1
|
Zhou H, Li Y, Yuan B, Nie Q, Xiang Z, He L, Wang Y, Yang Z, Wang J, Hui S, Wang X. Genome-wide analysis of ascorbate peroxidase and functional characterization of SpAPX249b and SpAPX285c for salt tolerance in Sesuvium portulacastrum L. PLANT CELL REPORTS 2025; 44:83. [PMID: 40126631 DOI: 10.1007/s00299-025-03466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE We have identified 33 SpAPXs from S. portulacastrum genome and found SpAPX249b and SpAPX285c are important for halophyte salt tolerance. Ascorbate peroxidase (APX) is a vital antioxidant enzyme, involved in plant development and stress response by scavenging excessive reactive oxygen species (ROS). APX genes have been characterized in many plant species. However, their role in Sesuvium portulacastrum L. has not yet to be fully investigated. Here, we identified 33 SpAPXs from its genome and divided them into five subgroups across the 16 chromosomes. Cis-element analysis of their promoters indicated that all the detected SpAPXs showed potential roles in response to biotic and abiotic stresses as well as phytohormone effects on the plant growth and development. Transcriptomic data of the different tissues revealed that 9 SpAPX genes were specifically expressed in root and 13 ones were specifically expressed in leaves, with SpAPX249b prominently expressed in root and SpAPX285c in leaves. Moreover, quantitative real-time PCR analysis revealed that both SpAPX249b and SpAPX285c genes expressed only after NaCl application and were sharply induced in the high concentration of NaCl treatments. Our findings suggested that SpAPX249b and SpAPX285c may associate with plant salt tolerance and can serve as valuable genes for enhancing salt tolerance in other plants. By introducing these genes into other plants, it is possible to develop new varieties of salt-tolerant crops, thereby expanding the utilization of saline-alkali land and increasing agricultural productivity. In coastal saline-alkali wetlands, this halophyte can thrive in large numbers due to its inherent salt-tolerant genes, contributing to the restoration of polluted or ecologically degraded coastal saline-alkali wetlands.
Collapse
Affiliation(s)
- Houli Zhou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yuxin Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Boxuan Yuan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Qinqin Nie
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhaozhen Xiang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Lixia He
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
- College of Agriculture Forestry Ecology, Shaoyang University, Shaoyang, 422000, China
| | - Yongfei Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zhanchao Yang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Juanying Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Shugang Hui
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Xuchu Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Lu Y, Zeng F, Zhang Z, Lv P, Liang B. Differences in growth, ionomic and antioxidative enzymes system responded to neutral and alkali salt exposure in halophyte Haloxylon ammodendron seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109492. [PMID: 39826343 DOI: 10.1016/j.plaphy.2025.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Soil salinity and alkalinity severely suppress plant growth and crop yields. This study compared the effects of neutral and alkaline salt exposure, both individually and mixed, on metal content and morphophysiological responses in halophyte Haloxylon ammodendron. Our results showed that alkaline salt exposure more considerably inhibited the growth and photosynthesis of H. ammodendron than neutral salt exposure. Under neutral salt conditions, Na accumulated significantly, while K and Fe absorption was hindered. In contrast, under alkaline salt stress, Na accumulation was more pronounced, leading to a greater inhibition of K absorption. Additionally, Ca accumulation was promoted, while the transport of Fe, Mg, and Cu from root to shoot was suppressed. Alkaline salt stress also induced more severe osmotic stress, triggering a stronger accumulation of soluble sugars to counteract it. Furthermore, seedlings under alkaline stress showed higher levels of REL, H2O2, and MDA, but lower activities of SOD, POD, CAT, and APX, indicating increased oxidative damage. These findings suggest that H. ammodendron can adapt well to neutral salt stress through efficient antioxidant enzyme systems and osmotic stress regulation. In contrast, alkaline stress severely inhibits the absorption and transport of mineral elements and disrupts the balance of antioxidant enzymes. Besides, the deleterious effects of neutral-alkaline salt mixed stress were significantly less than those of alkaline stress alone, indicating a reciprocal enhancement between neutral and alkaline salt stress was occurred.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, 848300, PR China.
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, 848300, PR China
| | - Zhihao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, 848300, PR China
| | - Ping Lv
- Xinjiang Production and Construction Corps Forestry and Grassland Work Station, Urumqi, Xinjiang, 830013, PR China
| | - Bin Liang
- Nanjing Forest Police College, Nanjing, Jiangsu, 210023, PR China
| |
Collapse
|
3
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
4
|
Cui B, Liu R, Yu Q, Guo J, Du X, Chen Z, Li C, Wang T, Liu R, He R, Song C, Liu Y, Sui N, Jia G, Song J. Combined genome and transcriptome provides insight into the genetic evolution of an edible halophyte Suaeda salsa adaptation to high salinity. Mol Ecol 2024:e17457. [PMID: 38984778 DOI: 10.1111/mec.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.
Collapse
Affiliation(s)
- Bing Cui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Ranran Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Qiong Yu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Zixin Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chenyang Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Tong Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Ru Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Rui He
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Congcong Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
6
|
Jēkabsone A, Karlsons A, Osvalde A, Ievinsh G. Effect of Na, K and Ca Salts on Growth, Physiological Performance, Ion Accumulation and Mineral Nutrition of Mesembryanthemum crystallinum. PLANTS (BASEL, SWITZERLAND) 2024; 13:190. [PMID: 38256743 PMCID: PMC10818879 DOI: 10.3390/plants13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Mesembryanthemum crystallinum L. is an obligatory halophyte species showing optimum growth at elevated soil salinity levels, but the ionic requirements for growth stimulation are not known. The aim of the present study was to compare the effects of sodium, potassium and calcium in the form of chloride and nitrate salts on the growth, physiological performance, ion accumulation and mineral nutrition of M. crystallinum plants in controlled conditions. In a paradoxical way, while sodium and potassium had comparable stimulative effect on plant growth, the effect of calcium was strongly negative even at a relatively low concentration, eventually leading to plant death. Moreover, the effect of Ca nitrate was less negative in comparison to that of Ca chloride, but K in the form of nitrate had some negative effects. There were three components of the stimulation of biomass accumulation by NaCl and KCl salinity in M. crsytallinum: the increase in tissue water content, increase in ion accumulation, and growth activation. As optimum growth was in a salinity range from 20 to 100 mM, the increase in the dry biomass of plants at a moderate (200 mM) and high (400 mM) salinity in comparison to control plants was mostly due to ion accumulation. Among physiological indicators, changes in leaf chlorophyll concentration appeared relatively late, but the chlorophyll a fluorescence parameter, Performance Index Total, was the most sensitive to the effect of salts. In conclusion, both sodium and potassium in the form of chloride salts are efficient in promoting the optimum growth of M. crystallinum plants. However, mechanisms leading to the negative effect of calcium on plants need to be assessed further.
Collapse
Affiliation(s)
- Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia;
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia; (A.K.); (A.O.)
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia; (A.K.); (A.O.)
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia;
| |
Collapse
|
7
|
Ali Q, Ahmad M, Kamran M, Ashraf S, Shabaan M, Babar BH, Zulfiqar U, Haider FU, Ali MA, Elshikh MS. Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2519. [PMID: 37447077 DOI: 10.3390/plants12132519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Maize (Zea mays L.) is a salt-sensitive plant that experiences stunted growth and development during early seedling stages under salt stress. Salicylic acid (SA) is a major growth hormone that has been observed to induce resistance in plants against different abiotic stresses. Furthermore, plant growth-promoting rhizobacteria (PGPR) have shown considerable potential in conferring salinity tolerance to crops via facilitating growth promotion, yield improvement, and regulation of various physiological processes. In this regard, combined application of PGPR and SA can have wide applicability in supporting plant growth under salt stress. We investigated the impact of salinity on the growth and yield attributes of maize and explored the combined role of PGPR and SA in mitigating the effect of salt stress. Three different levels of salinity were developed (original, 4 and 8 dS m-1) in pots using NaCl. Maize seeds were inoculated with salt-tolerant Pseudomonas aeruginosa strain, whereas foliar application of SA was given at the three-leaf stage. We observed that salinity stress adversely affected maize growth, yield, and physiological attributes compared to the control. However, both individual and combined applications of PGPR and SA alleviated the negative effects of salinity and improved all the measured plant attributes. The response of PGPR + SA was significant in enhancing the shoot and root dry weights (41 and 56%), relative water contents (32%), chlorophyll a and b contents (25 and 27%), and grain yield (41%) of maize under higher salinity level (i.e., 8 dS m-1) as compared to untreated unstressed control. Moreover, significant alterations in ascorbate peroxidase (53%), catalase (47%), superoxide dismutase (21%), MDA contents (40%), Na+ (25%), and K+ (30%) concentration of leaves were pragmatic under combined application of PGPR and SA. We concluded that integration of PGPR and SA can efficiently induce salinity tolerance and improve plant growth under stressed conditions.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Kamran
- Pakistan Council for Science and Technology, Ministry of Science and Technology, Islamabad 44000, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 44000, Pakistan
| | - Babar Hussain Babar
- Vegetable and Oilseed Section, Agronomic Research Institute, Faisalabad 38850, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Effects of Arbuscular Mycorrhizal Fungus on Sodium and Chloride Ion Channels of Casuarina glauca under Salt Stress. Int J Mol Sci 2023; 24:ijms24043680. [PMID: 36835093 PMCID: PMC9966195 DOI: 10.3390/ijms24043680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Casuarina glauca is an important coastal protection forest species, which is exposed to high salt stress all year round. Arbuscular mycorrhizal fungi (AMF) can promote the growth and salt tolerance of C. glauca under salt stress. However, the effects of AMF on the distribution of Na+ and Cl- and the expression of related genes in C. glauca under salt stress need to be further explored. This study explored the effects of Rhizophagus irregularis on plant biomass, the distribution of Na+ and Cl-, and the expression of related genes in C. glauca under NaCl stress through pot simulation experiments. The results revealed that the mechanisms of Na+ and Cl- transport of C. glauca under NaCl stress were different. C. glauca took a salt accumulation approach to Na+, transferring Na+ from roots to shoots. Salt accumulation of Na+ promoted by AMF was associated with CgNHX7. The transport mechanism of C. glauca to Cl- might involve salt exclusion rather than salt accumulation, and Cl- was no longer transferred to shoots in large quantities but started to accumulate in roots. However, AMF alleviated Na+ and Cl- stress by similar mechanisms. AMF could promote salt dilution of C. glauca by increasing biomass and the content of K+, compartmentalizing Na+ and Cl- in vacuoles. These processes were associated with the expression of CgNHX1, CgNHX2-1, CgCLCD, CgCLCF, and CgCLCG. Our study will provide a theoretical basis for the application of AMF to improve salt tolerance in plants.
Collapse
|
9
|
Farag MA, Abib B, Qin Z, Ze X, Ali SE. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr Res Food Sci 2023; 6:100450. [PMID: 36816001 PMCID: PMC9932710 DOI: 10.1016/j.crfs.2023.100450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Macrominerals play vital roles in a multitude of physiologic systems. A myriad of biochemical reactions are dependent on or affected by these electrolytes. The current review attempts to identify the role of macrominerals as calcium, phosphorus, magnesium, sodium, potassium and sulfur in human health, in addition to their absorption and homeostasis inside the body. We also focused on their amount in major food sources and the recommended daily intake of each macromineral. In addition, a deep insight into the orchestration of the 6 different macrominerals' requirements is presented across the human life cycle, beginning from fertility and pregnancy, and reaching adulthood and senility, with insight on interactions among them and underlying action mechanisms. The effect of sex is also presented for each mineral at each life stage to highlight the different daily requirements and/ or effects. The current review identified the role of macrominerals in human health, in addition to their absorption and homeostasis in the body. Based on the in-depth understanding of the factors influencing the metabolism of macrominerals, we could better explore their safety and possible therapeutic potential in specific disorders. There is still a need to precisely demonstrate the bioavailability of macrominerals from various types of functional food.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt, Kasr El Aini St, P.B, 11562, Egypt,Corresponding author.
| | - Bishoy Abib
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China,Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China,Corresponding author. Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong, 510663, China
| | - Sara E. Ali
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Egypt
| |
Collapse
|
10
|
Prokopoviča V, Ievinsh G. Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020370. [PMID: 36679083 PMCID: PMC9862674 DOI: 10.3390/plants12020370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to develop an experimental system for an exploration of ethylene-dependent responses using intact growing Ranunculus sceleratus plants and to approbate the system for assessing the role of ethylene in salinity tolerance and ion accumulation. Plants were cultivated in sealed plastic containers in a modified gaseous atmosphere by introducing ethylene or 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. High humidity inside the containers induced a fast elongation of the leaf petioles of R. sceleratus. The effect was ethylene-dependent, as 1-MCP completely blocked it, but exogenous ethylene further promoted petiole elongation. Exogenous ethylene decreased (by 48%) but 1-MCP increased (by 48%) the Na+ accumulation in leaf blades of NaCl-treated plants. The experimental system was further calibrated with ethylene and silica xerogel, and the optimum concentrations were found for inducing leaf petiole elongation (10 μL L-1 ethylene) and preventing leaf petiole elongation (200 g silica xerogel per 24 L), respectively. The second experiment involved a treatment with NaCl in the presence of 1-MCP, ethylene, or 1-MCP + ethylene, both in normal and high air humidity conditions. In high humidity conditions, NaCl inhibited petiole elongation by 25% and ethylene treatment fully reversed this inhibition and stimulated elongation by 12% in comparison to the response of the control plants. Treatment with 1-MCP fully prevented this ethylene effect. In normal humidity conditions, NaCl inhibited petiole elongation by 20%, which was reversed by ethylene without additional elongation stimulation. However, 1-MCP only partially inhibited the ethylene effect on petiole elongation. In high humidity conditions, ethylene inhibited Na+ accumulation in NaCl-treated plants by 14%, but 1-MCP reversed this effect. In conclusion, the stimulation of endogenous ethylene production in R. sceleratus plants at a high air humidity or in flooded conditions reverses the inhibitory effect of salinity on plant growth and concomitantly inhibits the accumulation of Na+ in tissues. R. sceleratus is a highly promising model species for use in studies regarding ethylene-dependent salinity responses and ion accumulation potential involving the manipulation of a gaseous environment.
Collapse
|
11
|
Landorfa-Svalbe Z, Andersone-Ozola U, Ievinsh G. Type of Anion Largely Determines Salinity Tolerance in Four Rumex Species. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010092. [PMID: 36616221 PMCID: PMC9823408 DOI: 10.3390/plants12010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to compare the effect of various salts composed of different cations (Na+, K+) and anions (chloride, nitrate, nitrite) on growth, development and ion accumulation in three Rumex species with accessions from sea coast habitats (Rumex hydrolapathum, Rumex longifolius and Rumex maritimus) and Rumex confertus from an inland habitat. Plants were cultivated in soil in an experimental automated greenhouse during the autumn-winter season. Nitrite salts strongly inhibited growth of all Rumex species, but R. maritimus was the least sensitive. Negative effects of chloride salts were rather little-pronounced, but nitrates resulted in significant growth stimulation, plant growth and development. Effects of Na+ and K+ at the morphological level were relatively similar, but treatment with K+ salts resulted in both higher tissue electrolyte levels and proportion of senescent leaves, especially for chloride salts. Increases in tissue water content in leaves were associated with anion type, and were most pronounced in nitrate-treated plants, resulting in dilution of electrolyte concentration. At the morphological level, salinity responses of R. confertus and R. hydrolapathum were similar, but at the developmental and physiological level, R. hydrolapathum and R. maritimus showed more similar salinity effects. In conclusion, the salinity tolerance of all coastal Rumex species was high, but the inland species R. confertus was the least tolerant to salinity. Similarity in effects between Na+ and K+ could be related to the fact that surplus Na+ and K+ has similar fate (including mechanisms of uptake, translocation and compartmentation) in relatively salt-tolerant species. However, differences between various anions are most likely related to differences in physiological functions and metabolic fate of particular ions.
Collapse
|
12
|
Similar Responses of Relatively Salt-Tolerant Plants to Na and K during Chloride Salinity: Comparison of Growth, Water Content and Ion Accumulation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101577. [PMID: 36295012 PMCID: PMC9605674 DOI: 10.3390/life12101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to compare changes in growth, ion accumulation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity in a form of chloride salts were found for all model plants, including growth stimulation at low concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic effects of monovalent cations or/and the specific effect of Cl−.
Collapse
|
13
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Salinity Tolerance, Ion Accumulation Potential and Osmotic Adjustment In Vitro and In Planta of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:2570. [PMID: 36235436 PMCID: PMC9571588 DOI: 10.3390/plants11192570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to compare tolerance to salinity and ion accumulation potential of Armeria maritima subsp. elongata. Three accessions (AM1 and AM2, both from Latvia, and AM3 from Sweden) from relatively dry sandy soil habitats in the Baltic Sea region were selected and compared using both in vitro cultivated shoot explants and long-term soil-cultivated plants at flowering stage. Growth of root non-forming explants treated with increasing concentrations of NaCl was significantly inhibited starting from 110 mmol L-1, and the rate of shoot formation was even more sensitive. Significant differences in morphology and responses to salinity were found between different accessions. For soil-grown plants, biomass accumulation in above-ground parts was relatively little affected by salinity in AM1 and AM2 in comparison to that in AM3. Differences in ion accumulation were evident between the accessions as well as in respect to cultivation system used. Maximum accumulation capacity for Na+ was up to 2.5 mol kg-1 both in shoot explant tissues and in old leaves of soil-grown plants treated with NaCl, but that for K+ reached 4.0 mol kg-1 in old leaves of soil-grown plants treated with KCl. Non-ionic component of osmotic value was relatively high in old leaves and significantly increased under NaCl treatment, especially for AM2 and AM3 plants at moderate salinity, but in AM1 only at high salinity. In contrast, it significantly decreased in old leaves of AM2 plants treated with increasing concentration of KCl. It can be concluded that a wide salinity tolerance exists within A. maritima accessions from dry sandy soil habitats, associated with the ability to accumulate surplus ions both in salt glands and old leaves.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
14
|
Chen Y, Zhou Y, Cai Y, Feng Y, Zhong C, Fang Z, Zhang Y. De novo transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in Sesuvium portulacastrum. FRONTIERS IN PLANT SCIENCE 2022; 13:995855. [PMID: 36212296 PMCID: PMC9540214 DOI: 10.3389/fpls.2022.995855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Sesuvium portulacastrum has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of S. portulacastrum to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (H2O2) in S. portulacastrum seedlings, increasing Pro and H2O2 contents by 290.56 and 83.36%, respectively, compared to the control. Antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), significantly increased by 83.05, 205.14, and 751.87%, respectively, under high salinity. Meanwhile, abscisic acid (ABA) and gibberellic acid (GA3) contents showed the reverse trend of high salt treatment. De novo transcriptome analysis showed that 36,676 unigenes were matched, and 3,622 salt stress-induced DEGs were identified as being associated with the metabolic and biological regulation processes of antioxidant activity and plant phytohormones. POD and SOD were upregulated under high-salinity conditions. In addition, the transcription levels of genes involved in auxin (SAURs and GH3), ethylene (ERF1, ERF3, ERF114, and ABR1), ABA (PP2C), and GA3 (PIF3) transport or signaling were altered. This study identified key metabolic and biological processes and putative genes involved in the high salt tolerance of S. portulacastrum and it is of great significance for identifying new salt-tolerant genes to promote ecological restoration of the coastal strand.
Collapse
Affiliation(s)
- YiQing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - Yan Zhou
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Yuyi Cai
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Yongpei Feng
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Cairong Zhong
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - ZanShan Fang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
15
|
Wang L, Li Y, Wang X, Duan Y, Zhao Z. Differences and spatial variations of plant leaf calorific value in deserts of the Hexi Corridor, Northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155335. [PMID: 35452732 DOI: 10.1016/j.scitotenv.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The leaf calorific value (LCV) is an important trait that indicates how efficiently a plant utilizes natural resources to capture energy. However, little is known about the LCV characteristics of plants in arid and hyper-arid environments. To investigate the spatial patterns and variations in LCV of desert plants and their possible causes, we collected 343 leaf samples of 52 species along a 1000-km transect in the desert area of northwestern China. We analyzed the gross calorific value (GCV), ash-free calorific value (AFCV), carbon content (CC), nitrogen content (NC), and ash content (AC) of the leaves. The mean leaf GCV and AC were 16.2 kJ g-1 (range from 8.9 to 20.1 kJ g-1), and 189.8 mg g-1 (range from 61.5 to 495.1 mg g-1) respectively, which differ significantly from the values for plants growing in more humid areas of China. Succulence was the dominant trait that drove the differences in leaf GCV and AFCV among plant functional groups. Succulent plants had significantly lower leaf GCV and AFCV, and significantly higher AC, than non-succulent plants, indicating that the investment of energy for succulent plants in response to drought stress may be lower than that for non-succulent plants. Among the biological factors that affected LCV, the CC and AC were the main determinants of leaf GCV, whereas CC and NC were the main determinants of leaf AFCV. Drought stress is an environmental constraint that has a direct negative effect on both leaf GCV and AFCV, but its contribution may be weaker than phylogenetic effects. Our results suggest that LCV is a useful leaf trait that can be used to evaluate plant-environment interactions from an energy perspective.
Collapse
Affiliation(s)
- Lilong Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Yuqiang Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuyang Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Yulong Duan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Zhenxian Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
16
|
Ding G, Yang Q, Ruan X, Si T, Yuan B, Zheng W, Xie Q, Souleymane OA, Wang X. Proteomics analysis of the effects for different salt ions in leaves of true halophyte Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:234-248. [PMID: 34920320 DOI: 10.1016/j.plaphy.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
Sesuvium portulacastrum is a true halophyte and shows an optimal development under moderate salinity with large amounts of salt ions in its leaves. However, the specific proteins in response to salt ions are remained unknown. In this study, comparative physiological and proteomic analyses of different leaves subject to NaCl, KCl, NaNO3 and KNO3 were performed. Chlorophyll content was decreased under the above four kinds of salt treatments. Starch and soluble sugar contents changed differently under different salt treatments. A total of 53 differentially accumulated proteins (DAPs) were identified by mass spectrometry. Among them, 13, 25, 26 and 25 DAPs were identified after exposure to KCl, NaCl, KNO3, and NaNO3, respectively. These DAPs belong to 47 unique genes, and 37 of them are involved in protein-protein interactions. These DAPs displayed different expression patterns after treating with different salt ions. Functional annotation revealed they are mainly involved in photosynthesis, carbohydrate and energy metabolism, lipid metabolism, and biosynthesis of secondary metabolites. Genes and proteins showed different expression profiles under different salt treatments. Enzyme activity analysis indicated P-ATPase was induced by KCl, NaCl and NaNO3, V-ATPase was induced by KCl and NaCl, whereas V-PPase activity was significantly increased after application of KNO3, but sharply inhibited by NaCl. These results might deepen our understanding of responsive mechanisms in the leaves of S. portulacastrum upon different salt ions.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qian Yang
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, China
| | - Xueyu Ruan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Tingting Si
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Boxuan Yuan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wenwei Zheng
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ousmane Ahmat Souleymane
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xuchu Wang
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
17
|
Santiago‐Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 2021; 11:14231-14249. [PMID: 34707851 PMCID: PMC8525147 DOI: 10.1002/ece3.8138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue-sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non-crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total-plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Bret D. Elderd
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Pamela B. Hart
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
18
|
Ahmed HAI, Shabala L, Shabala S. Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity. PHYSIOLOGIA PLANTARUM 2021; 172:1997-2010. [PMID: 33826749 DOI: 10.1111/ppl.13413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl- contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl- sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl- accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.
Collapse
Affiliation(s)
- Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
19
|
Shang C, Wang L, Tian C, Song J. Heavy metal tolerance and potential for remediation of heavy metal-contaminated saline soils for the euhalophyte Suaeda salsa. PLANT SIGNALING & BEHAVIOR 2020; 15:1805902. [PMID: 32815486 PMCID: PMC7588191 DOI: 10.1080/15592324.2020.1805902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Due to irrigation practices and industrial pollution, large areas of the lands in the world are simultaneously affected by salinity and heavy metal contamination. It has been considered that halophytes have adapted to salinity, and can be used to remediate heavy metal-contaminated saline soils. Suaeda salsa L. (S. salsa) is a high salt-resistance plant, which can efficiently absorb and accumulate salt and toxic metals from saline soils, suggesting that this may be potential plant species that can be used for the restoration of saline soils contaminated with heavy metals. The present brief review sheds light on the characteristics of S. salsa in the uptake and accumulation of high levels of heavy metals. Furthermore, the physiological and molecular mechanisms for heavy metal tolerance were highlighted. The potential values of S. salsa in the remediation of saline soils were also summarized.
Collapse
Affiliation(s)
- Cailing Shang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, P.R. China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, P.R. China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, P.R. China
| |
Collapse
|
20
|
Orlofsky E, Chernoivanov S, Asiag A, Maor I, Levi N, Litaor MI. Biological reconditioning of sodium enriched zeolite by halophytes: case study of dairy farm effluent treatment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:1001-1012. [PMID: 32772551 DOI: 10.1080/15226514.2020.1799932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructed wetlands (CW) containing clinoptilolite zeolite and planted with five halophytes (Sesvium portulacastrum, Juncus effusus, Suaeda monoica, Inula crithmoides and Sarcocornia fruticosa) were irrigated with treated dairy farm effluent. The CW were operated for two years with retention time ranging from 2 to 7 d. Plant species did not affect SAR which was reduced in all treatments from 4.85 to 2.59 (mmol/L)0.5 due to ion exchange in zeolite. Halophytes increased evapotranspiration to 30 mm d-1 which countered sodium removal. Zeolite planted with Sesuvium portulacastrum had 15% lower sodium percentage (ESP, F1,118 = 12.53, p = 0.0006) and 5% higher calcium percentage (F1,118 = 7.44, p = 0.007) compared to non-planted zeolite, indicating reconditioning of zeolite with respect to sodium. Enhancement of SAR removal capability by reconditioned zeolite was demonstrated in 24 h batch experiments on excavated zeolite (n = 6) with saline water (SAR = 0, 17.6, 62.8, and 122.8 (mmol/L)0.5). Zeolite from Sesuvium planted CW reduced SAR to a greater extent than non-planted zeolite and was significant for inlet SAR 17.6 which was reduced to 3.33 ± 0.3 (mmol/L)0.5 compared to 3.68 ± 0.12 by non-planted zeolite (p < 0.05). In-situ biological reconditioning of active matrix in CW by tailored macrophytes is a novel strategy that may be applicable to other pollutants.
Collapse
Affiliation(s)
- Ezra Orlofsky
- Department of Precision Agriculture, Hydrogeochemistry Lab, Migal Galilee Research Institute, Kiryat Shmona, Israel
| | - Simon Chernoivanov
- Department of Environmental Science, Tel-Hai College, Upper Galilee, Israel
| | - Asi Asiag
- Department of Environmental Science, Tel-Hai College, Upper Galilee, Israel
| | - Ido Maor
- Department of Environmental Science, Tel-Hai College, Upper Galilee, Israel
| | | | - M Iggy Litaor
- Department of Precision Agriculture, Hydrogeochemistry Lab, Migal Galilee Research Institute, Kiryat Shmona, Israel
- Department of Environmental Science, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
21
|
Lema M, Ali MY, Retuerto R. Domestication influences morphological and physiological responses to salinity in Brassica oleracea seedlings. AOB PLANTS 2019; 11:plz046. [PMID: 31579110 PMCID: PMC6757351 DOI: 10.1093/aobpla/plz046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
Brassica oleracea cultivars include important vegetable and forage crops grown worldwide, whereas the wild counterpart occurs naturally on European sea cliffs. Domestication and selection processes have led to phenotypic and genetic divergence between domesticated plants and their wild ancestors that inhabit coastal areas and are exposed to saline conditions. Salinity is one of the most limiting factors for crop production. However, little is known about how salinity affects plants in relation to domestication of B. oleracea. The objective of this study was to determine the influence of domestication status (wild, landrace or cultivar) on the response of different B. oleracea crops to salinity, as measured by seed germination, plant growth, water content and mineral concentration parameters at the seedling stage. For this purpose, two independent pot experiments were conducted with six accessions of B. oleracea, including cabbage (group capitata) and kale (group acephala), in a growth chamber under controlled environmental conditions. In both taxonomic groups, differences in domestication status and salt stress significantly affected all major process such as germination, changes in dry matter, water relations and mineral uptake. In the acephala experiment, the domestication × salinity interaction significantly affected water content parameters and shoot Na+ allocation. At early stages of development, wild plants are more succulent than cultivated plants and have a higher capacity to maintain lower Na+ concentrations in their shoots in response to increasing levels of salinity. Different responses of domesticated and cultivated accessions in relation to these traits indicated a high level of natural variation in wild B. oleracea. Exclusion of Na+ from shoots and increasing succulence may enhance salt tolerance in B. oleracea exposed to extreme salinity in the long term. The wild germplasm can potentially be used to improve the salt tolerance of crops by the identification of useful genes and incorporation of these into salinity-sensitive cultivars.
Collapse
Affiliation(s)
- M Lema
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Md Y Ali
- Agrotechnology Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - R Retuerto
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Guo J, Dong X, Han G, Wang B. Salt-Enhanced Reproductive Development of Suaeda salsa L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K + Content. FRONTIERS IN PLANT SCIENCE 2019; 10:333. [PMID: 30984214 PMCID: PMC6449877 DOI: 10.3389/fpls.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
Halophytes are adapted to saline environments and demonstrate optimal reproductive growth under high salinity. To gain insight into the salt tolerance mechanism and effects of salinity in the halophyte Suaeda salsa, the number of flowers and seeds, seed size, anther development, ion content, and flower transcript profiles, as well as the relative expression levels of genes involved in ion transport, were analyzed in S. salsa plants treated with 0 or 200 mM NaCl. The seed size, flower number, seed number per leaf axil, and anther fertility were all significantly increased by 200 mM NaCl treatment. The Na+ and Cl- contents in the leaves, stems, and pollen of NaCl-treated plants were all markedly higher, and the K+ content in the leaves and stems was significantly lower, than those in untreated control plants. By contrast, the K+ content in pollen grains did not decrease, but rather increased, upon NaCl treatment. Genes related to Na+, K+ and, Cl- transport, such as SOS1, KEA, AKT1, NHX1, and CHX, showed increased expression in the flowers of NaCl-treated plants. These results suggest that ionic homeostasis in reproductive organs, especially in pollen grains under salt-treated conditions, involves increased expression of ion transport-related genes.
Collapse
Affiliation(s)
| | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
23
|
Peng C, Chang L, Yang Q, Tong Z, Wang D, Tan Y, Sun Y, Yi X, Ding G, Xiao J, Zhang Y, Wang X. Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:141-150. [PMID: 30537601 DOI: 10.1016/j.jplph.2018.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Sesuvium portulacastrum, an important mangrove-associated true halophyte belongs to the family Aizoaceae, has excellent salt tolerance. Chloroplasts are the most sensitive organelles involved in the response to salinity. However, the regulation mechanism of chloroplasts of S. portulacastrum under salinity stress has not been reported. In this study, morphological and physiological analyses of leaves and comparative proteomics of chloroplasts isolated from the leaves of S. portulacastrum under different NaCl treatments were performed. Our results showed that the thickness of the palisade tissue, the leaf area, the maximum photochemical efficiency of photosystem II, and the electron transport rate increased remarkably after the plants were subjected to differential saline environments, indicating that salinity can increase photosynthetic efficiency and improve the growth of S. portulacastrum. Subsequently, 55 differentially expressed protein species (DEPs) from the chloroplasts of S. portulacastrum under differential salt conditions were positively identified by mass spectrometry. These DEPs were involved in multiple metabolic pathways, such as photosynthesis, carbon metabolism, ATP synthesis and the cell structure. Among these DEPs, the abundance of most proteins was induced by salt stress. Based on a combination of the morphological and physiological data, as well as the chloroplast proteome results, we speculated that S. portulacastrum can maintain photosynthetic efficiency and growth by maintaining the stability of the photosystem II complex, promoting the photochemical reaction rate, enhancing carbon fixation, developing plastoglobules, and preserving the biomembrane system of chloroplasts under salt stress.
Collapse
Affiliation(s)
- Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Qian Yang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yong Sun
- Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, China
| | - Xiaoping Yi
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Guohua Ding
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Junhan Xiao
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Ying Zhang
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China.
| |
Collapse
|
24
|
Yepes L, Chelbi N, Vivo JM, Franco M, Agudelo A, Carvajal M, Martínez-Ballesta MDC. Analysis of physiological traits in the response of Chenopodiaceae, Amaranthaceae, and Brassicaceae plants to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:145-155. [PMID: 30189418 DOI: 10.1016/j.plaphy.2018.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 05/27/2023]
Abstract
Soil salinity is one of the main factors affecting plant growth. Dissection of plant response to salinity into physiological traits may result a simple approximation than the overall response that may influence many aspects of the plant. In the present study two factors were considered to evaluate the correlation of different physiological variables in the plant response to salinity. The first factor was the species, with four levels (Atriplex halimus, Salicornia fruticosa, Cakile maritima, and Brassica rapa), and the second was the salinity (0, 100, 200, and 300 mM NaCl). Thus, the interrelationships of distinct physiological traits - leaf succulence, minerals (micronutrients and macronutrients), plant water relations (osmotic potential, water potential, and hydraulic conductivity), protein content, catalase, and unsaturated fatty acids - were analyzed by Discriminant Canonical Analysis (DCA). Additional information supplied by the interaction between the variables provided a multivariate response pattern in which the two factors (species x salinity) influenced the relationship between responses rather than affecting a single response. Such analysis allows to establish whether the selected trait was associated to each other for helping to define the best set of parameters in relation to the response of new genotypes to salinity. Thus, plant growth was influenced by leaf succulence adaptation to salt stress whereas it was not determined by water relations. The Na ion prevailed over K as the element with the highest variability in the response to salinity in A. halimus and S. fruticosa, whereas in C. maritima and B. rapa, Ca, S, and P stood out more. Patterns of ion accumulation together with the protein and unsaturated fatty acid ratios could be used in discriminating plant response to salt stress may be positioned in interrelated groups. The results highlight new evidences in the response to salt stress associated to a specific interrelationship of a set of physiological parameters.
Collapse
Affiliation(s)
- Lucia Yepes
- Plant Nutrition Department, CEBAS-CSIC, Campus de Espinardo, 30100, Murcia, Spain
| | - Najla Chelbi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Spain
| | - Juana-María Vivo
- Department of Statistics and Operations Research, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Manuel Franco
- Department of Statistics and Operations Research, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Agatha Agudelo
- Sakata Seed Ibérica S.L, Pl. Poeta Vicente Gaos, 6 bajo, Valencia, Spain; Universidad Politécnica de Valencia, UPV, Camino de Vera s/n, 46022, Valencia, Spain
| | - Micaela Carvajal
- Plant Nutrition Department, CEBAS-CSIC, Campus de Espinardo, 30100, Murcia, Spain
| | | |
Collapse
|
25
|
Muchate NS, Rajurkar NS, Suprasanna P, Nikam TD. Evaluation of Spinacia oleracea (L.) for phytodesalination and augmented production of bioactive metabolite, 20-hydroxyecdysone. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:981-994. [PMID: 30095306 DOI: 10.1080/15226514.2018.1452184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, adaptive features of Spinacia oleracea to different levels of salinity, its use in desalination and production of 20-Hydroxyecdysone were studied. Plants showed survival up to EC 12 dS/m with reduced growth as compared with control. Net photosynthesis rate, transpiration, stomatal conductance, and water use efficiency of salt treated plants declines with increasing salinity stress. Higher antioxidant enzyme activities and compatible solutes accumulation were observed in salt treated plants as function of osmotic adjustment. Significant Na+ sequestration and Na/K ratio were noted with increase in salt stress in comparison to the control. Since the plant accumulates a bioactive, secondary metabolite 20-Hydroxyecdysone (20E), we observed significant 20E content in plants grown at EC 4-12 dS/m in comparison to control. Furthermore, a preliminary field experiment, showed significant reduction in the soil electrical conductivity by 1.8 ds/m after 90 days of plant growth with Na+ sequestration in plant biomass. Subsequent to this growth period, the phytodesalinized soil supported the significant growth of a glycophyte (rice). Our results suggest that S. oleracea can adapt to saline conditions with antioxidant defense and osmotic adjustment. The plant can be used as a potential candidate for desalination and also for enhanced production of 20-Hydroxyecdysone.
Collapse
Affiliation(s)
- N S Muchate
- a Department of Botany , Savitribai Phule Pune University , Pune , Maharashtra , India
- b Department of Environmental Science , Savitribai Phule Pune University , Pune , Maharashtra , India
| | - N S Rajurkar
- c Department of Chemistry , Savitribai Phule Pune University , Pune , Maharashtra , India
| | - P Suprasanna
- d Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , Maharashtra , India
| | - T D Nikam
- a Department of Botany , Savitribai Phule Pune University , Pune , Maharashtra , India
- b Department of Environmental Science , Savitribai Phule Pune University , Pune , Maharashtra , India
| |
Collapse
|
26
|
Álvarez-Aragón R, Rodríguez-Navarro A. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:208-219. [PMID: 28370621 DOI: 10.1111/tpj.13556] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 05/02/2023]
Abstract
Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na+ effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na+ uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na+ into the xylem constitute the major pathway for the accumulation of Na+ in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na+ accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na+ transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na+ could not be accumulated. In contrast, in NaCl the plants that accumulated Na+ lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na+ uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity.
Collapse
Affiliation(s)
- Rocío Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Alonso Rodríguez-Navarro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
27
|
Wali M, Martos S, Pérez-Martín L, Abdelly C, Ghnaya T, Poschenrieder C, Gunsé B. Cadmium hampers salt tolerance of Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:390-399. [PMID: 28432978 DOI: 10.1016/j.plaphy.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 05/01/2023]
Abstract
It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl2. Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na+ concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H+-ATPase 1) and SOS1 (plasma membrane Na+ transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na+ concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils.
Collapse
Affiliation(s)
- Mariem Wali
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain; Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj-Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Soledad Martos
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Laura Pérez-Martín
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Chedly Abdelly
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj-Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Tahar Ghnaya
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj-Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Charlotte Poschenrieder
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Benet Gunsé
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
28
|
White PJ, Bowen HC, Broadley MR, El‐Serehy HA, Neugebauer K, Taylor A, Thompson JA, Wright G. Evolutionary origins of abnormally large shoot sodium accumulation in nonsaline environments within the Caryophyllales. THE NEW PHYTOLOGIST 2017; 214:284-293. [PMID: 27918626 PMCID: PMC5396351 DOI: 10.1111/nph.14370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/31/2016] [Indexed: 05/06/2023]
Abstract
The prevalence of sodium (Na)-'hyperaccumulator' species, which exhibit abnormally large shoot sodium concentrations ([Na]shoot ) when grown in nonsaline environments, was investigated among angiosperms in general and within the Caryophyllales order in particular. Shoot Na concentrations were determined in 334 angiosperm species, representing 35 orders, grown hydroponically in a nonsaline solution. Many Caryophyllales species exhibited abnormally large [Na]shoot when grown hydroponically in a nonsaline solution. The bimodal distribution of the log-normal [Na]shoot of species within the Caryophyllales suggested at least two distinct [Na]shoot phenotypes within this order. Mapping the trait of Na-hyperaccumulation onto the phylogenetic relationships between Caryophyllales families, and between subfamilies within the Amaranthaceae, suggested that the trait evolved several times within this order: in an ancestor of the Aizoaceae, but not the Phytolaccaceae or Nyctaginaceae, in ancestors of several lineages formerly classified as Chenopodiaceae, but not in the Amaranthaceae sensu stricto, and in ancestors of species within the Cactaceae, Portulacaceae, Plumbaginaceae, Tamaricaceae and Polygonaceae. In conclusion, a disproportionate number of Caryophyllales species behave as Na-hyperaccumulators, and multiple evolutionary origins of this trait can be identified within this order.
Collapse
Affiliation(s)
- Philip J. White
- The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Distinguished Scientist Fellowship ProgramKing Saud UniversityRiyadh11451Saudi Arabia
| | - Helen C. Bowen
- Warwick HRIUniversity of WarwickWellesbourneWarwickCV35 9EFUK
| | - Martin R. Broadley
- Plant and Crop Sciences DivisionUniversity of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| | - Hamed A. El‐Serehy
- Zoology DepartmentCollege of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
| | - Konrad Neugebauer
- The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Plant and Crop Sciences DivisionUniversity of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| | - Anna Taylor
- The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | | | - Gladys Wright
- The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
29
|
Wali M, Gunsè B, Llugany M, Corrales I, Abdelly C, Poschenrieder C, Ghnaya T. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis. PLANTA 2016; 244:333-346. [PMID: 27061088 DOI: 10.1007/s00425-016-2515-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA) than the LS-Cd plants. However, under LS-Cd conditions, plants maintained higher concentration of salicylic acid (SA) and abscisic acid (ABA) than the HS-Cd ones. We conclude that in S. portulacastrum alleviation of Cd toxicity by NaCl is related to the modification of GSH and proline contents as well as stress hormone levels thus protecting redox balance and photosynthesis.
Collapse
Affiliation(s)
- Mariem Wali
- Laboroitre des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901 Hammam_Lif, 2050, Tunis, Tunisia
- Laboratorio de Fisiología Vegetal, Facultad de Biociencias, Universidad Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Benet Gunsè
- Laboratorio de Fisiología Vegetal, Facultad de Biociencias, Universidad Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Mercè Llugany
- Laboratorio de Fisiología Vegetal, Facultad de Biociencias, Universidad Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Isabel Corrales
- Laboratorio de Fisiología Vegetal, Facultad de Biociencias, Universidad Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Chedly Abdelly
- Laboroitre des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901 Hammam_Lif, 2050, Tunis, Tunisia
| | - Charlotte Poschenrieder
- Laboratorio de Fisiología Vegetal, Facultad de Biociencias, Universidad Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Tahar Ghnaya
- Laboroitre des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901 Hammam_Lif, 2050, Tunis, Tunisia.
| |
Collapse
|
30
|
Xu C, Tang X, Shao H, Wang H. Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality. Curr Genomics 2016; 17:207-14. [PMID: 27252587 PMCID: PMC4869007 DOI: 10.2174/1389202917666160202215548] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 12/26/2022] Open
Abstract
Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt tolerance mechanisms to respond to the salt tress and ensure normal growth and development under saline conditions in their lengthy evolutionary adaptation, so understanding how halophytes respond to salinity stress will provide us with methods and tactics to foster and develop salt resistant varieties of crops. The strategies in physiological and molecular level adopted by halophytes are various including the changes in photosynthetic and transpiration rate, the sequestration of Na+ to extracellular or vacuole, the regulation of stomata aperture and stomatal density, the accumulation and synthesis of the phytohormones as well as the relevant gene expression underlying these physiological traits, such as the stress signal transduction, the regulation of the transcription factors, the activation and expression of the transporter genes, the activation or inhibition of the synthetases and so on. This review focuses on the research advances of the regulating mechanisms in halophytes from physiological to molecular, which render the halophytes tolerance and adaption to salinity stress.
Collapse
Affiliation(s)
- Chongzhi Xu
- College of Plant Science, Tarim University, Alar843300,Xinjiang, China
| | - Xiaoli Tang
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Shao
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
- Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongyan Wang
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Academy of China Agriculture University, Yantai 264670, China
| |
Collapse
|
31
|
Nan G, Zhang Y, Li S, Lee I, Takano T, Liu S. NaCl stress-induced transcriptomics analysis of Salix linearistipularis (syn. Salix mongolica). ACTA ACUST UNITED AC 2016; 23:1. [PMID: 26933650 PMCID: PMC4772304 DOI: 10.1186/s40709-016-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
Background Salix linearistipularis (syn. S. mongolica) is a woody halophyte, which is distributed naturally in saline-alkali soil of Songnen plain, Heilongjiang, China. It plays an important role in maintaining ecological balance and in improving saline soil. Furthermore, S. linearistipularis is also a genetic resource; however, there is no available information of genomic background for salt tolerance mechanism. We conducted the transcriptome analysis of S. linearistipularis to understand the mechanisms of salt tolerance by using RNA-seq technology. Results The transcription profiles of both the salt stress (SLH-treated) and the control (SLH-control) sample for S. linearistipularis were obtained by using RNA-seq in this study. By comparative analysis, only 3034 of 53,362 all-unigenes between two samples were expressed differently at more than 1.5-fold (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left| {fold - change} \right| \ge 1.5$$\end{document}fold-change≥1.5, FDR ≤ 0.05), including 1397 up-regulated genes and 1637 down-regulated genes. In total, 2199 genes were classified into 50 Gene Ontology (GO) terms and 1103 genes were involved in 116 biological pathways. To find salt stress related genes, all-unigenes of S. linearistipularis were classified into three categories according to their degree of the differentially expressed genes (DEGs) at 0–1.5-fold (non differently expressed genes, N-DEGs), at 1.5–4.0-fold and more than 4.0-fold. The pathways of three categorized genes were compared with the DEGs of Arabidopsis thaliana, showing that 22, 10 and 1 pathway of S. linearistipularis were overlapped with A. thaliana. Degree of the overlapping was categorized as 0–1.5-fold, 1.5–4.0-fold and more than 4.0-folds. Conclusion Our study revealed that the N-DEGs of 22 pathways in S. linearistipularis were overlapped with the DEGs of A. thaliana. This result suggests that those overlapped genes that contrasted with the up- or down-regulated genes in A. thaliana were possibility evolved into housekeeping genes in S. linearistipularis under salt stress. Electronic supplementary material The online version of this article (doi:10.1186/s40709-016-0038-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guixian Nan
- Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Hexing Road No. 26, Xiangfang, Harbin, 150040 Heilongjiang China ; College of Agriculture, Yanbian University, Yanji, 133002 China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 China
| | - Song Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 China
| | - Imshik Lee
- Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Hexing Road No. 26, Xiangfang, Harbin, 150040 Heilongjiang China ; Institute of Physics, Nankai University, Nankai District, Tianjin, 300071 China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, Midori Cho 1-1-1, Nishitokyo, Tokyo 188-0002 Japan
| | - Shenkui Liu
- Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Hexing Road No. 26, Xiangfang, Harbin, 150040 Heilongjiang China
| |
Collapse
|
32
|
Lutts S, Lefèvre I. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? ANNALS OF BOTANY 2015; 115:509-28. [PMID: 25672360 PMCID: PMC4332614 DOI: 10.1093/aob/mcu264] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/01/2014] [Accepted: 12/10/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. SCOPE Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. CONCLUSIONS Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments.
Collapse
Affiliation(s)
- Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Isabelle Lefèvre
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
33
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
34
|
Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. J Proteomics 2014; 99:84-100. [PMID: 24487036 DOI: 10.1016/j.jprot.2014.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Physiological and proteomic responses of Sesuvium portulacastrum leaves under salinity were investigated. Different from glycophytes, this halophyte had optimal growth at 200-300mM NaCl and accumulated more starch grains in chloroplasts under high salinity. Increased contents of soluble sugars, proline, and Na(+) were observed upon salinity. X-ray microanalysis revealed that Na(+) was mainly compartmentalized into cell vacuole. Quantitative proteomics produced 96 salt responsive proteins, and the majority was chloroplast-located proteins. Gene ontology analysis revealed that proteins involved in ion binding, proton transport, photosynthesis and ATP synthesis were overrepresented. The expressions of a Na(+)/H(+) antiporter and several ATP synthase subunits were activated upon high salinity. ATP hydrolysis assay demonstrated that V-ATPase activity at tonoplast was dramatically increased upon NaCl whereas vacuolar H(+)-pyrophosphatase and plasma membrane P-ATPase activities were not increased, which indicated that sodium compartmentalization was mainly performed by enhancing V-ATPase activity rather than P-ATPase and H(+)-pyrophosphatase. Accumulation of soluble sugars as well as sodium compartmentalization maintained the osmotic balance between vacuole and cytoplasm, which finally established ionic homeostasis in saline cells in true halophytes. BIOLOGICAL SIGNIFICANCE Physiological and proteomic analyses of S. portulacastrum leaves under different salinities were investigated. This true halophyte accumulated more soluble sugars, starch, proline and Na(+) under high salinity. Differential proteomics produced 96 salt responsive proteins and the majority was involved in ion binding, proton transport, photosynthesis, and ATP synthesis. A Na(+)/H(+) antiporter and several ATP synthase subunits were induced upon high salinity. ATP hydrolysis assay demonstrated that V-ATPase activity at tonoplast was dramatically increased whereas vacuolar H(+)-pyrophosphatase and plasma membrane ATPase activities were stable upon NaCl. These findings demonstrated that the increased Na(+) was compartmentalized into vacuole by enhancing V-ATPase activity rather than H(+)-ATPase.
Collapse
|
35
|
Fan P, Nie L, Jiang P, Feng J, Lv S, Chen X, Bao H, Guo J, Tai F, Wang J, Jia W, Li Y. Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. PLoS One 2013; 8:e80595. [PMID: 24265831 PMCID: PMC3827210 DOI: 10.1371/journal.pone.0080595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Halophytes such as Salicornia europaea have evolved to exhibit unique mechanisms controlled by complex networks and regulated by numerous genes and interactions to adapt to habitats with high salinity. However, these mechanisms remain unknown. METHODS To investigate the mechanism by which halophytes tolerate salt based on changes in the whole transcriptome, we performed transcriptome sequencing and functional annotation by database search. Using the unigene database, we conducted digital gene expression analysis of S. europaea at various time points after these materials were treated with NaCl. We also quantified ion uptakes. Gene functional enrichment analysis was performed to determine the important pathways involved in this process. RESULTS A total of 57,151 unigenes with lengths of >300 bp were assembled, in which 57.5% of these unigenes were functionally annotated. Differentially expressed genes indicated that cell wall metabolism and lignin biosynthetic pathways were significantly enriched in S. europaea to promote the development of the xylem under saline conditions. This result is consistent with the increase in sodium uptake as ions pass through the xylem. Given that PSII efficiency remained unaltered, salt treatment activated the expression of electron transfer-related genes encoded by the chloroplast chromosome. Chlorophyll biosynthesis was also inhibited, indicating the energy-efficient state of the electron transfer system of S. europaea. CONCLUSIONS The key function of adjusting important primary metabolic pathways in salt adaption was identified by analyzing the changes in the transcriptome of S. europaea. These pathways could involve unique salt tolerance mechanisms in halophytes. This study also provided information as the basis of future investigations on salt response genes in S. europaea. Ample gene resources were also provided to improve the genes responsible for the salt tolerance ability of crops.
Collapse
Affiliation(s)
- Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lingling Nie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xianyang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
36
|
Han Y, Wang W, Sun J, Ding M, Zhao R, Deng S, Wang F, Hu Y, Wang Y, Lu Y, Du L, Hu Z, Diekmann H, Shen X, Polle A, Chen S. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4225-38. [PMID: 24085577 PMCID: PMC3808310 DOI: 10.1093/jxb/ert229] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased capacity for salt tolerance was due mainly to the anatomical and physiological alterations caused by PeXTH overexpression. Compared with the wild type, PeXTH-transgenic plants contained 36% higher water content per unit area and 39% higher ratio of fresh weight to dry weight, a hallmark of leaf succulence. However, the increased water storage in the leaves in PeXTH-transgenic plants was not accompanied by greater leaf thickness but was due to highly packed palisade parenchyma cells and fewer intercellular air spaces between mesophyll cells. In addition to the salt dilution effect in response to NaCl, these anatomical changes increased leaf water-retaining capacity, which lowered the increase of salt concentration in the succulent tissues and mesophyll cells. Moreover, the increased number of mesophyll cells reduced the intercellular air space, which improved carbon economy and resulted in a 47-78% greater net photosynthesis under control and salt treatments (100-150 mM NaCl). Taken together, the results indicate that PeXTH overexpression enhanced salt tolerance by the development of succulent leaves in tobacco plants without swelling.
Collapse
Affiliation(s)
- Yansha Han
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Wei Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jian Sun
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Mingquan Ding
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shurong Deng
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Feifei Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yue Hu
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yang Wang
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanjun Lu
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Liping Du
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heike Diekmann
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Xin Shen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Andrea Polle
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
37
|
Ma J, Zhang M, Xiao X, You J, Wang J, Wang T, Yao Y, Tian C. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS One 2013; 8:e65877. [PMID: 23825526 PMCID: PMC3692491 DOI: 10.1371/journal.pone.0065877] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is well adapted to extreme saline environments with more than 1,000 mM NaCl in the soil, so it could serve as an important model species for studying halophilic mechanisms in euhalophytes. To obtain insights into the molecular basis of salt tolerance, we present here the first extensive transcriptome analysis of this species using the Illumina HiSeq™ 2000. PRINCIPAL FINDINGS A total of 41 and 39 million clean reads from the salt-treated (Se200S) and salt-free (SeCKS) tissues of S. europaea shoots were obtained, and de novo assembly produced 97,865 and 101,751 unigenes, respectively. Upon further assembly with EST data from both Se200S and SeCKS, 109,712 high-quality non-redundant unigenes were generated with a mean unigene size of 639 bp. Additionally, a total of 3,979 differentially expressed genes (DEGs) were detected between the Se200S and SeCKS libraries, with 348 unigenes solely expressed in Se200S and 460 unigenes solely expressed in SeCKS. Furthermore, we identified a large number of genes that are involved in ion homeostasis and osmotic adjustment, including cation transporters and proteins for the synthesis of low-molecular compounds. All unigenes were functionally annotated within the COG, GO and KEGG pathways, and 10 genes were validated by qRT-PCR. CONCLUSION Our data contains the extensive sequencing and gene-annotation analysis of S. europaea. This genetic knowledge will be very useful for future studies on the molecular adaptation to abiotic stress in euhalophytes and will facilitate the genetic manipulation of other economically important crops.
Collapse
Affiliation(s)
- Jinbiao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
| | - Meiru Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinlong Xiao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin You
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
| | - Junru Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- College of Resource and Environment Science, Xinjiang University, Urumqi, China
| | - Yinan Yao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- * E-mail: (YY); (CT)
| | - Changyan Tian
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
- * E-mail: (YY); (CT)
| |
Collapse
|