-010-0216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/11/2010] [Indexed: 01/29/2023]
Abstract
The plant hormone auxin transcriptionally activates Aux/IAA genes. Auxin plays an important role in regulating fruit growth and ripening of strawberry and Aux/IAA genes have been extensively studied in Arabidopsis, rice and tomato, but little information is available on strawberry fruit. In the present work, two full-length of early auxin-responsive Aux/IAA genes, termed FaAux/IAA1 and FaAux/IAA2 respectively, were isolated and characterized from strawberry fruit. Moreover, the expression profiles of two FaAux/IAA genes during fruit development, and the effect of naphthalene acetic acid (NAA) on their expressions of fruits at two different developmental stages were also investigated. The results showed that the levels of FaAux/IAA1 and FaAux/IAA2 transcripts were very high at early stage of fruit development, and decreased sharply at ripening stage (after white stage). In addition, NAA applied at the stage of large green and white fruit obviously increased the accumulations of FaAux/IAA1 and FaAux/IAA2 transcripts. These data suggested that the expressions of both FaAux/IAA1 and FaAux/IAA2 genes were likely to be involved in early fruit development, and the enhancement of FaAux/IAAs transcripts might be attributed at least or partially to auxin-induced fruit growth and delayed fruit ripening of strawberry.
Collapse
Affiliation(s)
- Du-juan Liu
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | | | | |
Collapse
|
18
|
Villarreal NM, Bustamante CA, Civello PM, Martínez GA. Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:683-9. [PMID: 20355099 DOI: 10.1002/jsfa.3868] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Strawberry is a soft fruit, considered as non-climacteric, being auxins the main hormones that regulate the ripening process. The role of ethylene in strawberry ripening is currently unclear and several studies have considered a revision of the possible role of this hormone. RESULTS Strawberry fruit were harvested at the white stage and treated with ethephon, an ethylene-releasing reagent, or 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. The effects of the treatments on fruit quality parameters and on the activity of enzymes related to anthocyanin synthesis and cell wall degradation were evaluated. Some aspects of ripening were accelerated (anthocyanin accumulation, total sugar content and increment of phenylalanine ammonia-lyase (PAL; EC 4.3.1.24) and beta-galactosidase (EC 3.2.1.23) activities), while others were repressed (chlorophyll levels and increment of endo-1,4-beta-glucanase (EC 3.2.1.4) and beta-xylosidase (EC 3.2.1.37) activities) or unchanged (reducing sugar content, pH, titratable acidity and alpha-L-arabinofuranosidase (EC 3.2.1.55) activity) by ethylene. 1-MCP treatment caused the opposite effect. However, its effects were more pronounced, particularly in anthocyanin accumulation, phenolics, PAL and polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activities. CONCLUSION These observations probably indicate that strawberry produces low levels of ethylene that are sufficient to regulate some ripening aspects.
Collapse
Affiliation(s)
- Natalia M Villarreal
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH; CONICET-UNSAM), B7130IWA Chascomús, Argentina
| | | | | | | |
Collapse
|