1
|
Sraphet S, Tharasawatpipat C, Choo-In S, Kayee P, Namwong S, Budsabun T, Javadi B. Comparative genomic analysis of cassava rhizospheric Bacillus subtilis using integrated in vitro and in silico approaches with enterobacterial repetitive intergenic consensus (ERIC) sequences. Mol Biol Rep 2025; 52:489. [PMID: 40402325 DOI: 10.1007/s11033-025-10593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Bacillus subtilis is a beneficial rhizobacterium extensively used in agriculture and industry due to its abilities in promoting plant growth and decomposing organic matter. To enhance its application potential, precise genetic characterization of native strains, particularly those associated with crop rhizospheres, is crucial. METHODS AND RESULTS This study focused on B. subtilis isolates obtained from the cassava rhizosphere. Genetic diversity among the isolates was assessed using the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR method. Genomic DNA was extracted and amplified, with ERIC-PCR effectively differentiating strains based on unique banding patterns. Whole-genome sequencing and database comparisons further validated the strain identities and revealed significant genetic variation. While a few isolates shared high similarity (≥ 99.5%), the majority exhibited lower similarity levels (< 70%), indicating considerable genomic diversity. Several genes-spoVAF, spoVAEA, spoVAEB, spoVAD, hisIE, hisF, hisA, rsbRB, thiW, ispA, and thiX-were identified as potential markers for strain differentiation and functional characterization. CONCLUSIONS ERIC-PCR proved to be a reliable and efficient method for discriminating B. subtilis strains from the cassava rhizosphere. The observed genetic diversity suggests a rich reservoir of functional traits among native strains, offering new opportunities for targeted applications in plant-microbe interactions, such as biofertilization and biocontrol. These findings provide a foundation for the strategic use and further study of B. subtilis in sustainable agriculture. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chaisri Tharasawatpipat
- Department of Applied Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Sivapan Choo-In
- Department of Applied Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Pantip Kayee
- Department of Applied Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Sirilak Namwong
- Department of Applied Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Tanakwan Budsabun
- Department of Applied Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Bagher Javadi
- Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand.
| |
Collapse
|
2
|
Diniz FV, Scherwinski-Pereira JE, Costa FHS, Carvalho CM. Effects on plant physiology in response to inoculation of growth-promoting bacteria: systematic review. BRAZ J BIOL 2025; 85:e287279. [PMID: 40136237 DOI: 10.1590/1519-6984.287279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/02/2024] [Indexed: 03/27/2025] Open
Abstract
Changes in physiological mechanisms resulting from the association of plant growth-promoting bacteria as well as the responses generated to stressful factors are of interest for sustainable agriculture. Based on this, the objective of this study was to gather insights from recent years (2012-2022) on the impacts on plant physiology of the use of inoculants from plant growth-promoting bacteria. To do this, the search for articles was done in three different databases, Science Direct, Springer Nature and Google Scholar, using the following descriptors: plant growth promoting bacteria, plant hormones, biological control, photosynthesis and abiotic stress. After selection, the included articles were systematized in the Excel program. Pearson Correlation and Principal Component Analysis were used for comparative analysis of physiological variables. 81 articles were included in the review, where a beneficial association was observed in 45 plant species distributed in 13 Orders and 13 Families, with emphasis on the Families Poaceae, Fabaceae, Solanaceae and Brassicaceae. 47 genera and 98 bacterial species were verified, where Bacillus and Pseudomonas represented 52% of the verified strains, with emphasis on Bacillus subtilis and Pseudomonas fluorescens. The main applications were growth promotion, productivity, control of biotic stress and abiotic stress. Positive regulation of photosynthesis was observed, modulating the gene expression of photosynthetic apparatus proteins, pigments, antioxidant production, increased hormonal and nutritional production, osmolyte content, antimicrobial production and decreased lipid peroxidation. Based on this review, it was possible to understand the multifaceted role of plant growth-promoting bacteria in contributing to the better direction of technology in agriculture.
Collapse
Affiliation(s)
- F V Diniz
- Universidade Federal do Acre - UFAC, Programa de Pós-graduação em Produção Vegetal, Rio Branco, AC, Brasil
| | - J E Scherwinski-Pereira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
| | - F H S Costa
- Universidade Federal do Acre - UFAC, Programa de Pós-graduação em Produção Vegetal, Rio Branco, AC, Brasil
| | - C M Carvalho
- Universidade Federal do Acre - UFAC, Programa de Pós-graduação em Ciência, Inovação e Tecnologia na Amazônia, Rio Branco, AC, Brasil
| |
Collapse
|
3
|
Moraes BV, Coelho MIS, Silva PS, Araujo ASF, Bonifacio A, Pereira APA, de Medeiros EV, Araujo FF. Bacillus subtilis inoculated in organic compost could improve the root architecture and physiology of soybean under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109540. [PMID: 39854788 DOI: 10.1016/j.plaphy.2025.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/26/2025]
Abstract
Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit. The treatments included chemical fertilization, non-inoculated organic compost, and organic compost inoculated with B. subtilis which were assessed under well-watered and water-deficit conditions. The organic compost inoculated with B. subtilis increased root biomass, length, volume, and the number of root tips under well-watered conditions, although it reduced root diameter. Under water deficit, the organic compost inoculated with B. subtilis increased root tip number (∼150%), biomass (∼95%) and number (∼85%) of nodules. Water deficit negatively affected soybean physiology, reduced photosynthesis, transpiration, and stomatal conductance, while increased internal CO₂ concentration. However, the organic compost inoculated with B. subtilis mitigated these effects, enhancing photosynthesis (∼20%) and water use efficiency (∼25%). Under water deficit, this treatment also increased shoot biomass by 15% and the drought tolerance index by 51% compared to the control. The combination of B. subtilis and organic compost improved root architecture, nodulation, and drought tolerance. These results suggest that B. subtilis inoculated in the organic compost is a promising strategy for enhancing soybean productivity and resilience under water stress, offering a novel approach to mitigating drought effects in agriculture.
Collapse
Affiliation(s)
- Beatriz V Moraes
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Milene I S Coelho
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Patrick S Silva
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Ademir S F Araujo
- Center of Agricultural Science, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| | - Aurenivia Bonifacio
- Laboratory of Plant Physiology and Biochemistry, Center of Natural Science, UFPI, Teresina, PI, Brazil
| | - Arthur P A Pereira
- Soil Science Depertment, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Fabio F Araujo
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Chen M, Xing Y, Chen C, Wang Z. Enhancing sugarcane's drought resilience: the influence of Streptomycetales and Rhizobiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1471044. [PMID: 39678007 PMCID: PMC11637870 DOI: 10.3389/fpls.2024.1471044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Drought stress is a critical environmental factor affecting sugarcane yield, and the adaptability of the sugarcane rhizosphere bacterial community is essential for drought tolerance. This review examines the adaptive responses of sugarcane rhizosphere bacterial communities to water stress and explores their significant role in enhancing sugarcane drought tolerance. Under drought conditions, the sugarcane rhizosphere bacterial community undergoes structural and functional shifts, particularly the enrichment of beneficial bacteria, including Streptomycetales and Rhizobiales. These bacteria enhance sugarcane resilience to drought through various means, including nutrient acquisition and phytohormone synthesis. Furthermore, changes in the rhizosphere bacterial community were closely associated with the composition and levels of soil metabolites, which significantly influenced the physiological and biochemical processes of sugarcane during drought stress. This study deepens our understanding of rhizosphere bacterial communities and their interactions with sugarcane, laying a scientific foundation for developing drought-resistant sugarcane varieties, optimizing agricultural practices, and opening new avenues for agricultural applications.
Collapse
Affiliation(s)
| | | | | | - Ziting Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
7
|
Kumar A, Naroju SP, Kumari N, Arsey S, Kumar D, Gubre DF, Roychowdhury A, Tyagi S, Saini P. The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Microbiol Res 2024; 286:127827. [PMID: 39002396 DOI: 10.1016/j.micres.2024.127827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024]
Abstract
Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.
Collapse
Affiliation(s)
- Ashok Kumar
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India.
| | - Sai Prakash Naroju
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, USA
| | - Neha Kumari
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Shivani Arsey
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Dilasha Fulchand Gubre
- Department of Crop Improvement, Indian Council of Agricultural Research Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Abhrajyoti Roychowdhury
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Sachin Tyagi
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| | - Pankaj Saini
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| |
Collapse
|
8
|
Wu F, Chen Z, Xu X, Xue X, Zhang Y, Sui N. Halotolerant Bacillus sp. strain RA coordinates myo-inositol metabolism to confer salt tolerance to tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1871-1885. [PMID: 38967265 DOI: 10.1111/jipb.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.
Collapse
Affiliation(s)
- Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xiaotong Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
9
|
Li Q, Zhou Y, Sun W, Qiao B, Cheng J, Shi S, Zhao C, Li C. Dynamic response of allelopathic potency of Taxus cuspidata Sieb. et Zucc. mediated by allelochemicals in Ficus carica Linn. root exudates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173663. [PMID: 38823714 DOI: 10.1016/j.scitotenv.2024.173663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Yifan Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Wenxue Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Bin Qiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Jiabo Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Sen Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Chunying Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Jozay M, Zarei H, Khorasaninejad S, Miri T. Exploring the impact of plant growth-promoting bacteria in alleviating stress on Aptenia cordifolia subjected to irrigation with recycled water in multifunctional external green walls. BMC PLANT BIOLOGY 2024; 24:802. [PMID: 39179975 PMCID: PMC11344332 DOI: 10.1186/s12870-024-05511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Rapid urbanization and population growth exert a substantial impact on the accessibility of drinking water resources, underscoring the imperative for wastewater treatment and the reuse of non-potable water in agriculture. In this context, green walls emerge as a potential solution to augment the purification of unconventional waters, simultaneously contributing to the aesthetic appeal and enjoyment of urban areas. This study aims to optimize water management in green walls by investigating the impact of bacterial strains on the biochemical properties and performance of the ornamental accumulator plant, Aptenia cordifolia, grown with various unconventional water sources. The experiments were designed as split plots based on a completely randomized block design with three replications. The main factor was recycled water with three levels (gray water, wastewater from the Kashfroud region of Mashhad, and urban water (control)). The sub-factor included different bacterial strains at four levels, composed of various bacteria combinations, (B1: Psedoumonas flucrecens + Azosporillum liposferum + Thiobacillus thioparus + Aztobactor chorococcum, B2: Paenibacillus polymyxa + Pseudomonas fildensis + Bacillus subtilis + Achromobacter xylosoxidans + Bacillus licheniform, B3: Pseudomonas putida + Acidithiobacillus ferrooxidans + Bacillus velezensis + Bacillus subtilis + Bacillus methylotrophicus + Mcrobacterium testaceum, and the control level without bacterial application (B0). RESULT The findings revealed significant differences at the 5% probability level across all morphophysiological traits, including plant height, the number and length of lateral branches, growth index, and plant coverage. Moreover, superior morphophysiological traits were observed in plants cultivated in substrates inoculated with wastewater irrigation. Substrates inoculated with bacteria exhibited the highest relative water content (RWC) and chlorophyll levels, coupled with the lowest relative saturation deficit (RSD), electrolyte leakage (EL), and carotenoid levels. Furthermore, plant growth-promoting bacteria (PGPB), from a biochemical perspective, were associated with increased carbohydrates, total protein, and anthocyanin. They also contributed to controlling oxidative stress caused by free radicals by enhancing the activity of antioxidant enzymes, such as guaiacol peroxidase (GPX), polyphenol oxidase (PPO), ascorbate peroxidase (APX), and peroxidase (POD), while reducing catalase enzyme (CAT) activity. This led to increased resistance to stress, as evidenced by a decrease in malondialdehyde and proline levels. The study concludes that the MIX B3, being both ecofriendly and economical, represents an effective strategy for mitigating the adverse effects of wastewater on plants. CONCLUSION This study showed that plant irrigation using wastewater increases the levels of proline, phenols and oxidative stress. However, the application of plant growth promoting bacteria (PGPB) reduced oxidative damage by increasing antioxidant activity and decreasing proline and phenol levels. These findings show the potential of bacterial treatments to improve plant growth and reduce adverse effects of recycled water irrigation.
Collapse
Affiliation(s)
- Mansoure Jozay
- Horticultural Sciences Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Zarei
- Horticultural Sciences Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Sarah Khorasaninejad
- Horticultural Sciences Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Lee S, Kim JA, Song J, Choe S, Jang G, Kim Y. Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice ( Oryza sativa L.) from drought. Front Microbiol 2024; 15:1430546. [PMID: 39234545 PMCID: PMC11371581 DOI: 10.3389/fmicb.2024.1430546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Global climate change poses a significant threat to plant growth and crop yield and is exacerbated by environmental factors, such as drought, salinity, greenhouse gasses, and extreme temperatures. Plant growth-promoting rhizobacteria (PGPR) help plants withstand drought. However, the mechanisms underlying PGPR-plant interactions remain unclear. Thus, this study aimed to isolate PGPR, Bacillus megaterium strains CACC109 and CACC119, from a ginseng field and investigate the mechanisms underlying PGPR-stimulated tolerance to drought stress by evaluating their plant growth-promoting activities and effects on rice growth and stress tolerance through in vitro assays, pot experiments, and physiological and molecular analyses. Compared with B. megaterium type strain ATCC14581, CACC109 and CACC119 exhibited higher survival rates under osmotic stress, indicating their potential to enhance drought tolerance. Additionally, CACC109 and CACC119 strains exhibited various plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, siderophore secretion, 1-aminocyclopropane-1-carboxylate deaminase activity, and exopolysaccharide production. After inoculation, CACC109 and CACC119 significantly improved the seed germination of rice (Oryza sativa L.) under osmotic stress and promoted root growth under stressed and non-stressed conditions. They also facilitated plant growth in pot experiments, as evidenced by increased shoot and root lengths, weights, and leaf widths. Furthermore, CACC109 and CACC119 improved plant physiological characteristics, such as chlorophyll levels, and production of osmolytes, such as proline. In particular, CACC109- and CACC119-treated rice plants showed better drought tolerance, as evidenced by their higher survival rates, greater chlorophyll contents, and lower water loss rates, compared with mock-treated rice plants. Application of CACC109 and CACC119 upregulated the expression of antioxidant-related genes (e.g., OsCAT, OsPOD, OsAPX, and OsSOD) and drought-responsive genes (e.g., OsWRKY47, OsZIP23, OsDREB2, OsNAC066, OsAREB1, and OsAREB2). In conclusion, CACC109 and CACC119 are promising biostimulants for enhancing plant growth and conferring resistance to abiotic stresses in crop production. Future studies should conduct field trials to validate these findings under real agricultural conditions, optimize inoculation methods for practical use, and further investigate the biochemical and physiological responses underlying the observed benefits.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jeongsup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Seonbong Choe
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| |
Collapse
|
12
|
Siddika A, Rashid AA, Khan SN, Khatun A, Karim MM, Prasad PV, Hasanuzzaman M. Harnessing plant growth-promoting rhizobacteria, Bacillus subtilis and B. aryabhattai to combat salt stress in rice: a study on the regulation of antioxidant defense, ion homeostasis, and photosynthetic parameters. FRONTIERS IN PLANT SCIENCE 2024; 15:1419764. [PMID: 38938633 PMCID: PMC11208634 DOI: 10.3389/fpls.2024.1419764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Introduction The ongoing global expansion of salt-affected land is a significant factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This experiment explores the mitigation of salt-induced damage in rice (cv BRRI dhan100) following the application of plant growth-promoting rhizobacteria (PGPR). Methods Rice seedlings, at five- and six-weeks post-transplanting, were subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B. aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three critical stages: transplantation of 42-day-old seedlings, vegetative stage at five weeks post-transplantation, and panicle initiation stage at seven weeks post-transplantation. Results Salt stress induced osmotic stress, ionic imbalances, and oxidative damage in rice plants, with consequent negative effects on growth, decrease in photosynthetic efficiency, and changes in hormonal regulation, along with increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing water balance, increasing nutrient uptake, improving photosynthetic attributes, bolstering hormone synthesis, and enhancing MG detoxification. Discussion These findings highlight the potential of PGPR to bolster physiological and biochemical functionality in rice by serving as an effective buffer against salt stress-induced damage. B. subtilis showed the greatest benefits, while both the endophytic and epiphytic B. aryabhattai had commendable effects in mitigating salt stress-induced damage in rice plants.
Collapse
Affiliation(s)
- Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | | | | | - Amena Khatun
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Nourashrafeddin SM, Ramandi A, Seifi A. Rhizobacteria isolated from xerophyte Haloxylon ammodendron manipulate root system architecture and enhance drought and salt tolerance in Arabidopsis thaliana. Int Microbiol 2024; 27:337-347. [PMID: 37392309 DOI: 10.1007/s10123-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50-100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.
Collapse
Affiliation(s)
| | - Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
14
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
16
|
Kim H, Woo OG, Kim JB, Yoon SY, Kim JS, Sul WJ, Hwang JY, Lee JH. Flavobacterium sp. strain GJW24 ameliorates drought resistance in Arabidopsis and Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1257137. [PMID: 37900757 PMCID: PMC10613084 DOI: 10.3389/fpls.2023.1257137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Candidate strains that contribute to drought resistance in plants have been previously screened using approximately 500 plant growth-promoting rhizobacteria (PGPR) obtained from Gotjawal, South Korea, to further understand PGPR associated with plant drought tolerance. In this study, a selected PGPR candidate, Flavobacterium sp. strain GJW24, was employed to enhance plant drought tolerance. GJW24 application to Arabidopsis increased its survival rate under drought stress and enhanced stomatal closure. Furthermore, GJW24 promoted Arabidopsis survival under salt stress, which is highly associated with drought stress. GJW24 ameliorated the drought/salt tolerance of Brassica as well as Arabidopsis, indicating that the drought-resistance characteristics of GJW24 could be applied to various plant species. Transcriptome sequencing revealed that GJW24 upregulated a large portion of drought- and drought-related stress-inducible genes in Arabidopsis. Moreover, Gene Ontology analysis revealed that GJW24-upregulated genes were highly related to the categories involved in root system architecture and development, which are connected to amelioration of plant drought resistance. The hyper-induction of many drought/salt-responsive genes by GJW24 in Arabidopsis and Brassica demonstrated that the drought/salt stress tolerance conferred by GJW24 might be achieved, at least in part, through regulating the expression of the corresponding genes. This study suggests that GJW24 can be utilized as a microbial agent to offset the detrimental effects of drought stress in plants.
Collapse
Affiliation(s)
- Hani Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Ji Bin Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - So-Young Yoon
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Jong-Shik Kim
- Marine Industry Research Institute for East Sea Rim, Uljin, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
17
|
Lei LY, Xiong ZX, Li JL, Yang DZ, Li L, Chen L, Zhong QF, Yin FY, Li RX, Cheng ZQ, Xiao SQ. Biological control of Magnaporthe oryzae using natively isolated Bacillus subtilis G5 from Oryza officinalis roots. Front Microbiol 2023; 14:1264000. [PMID: 37876784 PMCID: PMC10591090 DOI: 10.3389/fmicb.2023.1264000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production causing significant crop losses and impacting grain quality. The annual loss of rice production due to this disease ranges from 10% to 30%. The use of biologically controlled strains, instead of chemical pesticides, to control plant diseases has become a research hotspot. In this study, an antagonistic endophytic bacterial strain was isolated from the roots of Oryza officinalis using the traditional isolation and culture methods. A phylogenetic tree based on 16S RNA and whole-genome sequencing identified isolate G5 as a strain of Bacillus subtilis. This isolate displayed strong antagonistic effects against different physiological strains of M. oryzae. After co-culture in LB medium for 7 days, the inhibition rates of the mycelial growth of four strains of M. oryzae, ZB15, WH97, Guy11, and T-39800E were 98.07 ± 0.0034%, 98.59 ± 0.0051%, 99.16 ± 0.0012%, and 98.69 ± 0.0065%, respectively. Isolate G5 significantly inhibited the formation of conidia of M. oryzae, with an inhibition rate of 97% at an OD600 of 2. Isolate G5 was able to provide 66.81% protection against rice blast under potted conditions. Whole-genome sequencing revealed that the genome size of isolate G5 was 4,065,878 bp, including 4,182 coding genes. Using the anti-SMASH software, 14 secondary metabolite synthesis gene clusters were predicted to encode antifungal substances, such as fengycin, surfactin, and bacilysin. The G5 isolate also contained genes related to plant growth promotion. These findings provide a theoretical basis for expounding the biocontrol mechanisms of this strain and suggest further development of biogenic agents that could effectively inhibit rice blast pathogen growth and reduce crop damage, while being environmentally friendly, conducive to ecological development, and a sustainable alternative to chemical pesticides. This study also enriches the relevant research on endophytes of wild rice, which proves that wild rice is a valuable microbial resource bank.
Collapse
Affiliation(s)
- Ling-Yun Lei
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zi-Xuan Xiong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jin-Lu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - De-Zheng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Liu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiao-Fang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fu-You Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Rong-Xin Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zai-Quan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Su-Qin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
18
|
Tripti, Kumar A, Maleva M, Borisova G, Rajkumar M. Amaranthus Biochar-Based Microbial Cell Composites for Alleviation of Drought and Cadmium Stress: A Novel Bioremediation Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1973. [PMID: 37653890 PMCID: PMC10222574 DOI: 10.3390/plants12101973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Metal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains Serratia sp. FV34b and Pseudomonas sp. ASe42b isolated from multi-metal and drought stressed sites showed multiple plant-growth-promoting attributes (phosphate solubilization, indole-3-acetic acid, siderophore, and ammonia production). Both strains were able to tolerate a high concentration of Cd along with being resistant to drought (-0.05 to -0.73 MPa). The seldom studied biomass of Amaranthus caudatus L. was used for biochar preparation by pyrolyzing it at 470 °C for 160 min under limited oxygen and then using it for the preparation of biochar-based microbial cell composites (BMC)s. To check the efficiency of BMC under Cd stress (21 mg kg-1 soil) and drought, a pot-scale study was conducted using Brassica napus L. for 47 days. Both the BMC5 (Biochar + Serratia sp. FV43b) and BMC9 (Biochar + Pseudomonas sp. ASe42b) improved the seed germination, plant biometrical (shoot and root biomass, length of organs) and physiological (photosynthetic pigments, proline, malondialdehyde, and relative water content) parameters under drought (exerted until it reaches up to 50% of field capacity) and Cd-spiked soil. However, for most of them, no or few significant differences were observed for BMC9 before and after drought. Moreover, BMC9 maximized the Cd accumulation in root and meager transfer to shoot, making it a best bioformulation for sustainable bioremediation of Cd and drought stressed soils using rapeseed plant.
Collapse
Affiliation(s)
- Tripti
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Adarsh Kumar
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Maria Maleva
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Galina Borisova
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore 641046, India;
| |
Collapse
|
19
|
Yu C, Chen H, zhu L, Song Y, Jiang Q, Zhang Y, Ali Q, Gu Q, Gao X, Borriss R, Dong S, Wu H. Profiling of Antimicrobial Metabolites Synthesized by the Endophytic and Genetically Amenable Biocontrol Strain Bacillus velezensis DMW1. Microbiol Spectr 2023; 11:e0003823. [PMID: 36809029 PMCID: PMC10100683 DOI: 10.1128/spectrum.00038-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
The genus Bacillus is one of the most important genera for the biological control of plant diseases that are caused by various phytopathogens. The endophytic Bacillus strain DMW1 was isolated from the inner tissues of potato tubers and exhibited strong biocontrol activity. Based on its whole-genome sequence, DMW1 belongs to the Bacillus velezensis species, and it is similar to the model strain B. velezensis FZB42. 12 secondary metabolite biosynthetic gene clusters (BGCs), including two unknown function BGCs, were detected in the DMW1 genome. The strain was shown to be genetically amenable, and seven secondary metabolites acting antagonistically against plant pathogens were identified by a combined genetic and chemical approach. Strain DMW1 did significantly improve the growth of tomato and soybean seedlings, and it was able to control the Phytophthora sojae and Ralstonia solanacearum that were present in the plant seedlings. Due to these properties, the endophytic strain DMW1 appears to be a promising candidate for comparative investigations performed together with the Gram-positive model rhizobacterium FZB42, which is only able to colonize the rhizoplane. IMPORTANCE Phytopathogens are responsible for the wide spread of plant diseases as well as for great losses of crop yields. At present, the strategies used to control plant disease, including the development of resistant cultivars and chemical control, may become ineffective due to the adaptive evolution of pathogens. Therefore, the use of beneficial microorganisms to deal with plant diseases attracts great attention. In the present study, a new strain DMW1, belonging to the species B. velezensis, was discovered with outstanding biocontrol properties. It showed plant growth promotion and disease control abilities that are comparable with those of B. velezensis FZB42 under greenhouse conditions. According to a genomic analysis and a bioactive metabolites analysis, genes that are responsible for promoting plant growth were detected, and metabolites with different antagonistic activities were identified. Our data provide a basis for DMW1 to be further developed and applied as a biopesticide, which is similar to the closely related model strain FZB42.
Collapse
Affiliation(s)
- Chenjie Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Han Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Linli zhu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yan Song
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Qifan Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yaming Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rainer Borriss
- Humboldt University Berlin, Institut für Biologie, Berlin, Germany
| | - Suomeng Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
20
|
Liu J, Zhang J, Shi Q, Liu X, Yang Z, Han P, Li J, Wei Z, Hu T, Liu F. The Interactive Effects of Deficit Irrigation and Bacillus pumilus Inoculation on Growth and Physiology of Tomato Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:670. [PMID: 36771756 PMCID: PMC9919795 DOI: 10.3390/plants12030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The effects of inoculating plant growth promoting rhizobacteria (PGPR) and soil water deficits on crop growth and physiology remain largely unknown. Here, the responses of leaf gas exchange, growth, and water use efficiency (WUE) of tomato plants to Bacillus pumilus (B.p.) inoculation under four irrigation strategies (I1-I4) were investigated in a greenhouse. Results showed that soil water deficits, especially at I4 (20%, v/v), significantly decreased leaf stomatal conductance (gs), transpiration rate (Tr), and photosynthetic rate (An), and the decrease of gs and Tr were more pronounced than An. Reduced irrigation regimes significantly lowered dry matter and plant water use both in the non-B.p. control and the B.p. plants, while reduced irrigation significantly increased plant WUE, and B.p. inoculation had little effect on this parameter. Synergistic effects of PGPR and deficit irrigation on leaf gas exchange, leaf abscisic acid content, and stomatal density were found in this study, and specifically, B.p. treated plants at I4 possessed the highest WUE at stomatal and leaf scales, suggesting that B.p. inoculation could optimize water use and partly alleviate the negative effects of soil water deficit. These findings provide useful information for effective irrigation management and the application of PGPR in agriculture in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Jiarui Zhang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Qimiao Shi
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Xiangliang Liu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Zhen Yang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Pan Han
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Jingjing Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Tiantian Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 13, 2630 Taastrup, Denmark
| |
Collapse
|
21
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Luo Y, Zeng W, Lei G, Hou Y, Ao C, Chen H, Gaiser T, Srivastava AK. The effects of multiwalled carbon nanotubes and Bacillus subtilis treatments on the salt tolerance of maize seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:1093529. [PMID: 36570958 PMCID: PMC9780592 DOI: 10.3389/fpls.2022.1093529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials, including multiwalled carbon nanotubes (MWCNTs), have been recently applied in agriculture to improve stress resistance, leading to contradictory findings for antioxidant responses and mineral nutrient uptake. A pot experiment involving maize in low-salinity sandy loam soils was conducted with the application of different concentrations (0, 20, 50 mg/L) of MWCNTs and the growth-promoting rhizobacterium Bacillus subtilis (B. subtilis). The dose-dependent effects of MWCNTs were confirmed: 20 mg/L MWCNTs significantly promoted the accumulation of osmolytes in maize, particularly K+ in the leaves and roots, increased the leaf indoleacetic acid content, decreased the leaf abscisic acid content; but the above-mentioned promoting effects decreased significantly in 50 mg/L MWCNTs-treated plants. We observed a synergistic effect of the combined application of MWCNTs and B. subtilis on plant salt tolerance. The increased lipid peroxidation and antioxidant-like proline, peroxidase (POD), and catalase (CAT) activities suggested that MWCNTs induced oxidative stress in maize growing in low-salinity soils. B. subtilis reduced the oxidative stress caused by MWCNTs, as indicated by a lower content of malondialdehyde (MDA). The MWCNTs significantly increased the leaf Na+ content and leaf Na+/K+ ratio; however, when applied in combination with B. subtilis, the leaf Na+/K+ ratio decreased sharply to 69% and 44%, respectively, compared to those of the control (CK) group, the contents of which were partially regulated by abscisic acid and nitrate, according to the results of the structural equation model (SEM). Overall, the increased osmolytes and well-regulated Na+/K+ balance and transport in plants after the combined application of MWCNTs and B. subtilis reveal great potential for their use in combating abiotic stress.
Collapse
Affiliation(s)
- Ying Luo
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Wenzhi Zeng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Guoqing Lei
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Yaling Hou
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Chang Ao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Haorui Chen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Thomas Gaiser
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Amit Kumar Srivastava
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Khan AR, Mustafa A, Hyder S, Valipour M, Rizvi ZF, Gondal AS, Yousuf Z, Iqbal R, Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. BIOLOGY 2022; 11:biology11121763. [PMID: 36552272 PMCID: PMC9775066 DOI: 10.3390/biology11121763] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture.
Collapse
Affiliation(s)
- Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Adeena Mustafa
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
- Correspondence: (S.H.); (M.V.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
- Correspondence: (S.H.); (M.V.)
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | - Zubaida Yousuf
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Daraz
- State Key Laboratory of Grassland Agroecosystem, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Zhang H, Yang Q, Zhao J, Chen J, Wang S, Ma M, Liu H, Zhang Q, Zhao H, Zhou D, Wang X, Gao J, Zhao H. Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3205. [PMID: 36501248 PMCID: PMC9739671 DOI: 10.3390/plants11233205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Bacillus subtilis J-15 is a plant growth-promoting rhizobacteria isolated from the soil rhizosphere of cotton and is resistant to cotton verticillium wilt. This study evaluated the effects of metabolites of J-15 (J-15-Ms), including mycosubtilin, on plant growth using Arabidopsis and cotton plants. The results showed that J-15-Ms promoted Arabidopsis seeding growth at lower concentrations of 0.2 μg/mL but inhibited the growth at higher concentrations, such as 20 μg/mL. Similar results were obtained in cotton. Thus, J-15-Ms-treated plants showed low-concentration-induced growth promotion and high-concentration-induced growth inhibition. The J-15-Ms components were analyzed by liquid chromatography-mass spectrometry. Correlation analysis using the J-15 genomic databases suggested that J-15 may synthesize indoleacetic acid via the indole-3-pymvate pathway and indole-3-acetamide pathway. Treatment with mycosubtilin, a purified peptide from J-15-Ms, showed that the peptide promoted Arabidopsis growth at a low concentration (0.1 μg/mL) and inhibited plant growth at high concentrations (higher than 1 μg/mL), which also significantly increased plant lateral root number. Transcriptomic analysis showed that mycosubtilin might promote lateral root development and inhibit plant primary root growth by regulating the expression of the plant hormone signaling pathway. This study reveals the mechanism of Bacillus subtilis J-15 in affecting plant growth.
Collapse
Affiliation(s)
- Hui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Qilin Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jingjing Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jiayi Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Shiqi Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Mingyue Ma
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huan Liu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Qi Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dongyuan Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Xianxian Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jie Gao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| |
Collapse
|
25
|
Ramandi A, Nourashrafeddin SM, Marashi SH, Seifi A. Microbiome contributes to phenotypic plasticity in saffron crocus. World J Microbiol Biotechnol 2022; 39:9. [PMID: 36369477 DOI: 10.1007/s11274-022-03450-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Saffron crocus is a sterile plant species that propagates vegetatively, and consequently, narrow genetic variation is detected in this species. Besides the narrow genetic variation, there is significant phenotypic variation in different traits in this plant. Here we tested this hypothesis that plant microbiome is a major contributor to the phenotypic variation. We focused our analysis on culturable bacteria that were dominant in saffron fields with high stigma yield compared to the fields with low stigma yield. Following this strategy, four rhizospheric (Cupriavidus metallidurans, Bacillus sp., Solibacillus sp., and Planococcus sp.) and two endophytic bacteria (Serratia oryzae and S. odorifera) were identified. The effects of the bacteria on the growth and development of the model plant Arabidopsis were assessed both in agar plate and pot assays. Results showed that these bacteria influence the vegetative growth and flowering time of Arabidopsis. In the next step, corms of saffron were inoculated with these bacteria and the growth and development of the saffron plants were monitored for five months. Remarkably, inoculation of the bacteria had significant influence on vegetative growth, flowering time, and stigma yield of saffron crocus. Furthermore, one of the bacteria, C. metallidurans, is reported here for the first time as a naturally occurring plant-associated bacteria. Altogether our results suggest that plant microbiome is an important factor in phenotypic variation in saffron crocus.
Collapse
Affiliation(s)
- Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Seyyed Hassan Marashi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
26
|
Wang G, Weng L, Huang Y, Ling Y, Zhen Z, Lin Z, Hu H, Li C, Guo J, Zhou JL, Chen S, Jia Y, Ren L. Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea Rice 86. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156817. [PMID: 35750176 DOI: 10.1016/j.scitotenv.2022.156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soil salinization has been recognized as one of the main factors causing the decrease of cultivated land area and global plant productivity. Application of salt tolerant plants and improvement of plant salt tolerance are recognized as the major routes for saline soil restoration and utilization. Sea rice 86 (SR86) is known as a rice cultivar capable of growing in saline soil. Genome sequencing and transcriptome analysis of SR86 have been conducted to explore its salt tolerance mechanisms while the contribution of rhizobacteria is underexplored. In the present study, we examined the rhizosphere bacterial diversity and soil metabolome of SR86 seedlings under different salinity to understand their contribution to plant salt tolerance. We found that salt stress could significantly change rhizobacterial diversity and rhizosphere metabolites. Keystone taxa were identified via co-occurrence analysis and the correlation analysis between keystone taxa and rhizosphere metabolites indicated lipids and their derivatives might play an important role in plant salt tolerance. Further, four plant growth promoting rhizobacteria (PGPR), capable of promoting the salt tolerance of SR86, were isolated and characterized. These findings might provide novel insights into the mechanisms of plant salt tolerance mediated by plant-microbe interaction, and promote the isolation and application of PGPR in the restoration and utilization of saline soil.
Collapse
Affiliation(s)
- Guang Wang
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liyun Weng
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Jianfu Guo
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Sha Chen
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
27
|
Ahmad HM, Fiaz S, Hafeez S, Zahra S, Shah AN, Gul B, Aziz O, Mahmood-Ur-Rahman, Fakhar A, Rafique M, Chen Y, Yang SH, Wang X. Plant Growth-Promoting Rhizobacteria Eliminate the Effect of Drought Stress in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:875774. [PMID: 36035658 PMCID: PMC9406510 DOI: 10.3389/fpls.2022.875774] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 07/21/2023]
Abstract
Plants evolve diverse mechanisms to eliminate the drastic effect of biotic and abiotic stresses. Drought is the most hazardous abiotic stress causing huge losses to crop yield worldwide. Osmotic stress decreases relative water and chlorophyll content and increases the accumulation of osmolytes, epicuticular wax content, antioxidant enzymatic activities, reactive oxygen species, secondary metabolites, membrane lipid peroxidation, and abscisic acid. Plant growth-promoting rhizobacteria (PGPR) eliminate the effect of drought stress by altering root morphology, regulating the stress-responsive genes, producing phytohormones, osmolytes, siderophores, volatile organic compounds, and exopolysaccharides, and improving the 1-aminocyclopropane-1-carboxylate deaminase activities. The use of PGPR is an alternative approach to traditional breeding and biotechnology for enhancing crop productivity. Hence, that can promote drought tolerance in important agricultural crops and could be used to minimize crop losses under limited water conditions. This review deals with recent progress on the use of PGPR to eliminate the harmful effects of drought stress in traditional agriculture crops.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Sumaira Hafeez
- Department of Plant Breeding and Molecular Genetics, University of Poonch, Rawalakot, Pakistan
| | - Sadaf Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Bushra Gul
- Department of Biosciences, University of Wah, Wah, Pakistan
| | - Omar Aziz
- Department of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Mahmood-Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ali Fakhar
- Department of Soil and Climate Change, The University of Haripur, Haripur, Pakistan
| | - Mazhar Rafique
- Department of Soil and Climate Change, The University of Haripur, Haripur, Pakistan
| | - Yinglong Chen
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
28
|
Ivo Ganchev. Role of Multispecies Biofilms with a Dominance of Bacillus subtilis in the Rhizosphere. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021150061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Salt stress results from excessive salt accumulation in the soil can lead to a reduction in plant growth and yield. Due to climate change, in the future climatic pressures, changed precipitation cycles and increased temperature will increase the pressures on agriculture, including increasing severity of salt stress. Brassica species contains oilseed and vegetable crops with great economic importance. Advances in understanding the mechanisms of salt stress in Brassica plants have enabled the development of approaches to better induce plant defense mechanisms at the time of their occurrence through the use of beneficial microorganisms or molecules. Both endophytic and rhizospheric microbes contribute to the mitigation of abiotic stresses in Brassica plants by promoting the growth of their host under stress conditions. In this review we summarized so far reported microorganisms with beneficial effects on Brassica plants and their mode of action. Another approach in mitigating the harmful effect of soil salinity may involve the application of different molecules that are involved in the stress response of Brassica plants. We reviewed and summarized their potential mode of action, methods of application and pointed out further research directions.
Collapse
|
30
|
Neshat M, Abbasi A, Hosseinzadeh A, Sarikhani MR, Dadashi Chavan D, Rasoulnia A. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:347-361. [PMID: 35400886 PMCID: PMC8943118 DOI: 10.1007/s12298-022-01128-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
Salinity is one of the most severe abiotic stress in the world. Also, the irrigated lands have been treated with second salinity. Canola is one of the most important industrial crops for oil production all over the world which is affected by salinity. Salt stress causes imbalanced ion hemostasis (Na+ and K+) and interrupted mineral absorption in canola. Also, salinity stress leads to oxidative stress (production and accumulation of reactive oxygen species (ROS). Accumulation of ROS is extremely dangerous and lethal for plants. As a consequence, canola production is reduced under salinity stress. So, a suitable approach should be found to deal with salinity stress and prevent the loss of production oilseed. Plant growth-promoting rhizobacteria (PGPR) can colonize on the plant root surface and alleviate the salt stress effect by providing minerals like nitrogen, phosphate, and potassium. Also, they alleviate salt stress by phytohormones like auxin (IAA), cytokinin (CK), and abscisic acid (ABA). This study focus on physiological parameters like leaf area (LA), root length (RL), shoot length (SL), chlorophyll fluorescence indexes (Fv/Fm and Fv/F0), relative water content (RWC), electrolyte leakage index (ELI), photosynthesis pigments (chlorophyll a, b, and carotenoids), Na+, and K+; and biochemical parameters like malondialdehyde (MDA) content, hydrogen peroxide content (H2O2), total protein content, proline, antioxidant capacity, and antioxidant enzyme activities in canola through the inoculation with Enterobacter sp. S16-3 and Pseudomonas sp. C16-2O. This study showed that LA, RL, SL, chlorophyll fluorescence indexes, RWC were significantly increased and ELI was significantly decreased in bacteria inoculated treatments. Also, MDA, H2O2 were decreased, and antioxidant capacity, proline, and antioxidant enzymes were increased due to inoculation with these bacteria. Besides, the amount of K+ as an index of salinity tolerance significantly increased, and leaf Na+ content was significantly decreased.
Collapse
Affiliation(s)
- Mohammadreza Neshat
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| | - Alireza Abbasi
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| | - Abdulhadi Hosseinzadeh
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| | - Mohammad Reza Sarikhani
- Soil Science Department, Faculty of Agriculture, University of Tabriz, 29 Bahman Blvd, P.O. Box 51666-16471, Tabriz, Iran
| | - Davood Dadashi Chavan
- Plant Biotechnology and Breeding Department, Faculty of Agriculture, University of Tabriz, 29 Bahman Blvd, P.O. Box 51666-16471, Tabriz, Iran
| | - Abdolrahman Rasoulnia
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| |
Collapse
|
31
|
Bui-Xuan D, Tang DYY, Chew KW, Nguyen TDP, Le Ho H, Tran TNT, Nguyen-Sy T, Dinh THT, Nguyen PS, Dinh TMH, Nguyen TT, Show PL. Green biorefinery: Microalgae-bacteria microbiome on tolerance investigations in plants. J Biotechnol 2022; 343:120-127. [PMID: 34896159 DOI: 10.1016/j.jbiotec.2021.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/23/2021] [Accepted: 12/05/2021] [Indexed: 12/29/2022]
Abstract
Co-culture of microalgae and microorganisms, supported with the resulting synergistic effects, can be used for wastewater treatment, biomass production, agricultural applications and etc. Therefore, this study aimed to explore the role of Bacillus subtilis (B. subtilis) in tolerance against the harsh environment of seafood wastewater, at which these microalgal-bacterial flocs were formed by microalgae cultivation. In this present study, B. subtilis isolated from the cultivation medium of Chlorella vulgaris and exposed to different salinity (0.1-4% w/v sodium chloride) and various pH range to determine the tolerant ability and biofilm formation. Interestingly, this bacteria strain that isolated from microalgae cultivation medium showed the intense viability in the salt concentration exceeding up to 4% (w/v) NaCl but demonstrated the decrease in cell division as environmental culture undergoing over pH 10. Cell viability was recorded higher than 71% and 92% for B. subtilis inoculum in media with salt concentration greater than 20 gL-1 and external pH 6.5-9, respectively. This showed that B. subtilis isolated from microalgal-bacteria cocultivation exhibited its tolerant ability to survive in the extremely harsh conditions and thus, mitigating the stresses due to salinity and pH.
Collapse
Affiliation(s)
- Dong Bui-Xuan
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Danang 550 000, Viet Nam
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Thi Dong Phuong Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam.
| | - Han Le Ho
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea; University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Thi Ngoc Thu Tran
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Toan Nguyen-Sy
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Thi Ha Thuong Dinh
- The University of Danang, University of Science and Education, 459 Ton Duc Thang St., Danang 550 000, Viet Nam
| | - Phuc Son Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Thi My Huong Dinh
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Thanh Thuy Nguyen
- National Institute of Hygiene and Epidemiology, 01 Yecxanh St, Hanoi, Viet Nam
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Bacillus spp. isolated from soil in Lebanon can simultaneously degrade methomyl in contaminated soils and enhance plant growth. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
The Effect of Salt-Tolerant Antagonistic Bacteria CZ-6 on the Rhizosphere Microbial Community of Winter Jujube ( Ziziphus jujuba Mill. "Dongzao") in Saline-Alkali Land. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5171086. [PMID: 34611527 PMCID: PMC8487612 DOI: 10.1155/2021/5171086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
As the main economic crop cultivated in the Yellow River Delta, winter jujube contains various nutrients. However, soil salinization and fungal diseases have affected the yield and quality of winter jujube. In order to use plant growth-promoting rhizobacteria (PGPR) to reduce these damages, the antagonistic bacteria CZ-6 isolated from the rhizosphere of wheat in saline soil was selected for experiment. Gene sequencing analysis identified CZ-6 as Bacillus amyloliquefaciens. In order to understand the salt tolerant and disease-resistant effects of CZ-6 strain, determination of related indicators of salt tolerance, pathogen antagonistic tests, and anti-fungal mechanism analyses was carried out. A pot experiment was conducted to evaluate the effect of CZ-6 inoculation on the rhizosphere microbial community of winter jujube. The salt tolerance test showed that CZ-6 strain can survive in a medium with a NaCl concentration of 10% and produces indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Studies on the inhibition mechanism of pathogenic fungi show that CZ-6 can secrete cellulase, protease, and xylanase. Gas chromatography-mass spectrometry (GC-MS) analysis showed that CZ-6 can release volatile organic compounds (VOCs), including 2-heptanone and 2-nonanone. In addition, the strain can colonize the rhizosphere and migrate to the roots, stems, and leaves of winter jujube, which is essential for plant growth or defense against pathogens. Illumina MiSeq sequencing data indicated that, compared to the control, the abundance of salt-tolerant bacteria Tausonia in the CZ-6 strain treatment group was significantly increased, while the richness of Chaetomium and Gibberella pathogens was significantly reduced. Our research shows that CZ-6 has the potential as a biological control agent in saline soil. Plant damage and economic losses caused by pathogenic fungi and salt stress are expected to be alleviated by the addition of salt-tolerant antagonistic bacteria.
Collapse
|
34
|
Genome Mining of Three Plant Growth-Promoting Bacillus Species from Maize Rhizosphere. Appl Biochem Biotechnol 2021; 193:3949-3969. [PMID: 34529229 PMCID: PMC8610958 DOI: 10.1007/s12010-021-03660-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Bacillus species genomes are rich in plant growth-promoting genetic elements. Bacillus subtilis and Bacillus velezensis are important plant growth promoters; hence, to further improve their abilities, the genetic elements responsible for these traits were characterized and reported. Genetic elements reported include those of auxin, nitrogen fixation, siderophore production, iron acquisition, volatile organic compounds, and antibiotics. Furthermore, the presence of phages and antibiotic-resistant genes in the genomes are reported. Pan-genome analysis was conducted using ten Bacillus species. From the analysis, pan-genome of Bacillus subtilis and Bacillus velezensis are still open. Ultimately, this study brings an insight into the genetic components of the plant growth-promoting abilities of these strains and shows their potential biotechnological applications in agriculture and other relevant sectors.
Collapse
|
35
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
36
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
37
|
Mathur P, Roy S. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. PHYSIOLOGIA PLANTARUM 2021; 172:1016-1029. [PMID: 33491182 DOI: 10.1111/ppl.13338] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Global increase in water scarcity is a serious problem for sustaining crop productivity. The lack of water causes the degeneration of the photosynthetic apparatus, an imbalance in key metabolic pathways, an increase in free radical generation as well as weakens the root architecture of plants. Drought is one of the major stresses that directly interferes with the osmotic status of plant cells. Abscisic acid (ABA) is known to be a key player in the modulation of drought responses in plants and involvement of both ABA-dependent and ABA-independent pathways have been observed during drought. Concomitantly, other phytohormones such as auxins, ethylene, gibberellins, cytokinins, jasmonic acid also confer drought tolerance and a crosstalk between different phytohormones and transcription factors at the molecular level exists. A number of drought-responsive genes and transcription factors have been utilized for producing transgenic plants for improved drought tolerance. Despite relentless efforts, biotechnological advances have failed to design completely stress tolerant plants until now. The root microbiome is the hidden treasure that possesses immense potential to revolutionize the strategies for inducing drought resistance in plants. Root microbiota consist of plant growth-promoting rhizobacteria, endophytes and mycorrhizas that form a consortium with the roots. Rhizospheric microbes are proliferous producers of phytohormones, mainly auxins, cytokinin, and ethylene as well as enzymes like the 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) and metabolites like exopolysaccharides that help to induce systemic tolerance against drought. This review, therefore focuses on the major mechanisms of plant-microbe interactions under drought-stressed conditions and emphasizes the importance of drought-tolerant microbes for sustaining and improving the productivity of crop plants under stress.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, India
| |
Collapse
|
38
|
Blake C, Christensen MN, Kovács ÁT. Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:15-25. [PMID: 32986513 DOI: 10.1094/mpmi-08-20-0225-cr] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacillus subtilis is one of the most widely studied plant growth-promoting rhizobacteria. It is able to promote plant growth as well as control plant pathogens through diverse mechanisms, including the improvement of nutrient availability and alteration of phytohormone homeostasis as well as the production of antimicrobials and triggering induced systemic resistance, respectively. Even though its benefits for crop production have been recognized and studied extensively under laboratory conditions, the success of its application in fields varies immensely. It is widely accepted that agricultural application of B. subtilis often fails because the bacteria are not able to persist in the rhizosphere. Bacterial colonization of plant roots is a crucial step in the interaction between microbe and plant and seems, therefore, to be of great importance for its growth promotion and biocontrol effects. A successful root colonization depends thereby on both bacterial traits, motility and biofilm formation, as well as on a signal interplay with the plant. This review addresses current knowledge about plant-microbial interactions of the B. subtilis species, including the various mechanisms for supporting plant growth as well as the necessity for the establishment of the relationship.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
39
|
Hesham AEL, Kaur T, Devi R, Kour D, Prasad S, Yadav N, Singh C, Singh J, Yadav AN. Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6949-4_22] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|