1
|
Li S, Fu H, Sharif Y, Abdullaziz S, Wang L, Zhang Y, Zhuang Y. Genome-Wide Identification, Functional Characterization, and Stress-Responsive Expression Profiling of Subtilase ( SBT) Gene Family in Peanut ( Arachis hypogaea L.). Int J Mol Sci 2024; 25:13361. [PMID: 39769126 PMCID: PMC11676140 DOI: 10.3390/ijms252413361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Subtilases (SBTs), known as serine proteases or phytoproteases in plants, are crucial enzymes involved in plant development, growth, and signaling pathways. Despite their recognized importance in other plant species, information regarding their functional roles in cultivated peanut (Arachis hypogea L.) remains sparse. We identified 122 AhSBT genes in the STQ peanut genome, classifying them into six subgroups based on phylogenetic analysis. Detailed structural and motif analyses revealed the presence of conserved domains, highlighting the evolutionary conservation of AhSBTs. The collinearity results indicate that the A. hypogea SBT gene family has 17, 5, and 1 homologous gene pairs with Glycine max, Arabidopsis thaliana, and Zea mays, respectively. Furthermore, the prediction of cis-elements in promoters indicates that they are mainly associated with hormones and abiotic stress. GO and KEGG analyses showed that many AhSBTs are important in stress response. Based on transcriptome datasets, some genes, such as AhSBT2, AhSBT18, AhSBT19, AhSBT60, AhSBT102, AhSBT5, AhSBT111, and AhSBT113, showed remarkably higher expression in diverse tissues/organs, i.e., embryo, root, and leaf, potentially implicating them in seed development. Likewise, only a few genes, including AhSBT1, AhSBT39, AhSBT53, AhSBT92, and AhSBT115, were upregulated under abiotic stress (drought and cold) and phytohormone (ethylene, abscisic acid, paclobutrazol, brassinolide, and salicylic acid) treatments. Upon inoculation with Ralstonia solanacearum, the expression levels of AhSBT39, AhSBT50, AhSBT92, and AhSBT115 were upregulated in disease-resistant and downregulated in disease-susceptible varieties. qRT-PCR-based expression profiling presented the parallel expression trends as generated from transcriptome datasets. The comprehensive dataset generated in the study provides valuable insights into understanding the functional roles of AhSBTs, paving the way for potential applications in crop improvement. These findings deepen our understanding of peanut molecular biology and offer new strategies for enhancing stress tolerance and other agronomically important traits.
Collapse
Affiliation(s)
- Shipeng Li
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
| | - Huiwen Fu
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yasir Sharif
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheidu Abdullaziz
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Agronomy, Faculty of Agriculture, Nasarawa State University, Keffi P.M.B 1022, Nigeria
| | - Lihui Wang
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongli Zhang
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhui Zhuang
- Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.L.); (H.F.); (Y.S.); (S.A.); (L.W.); (Y.Z.)
| |
Collapse
|
2
|
Xiong J, Luo M, Chen Y, Hu Q, Fang Y, Sun T, Hu G, Zhang CJ. Subtilisin-like proteases from Fusarium graminearum induce plant cell death and contribute to virulence. PLANT PHYSIOLOGY 2024; 195:1681-1693. [PMID: 38478507 DOI: 10.1093/plphys/kiae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/02/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.
Collapse
Affiliation(s)
- Jiang Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingyu Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yunshen Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
3
|
Zhang W, Planas-Marquès M, Mazier M, Šimkovicová M, Rocafort M, Mantz M, Huesgen PF, Takken FLW, Stintzi A, Schaller A, Coll NS, Valls M. The tomato P69 subtilase family is involved in resistance to bacterial wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:388-404. [PMID: 38150324 DOI: 10.1111/tpj.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.
Collapse
Affiliation(s)
- Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Margarita Šimkovicová
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mercedes Rocafort
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Frank L W Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Martinez M, Bouillon A, Brûlé S, Raynal B, Haouz A, Alzari PM, Barale JC. Prodomain-driven enzyme dimerization: a pH-dependent autoinhibition mechanism that controls Plasmodium Sub1 activity before merozoite egress. mBio 2024; 15:e0019824. [PMID: 38386597 PMCID: PMC10936178 DOI: 10.1128/mbio.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.
Collapse
Affiliation(s)
- Mariano Martinez
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Anthony Bouillon
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Sébastien Brûlé
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Pedro M. Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Jean-Christophe Barale
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
McKenna S, Aylward F, Miliara X, Lau RJ, Huemer CB, Giblin SP, Huse KK, Liang M, Reeves L, Pearson M, Xu Y, Rouse SL, Pease JE, Sriskandan S, Kagawa TF, Cooney J, Matthews S. The protease associated (PA) domain in ScpA from Streptococcus pyogenes plays a role in substrate recruitment. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140946. [PMID: 37562488 DOI: 10.1016/j.bbapap.2023.140946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Frances Aylward
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Xeni Miliara
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Rikin J Lau
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Camilla Berg Huemer
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Sean P Giblin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Kristin K Huse
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Mingyang Liang
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Lucy Reeves
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Todd F Kagawa
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jakki Cooney
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
6
|
Hou Q, Wang L, Qi Y, Yan T, Zhang F, Zhao W, Wan X. A systematic analysis of the subtilase gene family and expression and subcellular localization investigation of anther-specific members in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108041. [PMID: 37722281 DOI: 10.1016/j.plaphy.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Subtilases (SBTs), also known as Subtilisin-like serine proteases, are extracellular alkaline protease proteins. SBTs function in all stages of plant growth, development and stress responses. Maize (Zea mays L.) is a crop widely used worldwide as food, feed, and industrial materials. However, information about the members and their functions of the SBT proteins in maize is lacking. In this study, we identified 58 ZmSBT genes from the maize genome and conducted a comprehensive investigation of ZmSBTs by phylogenetic, gene duplication event, gene structure, and protein conserved motif analyses. The ZmSBT proteins were phylogenetically classified into seven groups, and collinearity analysis indicated that many ZmSBTs originate from tandem or segmental duplications. Structural and homolog protein comparison revealed ZmSBTs have conserved protein structures with reported subtilase proteins, suggesting the conserved functions. Further analysis showed that ZmSBTs are expressed in different tissues, and many are responses to specific abiotic stress. Analysis of the anther-specific ZmSBT genes showed their expression peaked at different developmental stages of maize anthers. Subcellular localization analysis of selected maize ZmSBTs showed they are located in different cellular compartments. The information provided in this study is valuable for further functional study of ZmSBTs.
Collapse
Affiliation(s)
- Quancan Hou
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi lnternational lnstitute of Agricultural Biosciences, Beijing, 100192, China
| | - Linlin Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tingwei Yan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Zhang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi lnternational lnstitute of Agricultural Biosciences, Beijing, 100192, China.
| |
Collapse
|
7
|
Zhu X, Hua Y, Kong X, Li X, Chen Y, Zhang C. Characterization of proteases from Irpex lacteus grown on minimally denatured soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1800-1809. [PMID: 36317244 DOI: 10.1002/jsfa.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acid and thermal stabilities are important properties for the preparation of acidic protein beverage. It is an important method for enzymatic modification to improve the functional properties of protein. Irpex lacteus protease showed a selective hydrolysis to soy proteins. The purpose of this study was to investigate the mechanism of enzymatic hydrolysis and its effects on acid and thermal stabilities of soy proteins. RESULTS The I. lacteus protease selectively hydrolyzed the α and α' subunits of the native soybean β-conglycinin (7S globulin) to produce products that presented as the 55 kDa band upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. The amino acid sequences of 55 kDa polypeptides were analyzed in gel multi-enzyme digestion followed by liquid chromatography-mass spectrometry. By matching the multi-enzyme digestion peptides with the published polypeptide chain sequences of the α and α' subunits, it was confirmed that the 55 kDa polypeptides were formed by eliminating amino acid residues on both sides of the N- and C-terminals. From the published protein structure database (https://www.uniprot.org/), it is known that the cleaved peptide bonds were in extension regions. Non-selective enzyme hydrolysis of both β-conglycinin (7S globulin) and glycinin (11S globulin), with corresponding drastic increases in the degree of hydrolysis, was observed when the substrates were preheated to the denaturation degree of 40% and above. However, 55 kDa hydrolyzed products and B polypeptides showed some extent of resistance to the proteolysis by I. lacteus protease even if denaturation degree was 100%. Both selective and non-selective hydrolysis of soy proteins by I. lacteus protease improved the acid and heat stabilities under the same hydrolysis conditions (enzyme/substrate ratio, time, and temperature). CONCLUSION Enzymatic hydrolysis of soybean proteins by the I. lacteus protease can effectively improve the acid and thermal stabilities of proteins. This discovery is significant to avoid aggregation during processing in the beverage industry. In the near future, the protease has potential application value for modification of other proteins. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
8
|
Siritapetawee J, Attarataya J, Charoenwattanasatien R. Sequence analysis and crystal structure of a glycosylated protease from Euphorbia resinifera latex for its proteolytic activity aspect. Biotechnol Appl Biochem 2022; 69:2580-2591. [PMID: 34967474 DOI: 10.1002/bab.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022]
Abstract
The investigation of a plant glycosylated serine protease (EuRP-61) isolated from Euphorbia resinifera latex for potential antiplatelet and anticoagulation activities has been previously reported. In the present study, the protein sequence and native crystal structure of EuRP-61 were characterized. The structure was identified using single-wavelength anomalous diffraction with a refinement resolution of 1.7 Å (PDB ID: 7EOX). The main structural components of EuRP-61 were composed of three domains: catalytic, protease-associated (PA), and fibronectin type III (Fn3)-like domains. The crystal structure revealed that some loops in the PA and catalytic domains of EuRP-61 were different from the other subtilisin-like proteases (cucumisin and SBT3). These different loops might be involved in the general monomer formation of EuRP-61, substrate specificity, and maintenance of the catalytic domain. The Fn3-like domain may provide flexibility to the enzyme to bind with various substrates and cell receptors. Additionally, the active site of EuRP-61 consisted of the catalytic triad of Ser434, His106, and Asp32, similar to other serine proteases. The present study provides additional information and insight into the protease and antithrombotic activities of EuRP-61, which could contribute to further development of this enzyme for biomedical treatment.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jakrada Attarataya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | | |
Collapse
|
9
|
Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Appl Environ Microbiol 2022; 88:e0150322. [PMID: 36250702 PMCID: PMC9642013 DOI: 10.1128/aem.01503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial Vpr-like proteases are extracellular multidomain subtilases with diverse functions and can form oligomers, but their maturation and oligomerization mechanisms remain to be elucidated. Here, we report a novel Vpr-like protease (BTV) from thermophilic bacterium Brevibacillus sp. WF146. The BTV precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain with an inserted protease-associated (PA) domain, two tandem fibronectin type III domains (Fn1 and Fn2), and a C-terminal propeptide. The BTV proform (pro-BTV) could be autoprocessed into the mature form (mBTV) via two intermediates lacking the N- or C-terminal propeptide, respectively, and the C-terminal propeptide delays the autocatalytic maturation of the enzyme. By comparison, pro-BTV is more efficiently processed into mBTV by protease TSS from strain WF146. Purified mBTV is a Ca2+-dependent thermostable protease, showing optimal activity at 60°C and retaining more than 60% of activity after incubation at 60°C for 8 h. The PA domain is important for enzyme stability and contributes to the substrate specificity of BTV by restricting the access of protein substrates to the active site. The proform and mature form of BTV exist as a monomer and a homodimer, respectively, and the dimerization is mediated by the Fn1 and Fn2 domains. The N-terminal propeptide of BTV not only acts as intramolecular chaperone and enzymatic inhibitor but also inhibits the homodimerization of the enzyme. The removal of the N-terminal propeptide leads to a structural adjustment of the enzyme and thus promotes enzyme dimerization. IMPORTANCE Vpr-like proteases are widely distributed in bacteria and fungi and are involved in processing lantibiotics, degrading collagen, keratin, and fibrin, and pathogenesis of microbes. The dissection of the roles of individual domains in enzyme maturation and oligomerization is crucial for understanding the action mechanisms of these multidomain proteases. Our results demonstrate that hetero-catalytic maturation of the extracellular Vpr-like protease BTV of Brevibacillus sp. WF146 is more efficient than autocatalytic maturation of the enzyme. Moreover, we found that the C-terminal tandem fibronectin type III domains rather than the PA domain mediate the dimerization of mature BTV, while the N-terminal propeptide inhibits the dimerization of the BTV proform. This study provides new insight into the activation and oligomerization mechanisms of Vpr-like proteases.
Collapse
|
10
|
Royek S, Bayer M, Pfannstiel J, Pleiss J, Ingram G, Stintzi A, Schaller A. Processing of a plant peptide hormone precursor facilitated by posttranslational tyrosine sulfation. Proc Natl Acad Sci U S A 2022; 119:e2201195119. [PMID: 35412898 PMCID: PMC9169856 DOI: 10.1073/pnas.2201195119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 02/03/2023] Open
Abstract
Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.
Collapse
Affiliation(s)
- Stefanie Royek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Martin Bayer
- Department of Cell Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 69364 Lyon, France
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
11
|
HYL1-CLEAVAGE SUBTILASE 1 (HCS1) suppresses miRNA biogenesis in response to light-to-dark transition. Proc Natl Acad Sci U S A 2022; 119:2116757119. [PMID: 35121664 PMCID: PMC8833217 DOI: 10.1073/pnas.2116757119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/02/2023] Open
Abstract
HYPONASTIC LEAVES 1 (HYL1)-CLEAVAGE SUBTILASE 1 (HCS1) is a novel negative regulator of microRNA (miRNA) biogenesis that degrades HYL1 in the cytoplasm. Furthermore, cytoplasm CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase inhibit HCS1-mediated HYL1 degradation. The COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway. Our finding suggests a regulatory pathway in the miRNA-biogenetic system. The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.
Collapse
|
12
|
Axelrad I, Safrin M, Cahan R, Suh SJ, Ohman DE, Kessler E. Extracellular proteolytic activation of Pseudomonas aeruginosa aminopeptidase (PaAP) and insight into the role of its non-catalytic N-terminal domain. PLoS One 2021; 16:e0252970. [PMID: 34133429 PMCID: PMC8208579 DOI: 10.1371/journal.pone.0252970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa secretes several endopeptidases, including elastase, alkaline proteinase (Apr), a lysine-specific endopeptidase (LysC), and an aminopeptidase (PaAP), all of which are important virulence factors. Activation of the endopeptidases requires removal of an inhibitory N-terminal propeptide. Activation of pro-PaAP, in contrast, requires C-terminal processing. The activating proteases of pro-PaAP and their cleavage site(s) have not yet been defined. Studying pro-PaAP processing in a wild type P. aeruginosa strain and strains lacking either elastase or both elastase and Apr, we detected three processing variants, each ~56 kDa in size (AP56). Activity assays and N- and C-terminal sequence analyses of these variants pointed at LysC as the principal activating protease, cleaving a Lys512-Ala513 peptide bond at the C-terminal end of pro-PaAP. Elastase and/or Apr are required for activation of LysC, suggesting both are indirectly involved in activation of PaAP. To shed light on the function(s) of the N-terminal domain of AP56, we purified recombinant AP56 and generated from it the 28 kDa catalytic domain (AP28). The kinetic constants (Km and Kcat) for hydrolysis of Leu-, Lys-, Arg- and Met-p-nitroanilide (pNA) derivatives by AP56 and AP28 were then determined. The catalytic coefficients (Kcat/Km) for hydrolysis of all four substrates by AP28 and AP56 were comparable, indicating that the non-catalytic domain is not involved in hydrolysis of small substrates. It may, however, regulate hydrolysis of natural peptides/proteins. Lys-pNA was hydrolyzed 2 to 3-fold more rapidly than Leu-pNA and ~8-fold faster than Arg- or Met-pNA, indicating that Lys-pNA was the preferred substrate.
Collapse
Affiliation(s)
- Itschak Axelrad
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Mary Safrin
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Rivka Cahan
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Sang-Jin Suh
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Efrat Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
13
|
McKenna S, Malito E, Rouse SL, Abate F, Bensi G, Chiarot E, Micoli F, Mancini F, Gomes Moriel D, Grandi G, Mossakowska D, Pearson M, Xu Y, Pease J, Sriskandan S, Margarit I, Bottomley MJ, Matthews S. Structure, dynamics and immunogenicity of a catalytically inactive C XC chemokine-degrading protease SpyCEP from Streptococcus pyogenes. Comput Struct Biotechnol J 2020; 18:650-660. [PMID: 32257048 PMCID: PMC7113628 DOI: 10.1016/j.csbj.2020.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Over 18 million disease cases and half a million deaths worldwide are estimated to be caused annually by Group A Streptococcus. A vaccine to prevent GAS disease is urgently needed. SpyCEP (Streptococcus pyogenes Cell-Envelope Proteinase) is a surface-exposed serine protease that inactivates chemokines, impairing neutrophil recruitment and bacterial clearance, and has shown promising immunogenicity in preclinical models. Although SpyCEP structure has been partially characterized, a more complete and higher resolution understanding of its antigenic features would be desirable prior to large scale manufacturing. To address these gaps and facilitate development of this globally important vaccine, we performed immunogenicity studies with a safety-engineered SpyCEP mutant, and comprehensively characterized its structure by combining X-ray crystallography, NMR spectroscopy and molecular dynamics simulations. We found that the catalytically-inactive SpyCEP antigen conferred protection similar to wild-type SpyCEP in a mouse infection model. Further, a new higher-resolution crystal structure of the inactive SpyCEP mutant provided new insights into this large chemokine protease comprising nine domains derived from two non-covalently linked fragments. NMR spectroscopy and molecular simulation analyses revealed conformational flexibility that is likely important for optimal substrate recognition and overall function. These combined immunogenicity and structural data demonstrate that the full-length SpyCEP inactive mutant is a strong candidate human vaccine antigen. These findings show how a multi-disciplinary study was used to overcome obstacles in the development of a GAS vaccine, an approach applicable to other future vaccine programs. Moreover, the information provided may also facilitate the structure-based discovery of small-molecule therapeutics targeting SpyCEP protease inhibition.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - Enrico Malito
- GlaxoSmithKline, 14200 Shady Grove Road, Rockville, MD 20850, United States
| | - Sarah L. Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Danilo Gomes Moriel
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Danuta Mossakowska
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University Krakow, Gronostajowa 7a Str, 30-387 Krakow, Poland
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - James Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | | | | | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| |
Collapse
|
14
|
Wilson KA, Tan-Wilson A. Proteases catalyzing vicilin cleavage in developing pea (Pisum sativum L.) seeds. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:86-94. [PMID: 29609123 DOI: 10.1016/j.jplph.2018.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Legume species differ in whether or not the 7S globulins stored in seeds undergo proteolytic processing during seed development, while preserving the bicupin structure and trimeric assembly necessary for accumulation and packing into protein storage vacuoles. Two such cleavage sites have been documented for the vicilins in pea cotyledons: one in the linker region between the two cupin domains, and another in an exposed loop in the C-terminal cupin. In this report, we explain the occurrence of vicilin cleavage in developing pea by showing that the storage vacuoles are already acidified before germination, in contrast to soybean and peanut where acidification occurs only after germination. We also show that the two cleavage reactions are catalyzed by two different proteases. The vicilin cleavage at the linker region was inhibited by AEBSF (4-(2-aminoethyl)benzenesulfonyl fluoride), indicative of a serine protease. The cleavage in the C-terminal cupin domain was sensitive to the sulfhydryl-reactive reagents p-chloromercuriphenylsulfonate and iodoacetate, but not to E-64 (N-[N-(L-3-transcarboxyirane-2-carbonyl)-l-leucyl]-agmatine), characteristic of the legumain class of cysteine proteases. During seed development, we found the predominant vicilin cleavage in this pea cultivar (Knight) to be at the site in the second cupin domain; but after germination, both sites were cleaved at about the same rate.
Collapse
Affiliation(s)
- Karl A Wilson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Anna Tan-Wilson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
15
|
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P. From structure to function - a family portrait of plant subtilases. THE NEW PHYTOLOGIST 2018; 218:901-915. [PMID: 28467631 DOI: 10.1111/nph.14582] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Irene Serrano
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dana Martínez
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Pablo Vera
- Institute for Plant Molecular and Cell Biology, Universidad Politécnica de Valencia-CSIC, Valencia, 46022, Spain
| |
Collapse
|
16
|
Figueiredo J, Sousa Silva M, Figueiredo A. Subtilisin-like proteases in plant defence: the past, the present and beyond. MOLECULAR PLANT PATHOLOGY 2018; 19:1017-1028. [PMID: 28524452 PMCID: PMC6638164 DOI: 10.1111/mpp.12567] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/19/2017] [Accepted: 05/13/2017] [Indexed: 05/13/2023]
Abstract
Subtilisin-like proteases (or subtilases) are a very diverse family of serine peptidases present in many organisms, but mostly in plants. With a broad spectrum of biological functions, ranging from protein turnover and plant development to interactions with the environment, subtilases have been gaining increasing attention with regard to their involvement in plant defence responses against the most diverse pathogens. Over the last 5 years, the number of published studies associating plant subtilases with pathogen resistance and plant immunity has increased tremendously. In addition, the observation of subtilases and serine protease inhibitors secreted by pathogens has also gained prominence. In this review, we focus on the active participation of subtilases in the interactions established by plants with the environment, highlighting their role in plant-pathogen communication.
Collapse
Affiliation(s)
- Joana Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI)Faculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Laboratório de FTICR e Espectrometria de Massa EstruturalFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Centro de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa EstruturalFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Centro de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI)Faculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| |
Collapse
|
17
|
Li HJ, Tang BL, Shao X, Liu BX, Zheng XY, Han XX, Li PY, Zhang XY, Song XY, Chen XL. Characterization of a New S8 serine Protease from Marine Sedimentary Photobacterium sp. A5-7 and the Function of Its Protease-Associated Domain. Front Microbiol 2016; 7:2016. [PMID: 28066343 PMCID: PMC5177683 DOI: 10.3389/fmicb.2016.02016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial extracellular proteases are important for bacterial nutrition and marine sedimentary organic nitrogen degradation. However, only a few proteases from marine sedimentary bacteria have been characterized. Some subtilases have a protease-associated (PA) domain inserted in the catalytic domain. Although structural analysis and deletion mutation suggests that the PA domain in subtilases is involved in substrate binding, direct evidence to support this function is still absent. Here, a protease, P57, secreted by Photobacterium sp. A5-7 isolated from marine sediment was characterized. P57 could hydrolyze casein, gelatin and collagen. It showed the highest activity at 40°C and pH 8.0. P57 is a new subtilase, with 63% sequence identity to the closest characterized protease. Mature P57 contains a catalytic domain and an inserted PA domain. The recombinant PA domain from P57 was shown to have collagen-binding ability, and Phe349 and Tyr432 were revealed to be key residues for collagen binding in the PA domain. This study first shows direct evidence that the PA domain of a subtilase can bind substrate, which provides a better understanding of the function of the PA domain of subtilases and bacterial extracellular proteases from marine sediment.
Collapse
Affiliation(s)
- Hui-Juan Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
- College of Chemical and Environmental Engineering, Shandong University of Science and TechnologyQingdao, China
| | - Bai-Lu Tang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xuan Shao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Bai-Xue Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiao-Yu Zheng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiao-Xu Han
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| |
Collapse
|
18
|
Wilson KA, Tan-Wilson A. Proteolysis of the peanut allergen Ara h 1 by an endogenous aspartic protease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:301-310. [PMID: 26322854 DOI: 10.1016/j.plaphy.2015.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
The 7S and 11S globulins of peanuts are subjected to proteolysis two days after seed imbibition, with Ara h 1 and the arachin acidic chains being among the first storage proteins to be mobilized. Proteolytic activity was greatest at pH 2.6-3 and is inhibited by pepstatin A, characteristic of an aspartic protease. This activity persists in seedling cotyledons up to at least 8 days after imbibition. In vitro proteolysis of Ara h 1 at pH 2.6 by extracts of cotyledons from seedlings harvested 24 h after seed imbibition generates newly appearing bands on SDS-PAGE. Partial sequences of Ara h 1 that were obtained through LC-MS/MS analysis of in-gel trypsin digests of those bands, combined with information on fragment size, suggest that proteolysis begins in the region that links the two cupin domains to produce two 33/34 kD fragments, each one encompassing an intact cupin domain. The later appearance of two 18 and 10/11 kD fragments can be explained by proteolysis within an exposed site in the cupin domains of each of the 33/34 kD fragments. The same or similar proteolytic activity was observed in developing seeds, but Ara h 1 remains intact through seed maturation. This is partly explained by the observation that acidification of the protein storage vacuoles, demonstrated by vacuolar accumulation of acridine orange that was dissipated by a membrane-permeable base, occurs only after germination. These findings suggest a method for use of the seed aspartic protease in reducing peanut allergy due to Ara h 1.
Collapse
Affiliation(s)
- Karl A Wilson
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | - Anna Tan-Wilson
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
19
|
Plattner S, Gruber C, Stadlmann J, Widmann S, Gruber CW, Altmann F, Bohlmann H. Isolation and Characterization of a Thionin Proprotein-processing Enzyme from Barley. J Biol Chem 2015; 290:18056-18067. [PMID: 26013828 DOI: 10.1074/jbc.m115.647859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/17/2023] Open
Abstract
Thionins are plant-specific antimicrobial peptides that have been isolated from the endosperm and leaves of cereals, from the leaves of mistletoes, and from several other plant species. They are generally basic peptides with three or four disulfide bridges and a molecular mass of ~5 kDa. Thionins are produced as preproproteins consisting of a signal peptide, the thionin domain, and an acidic domain. Previously, only mature thionin peptides have been isolated from plants, and in addition to removal of the signal peptide, at least one cleavage processing step between the thionin and the acidic domain is necessary to release the mature thionin. In this work, we identified a thionin proprotein-processing enzyme (TPPE) from barley. Purification of the enzyme was guided by an assay that used a quenched fluorogenic peptide comprising the amino acid sequence between the thionin and the acidic domain of barley leaf-specific thionin. The barley TPPE was identified as a serine protease (BAJ93208) and expressed in Escherichia coli as a strep tag-labeled protein. The barley BTH6 thionin proprotein was produced in E. coli using the vector pETtrx1a and used as a substrate. We isolated and sequenced the BTH6 thionin from barley to confirm the N and C terminus of the peptide in planta. Using an in vitro enzymatic assay, the recombinant TPPE was able to process the quenched fluorogenic peptide and to cleave the acidic domain at least at six sites releasing the mature thionin from the proprotein. Moreover, it was found that the intrinsic three-dimensional structure of the BTH6 thionin domain prevents cleavage of the mature BTH6 thionin by the TPPE.
Collapse
Affiliation(s)
- Stephan Plattner
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Johannes Stadlmann
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Stefan Widmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, A-1190 Vienna.
| |
Collapse
|
20
|
Cao J, Han X, Zhang T, Yang Y, Huang J, Hu X. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera. BMC Genomics 2014; 15:1116. [PMID: 25512249 PMCID: PMC4378017 DOI: 10.1186/1471-2164-15-1116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/11/2014] [Indexed: 12/03/2022] Open
Abstract
Background Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape. Results In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants. Conclusions Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1116) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | | |
Collapse
|