1
|
Wang M, Ji Z, Dong Y. Machine learning-guided performance prediction of forward osmosis polymeric membranes for boron recovery. WATER RESEARCH 2025; 281:123700. [PMID: 40305914 DOI: 10.1016/j.watres.2025.123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Efficient recovery of boron is one of the crucial strategies of sustainably extracting valuable resource from water. It however still remains a key technological challenge to efficiently predict boron recovery from unconventional water resources such as underground water, geothermal water and seawater, which are still few concerned in open literature. To effectively address this issue, herein we propose an efficient strategy to precisely predict boron recovery performance and then explore mechanism in forward osmosis process via advanced machine learning techniques with better model performance. Specifically, to explore the complex relationships among various boron recovery factors, we compare different advanced machine learning regression models to provide valuable insights into how these key factors impact system performance. We find that three key driving factors (i.e., pH, boron concentration, and membrane orientation) significantly affect boron recovery performance in the forward osmosis process. The best prediction accuracy with a high r-square (R2, 95.4 %) is achieved via the XGBoost model combined with the particle swarm optimization algorithm, demonstrating its remarkable ability for precise boron recovery prediction. By employing this hybrid model to optimize the search space, the overall performance of forward osmosis system was significantly enhanced, with a predicted boron rejection rate as high as 98.28 %, outperforming the reported values. Our work demonstrates the powerful potential of advanced machine learning for efficiently predicting boron recovery for water quality improvement and resource recovery applications.
Collapse
Affiliation(s)
- Meng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Zhanlin Ji
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China.
| |
Collapse
|
2
|
Li H, Ackah M, Amoako FK, Asare AT, Li J, Wang Z, Lin Q, Qiu C, Zhao M, Zhao W. The Targeted Metabolomic Signatures of Phytohormones in Leaves of Mulberry ( Morus alba L.) Are Crucial for Regrowth and Specifically Modulated by the Differential Stubble Lengths. PLANTS (BASEL, SWITZERLAND) 2025; 14:1126. [PMID: 40219194 PMCID: PMC11991534 DOI: 10.3390/plants14071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Vegetative propagation of mulberry (Morus alba L.) via sapling methods, due to the ability to exponentially multiply lateral buds on stem cuttings to enhance rapid shoot formation, is crucial for sericulture industries. The sprouting of mulberry using stubbles is an emerging method for rapid and mass production of mulberry leaves, but the growth mechanisms associated with its use remain obscure. This study is the first to report how the differential stubble lengths from mulberry plants alter and modulate phytohormones and the associated mechanisms. This study seeks to evaluate the growth mechanisms by elucidating the phytohormone signature modulation in response to differential stubble lengths of 0 cm, 5 cm, 10 cm, 20 cm, and a control via targeted metabolomics analysis in mulberry leaves. The results consistently show that the use of differential stubble lengths of mulberry promoted growth, the number of buds, aboveground biomass, and branch and leaf weights by improving the net photosynthesis, transpiration rate, stomatal conductance, and intercellular CO2 relative to the control. The differential stubble lengths not only caused contrasting responses in the contents of plant hormones, including salicylic acid (SA), abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellin (GA), but also modulated higher elemental contents relative to the control. The results further reveal significant and positive correlations between the phytohormones and all growth, biomass, and photosynthetic parameters, highlighting the role of phytohormones in the sprouting and rejuvenation of mulberry stubbles. Meanwhile, the targeted metabolomics analysis identified a total of 11 differentially accumulated phytohormones in response to the differential stubble lengths, which were significantly implicated and enriched in three major pathways, including the biosynthesis of plant hormones (ko01070), metabolic pathways (ko01100), and the plant hormone signal transduction pathway (ko04575). The use of stubbles for rapid leaf production in mulberry plants is of great importance to improve early sprouting and cutting survival, as well as shortening growth and rooting time, and is highly recommended for the sericulture industries.
Collapse
Affiliation(s)
- Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 00233, Ghana; (F.K.A.); (A.T.A.)
| | - Frank Kwarteng Amoako
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 00233, Ghana; (F.K.A.); (A.T.A.)
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Aaron Tettey Asare
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 00233, Ghana; (F.K.A.); (A.T.A.)
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
| | - Zhenjiang Wang
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China;
| | - Qiang Lin
- Sericulture Technology Promotion Station, Nanning 530007, China; (Q.L.); (C.Q.)
| | - Changyu Qiu
- Sericulture Technology Promotion Station, Nanning 530007, China; (Q.L.); (C.Q.)
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
| |
Collapse
|
3
|
Chalchisa G, Muzahid ANM, Mollah MDA, Gasura E, Xie X, Liu X, Lv H, Tian H, Zhong C, Li D. Kiwifruit sensitivity to boron: impact on physiological and molecular responses. FRONTIERS IN PLANT SCIENCE 2025; 16:1549854. [PMID: 40196434 PMCID: PMC11973261 DOI: 10.3389/fpls.2025.1549854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025]
Abstract
Boron (B) is an essential micronutrient critical for crop growth and productivity. However, excessive boron concentrations can impair plant development, and detoxification remains a significant challenge. Understanding genetic variability and identifying tolerance mechanisms are crucial for developing boron-resistant cultivars. This study explores the physiological and molecular responses of two Actinidia species, namely kiwifruit (A.chinensis) and kiwiberry (A.arguta), to varying levels of excess B. Under excessive B conditions, B accumulation followed the order roots< stems< leaves, with maximum concentrations of 68.6 mg/kg, 105 mg/kg, and 160.7 mg/kg in AC, and 68.2 mg/kg, 107 mg/kg, and 196.9 mg/kg in AA, respectively. B toxicity symptoms appeared in AA when B levels exceeded 50 mg/kg, leading to a 15-20% reduction in dry weight across roots, stems, and leaves. AC exhibited greater sensitivity, with a 20-30% reduction in dry biomass. Both species showed significant declines in chlorophyll a and b content under B stress, with alterations in the chlorophyll a/b ratio and increased oxidative stress. Additionally, stress-responsive genes, including 1-aminocyclopropane-1-carboxylate synthase (Actinidia10066) and xyloglucan endotransglucosylase/hydrolase (Actinidia11948), were downregulated in response to B stress, suggesting potential disruptions in growth and development. These findings provide valuable insights into the differential physiological and molecular responses to excess boron in Actinidia species, laying a foundation for functional genomics research and the development of boron-tolerant kiwifruit cultivars.
Collapse
Affiliation(s)
- Gudeta Chalchisa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Plant Research Department, Gullele Botanical Garden, Addis Ababa, Ethiopia
| | - Abu Naim Md. Muzahid
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| | - Md Dulal Ali Mollah
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Department of Agronomy and Agricultural Extension, University of Rajshahi, Rajshahi, Bangladesh
| | - Edmore Gasura
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, Zimbabwe
| | - Xiaodong Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoying Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| | - Haiyan Lv
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| | - Hua Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| | - Dawei Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Li J, Ackah M, Amoako FK, Cui Z, Sun L, Li H, Tsigbey VE, Zhao M, Zhao W. Metabolomics and physio-chemical analyses of mulberry plants leaves response to manganese deficiency and toxicity reveal key metabolites and their pathways in manganese tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1349456. [PMID: 38911982 PMCID: PMC11192020 DOI: 10.3389/fpls.2024.1349456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Introduction Manganese (Mn) plays a pivotal role in plant growth and development. Aside aiding in plant growth and development, Mn as heavy metal (HM) can be toxic in soil when applied in excess. Morus alba is an economically significant plant, capable of adapting to a range of environmental conditions and possessing the potential for phytoremediation of contaminated soil by HMs. The mechanism by which M. alba tolerates Mn stresses remains obscure. Methods In this study, Mn concentrations comprising sufficiency (0.15 mM), higher regimes (1.5 mM and 3 mM), and deficiency (0 mM and 0.03 mM), were applied to M. alba in pot treatment for 21 days to understand M. alba Mn tolerance. Mn stress effects on the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, plant morphological traits, enzymatic and non-enzymatic parameters were analyzed as well as metabolome signatures via non-targeted LC-MS technique. Results Mn deficiency and toxicity decrease plant biomass, Pn, Ci, Gs, Tr, and chlorophyll content. Mn stresses induced a decline in the activities of catalase (CAT) and superoxide dismutase (SOD), while peroxidase (POD) activity, and leaf Mn content, increased. Soluble sugars, soluble proteins, malondialdehyde (MDA) and proline exhibited an elevation in Mn deficiency and toxicity concentrations. Metabolomic analysis indicates that Mn concentrations induced 1031 differentially expressed metabolites (DEMs), particularly amino acids, lipids, carbohydrates, benzene and derivatives and secondary metabolites. The DEMs are significantly enriched in alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, pantothenate and CoA biosynthesis, pentose phosphate pathway, carbon metabolism, etc. Discussion and conclusion The upregulation of Galactinol, Myo-inositol, Jasmonic acid, L-aspartic acid, Coproporphyrin I, Trigonelline, Pantothenol, and Pantothenate and their significance in the metabolic pathways makes them Mn stress tolerance metabolites in M. alba. Our findings reveal the fundamental understanding of DEMs in M. alba's response to Mn nutrition and the metabolic mechanisms involved, which may hold potential significance for the advancement of M. alba genetic improvement initiatives and phytoremediation programs.
Collapse
Affiliation(s)
- Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | | | - Zipei Cui
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - LongWei Sun
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Victor Edem Tsigbey
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
5
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, Salehen NA, Ibrahim IAA, Hassan RR, Almaimani G, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Almutawif YA. Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms. Biol Trace Elem Res 2024; 202:2702-2719. [PMID: 37770673 DOI: 10.1007/s12011-023-03864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Boric acid (BA) is a naturally occurring weak Lewis acid containing boron, oxygen, and hydrogen elements that can be found in water, soil, and plants. Because of its numerous biological potentials including anti-proliferation actions, the present investigates the chemopreventive possessions of BA on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty laboratory rats were divided into 5 groups: negative control (A) received two subcutaneous inoculations of normal saline and nourished on 10% Tween 20; groups B-E had two injections of 15 mg/kg azoxymethane followed by ingestion of 10% Tween 20 (B, cancer control), inoculation with intraperitoneal 35 mg/kg 5-fluorouracil injection (C, reference group), or ingested with boric acid 30 mg/kg (D) and 60 mg/kg (E). The gross morphology results showed significantly increased total colonic ACF in cancer controls, while BA treatment caused a significant reduction of ACF values. Histopathological evaluation of colons from cancer controls showed bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands than that of BA-treated groups. Boric acid treatment up-surged the pro-apoptotic (Bax) expression and reduced anti-apoptotic (Bcl-2) protein expressions. Moreover, BA ingestion caused upregulation of antioxidant enzymes (GPx, SOD, CAT), and lowered MDA contents in colon tissue homogenates. Boric acid-treated rats had significantly lower pro-inflammatory cytokines (TNF-α and IL-6) and higher anti-inflammatory cytokines (IL-10) based on serum analysis. The colorectal cancer attenuation by BA is shown by the reduced ACF numbers, anticipated by its regulatory potentials on the apoptotic proteins, antioxidants, and inflammatory cytokines originating from AOM-induced oxidative damage.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Zaenah Zuhair Alamri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Ghassan Almaimani
- Department of surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Yahya A Almutawif
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| |
Collapse
|
6
|
Zou J, Zhang Q, Amoako FK, Ackah M, Li H, Shi Y, Li J, Jiang Z, Zhao W. Genome-wide transcriptome profiling of mulberry (Morus alba) response to boron deficiency and toxicity reveal candidate genes associated with boron tolerance in leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108316. [PMID: 38176189 DOI: 10.1016/j.plaphy.2023.108316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Mulberry (Morus alba) is an essential plant with countless economic benefits; however, its growth and metabolic processes are hampered by boron (B) stresses. Very little research has been performed to elucidate boron tolerance and detoxification mechanisms in this species. The M. alba cultivar, Yu-711, was exposed to five different concentrations of boric acid (H3BO3), including deficient (T1; 0 mM) moderate B deficiency (T2; 0.02 mM), sufficient (CK; 0.1 mM) and toxic (T3 and T4; 0.5 and 1 mM) levels for 18 days of growth in pots experiment. Transcriptome analysis of B deficiency and toxicity treatments was performed on mulberry leaves. The transcriptome data reveal that a total of 6114 genes were differentially expressed (DEGs), of which 3830 were up-regulated and 2284 were down-regulated. A comparative analysis between treatment groups CK-vs-T1 (deficiency) and CK-vs-T4 (toxicity) indicates that 590 and 1383 genes were down-regulated in both deficiency and B toxicity, respectively. The results show that 206 genes were differentially expressed in all treatments. B deficiency and toxicity significantly altered the expression of the key aquaporins (PIP2-1, PIP2-7, PIP2-4 and NIP3-1) and high-affinity boron transporter genes (BOR1 and BOR7). In addition, boron stress also altered the expression of antioxidants and photosynthesis-related genes. B stresses were found to alter several transcription factors including ERF1B, which is associated with the regulation of boron uptake and the synthesis and signaling of phytohormones. Unravelling the mechanisms of B tolerance and detoxification is important and would give us further insight into how B stresses affect mulberry plants.
Collapse
Affiliation(s)
- Jincheng Zou
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, Kiel, 24118, Germany
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| |
Collapse
|
7
|
Ackah M, Boateng NAS, Dhanasekaran S, Zhang H, Yang Q. Genome wide and comprehensive analysis of the cytochrome P450 (CYPs) gene family in Pyrus bretschneideri: Expression patterns during Sporidiobolus pararoseus Y16 enhanced with ascorbic acid (VC) treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108303. [PMID: 38154299 DOI: 10.1016/j.plaphy.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Cytochrome P450s (CYPs) constitute the largest group of enzymes in plants and are involved in a variety of processes related to growth and protection. However, the CYP gene superfamily in pear (Pyrus bretschneideri) and their characteristics is unclear. Through a comprehensive genome-wide analysis, this article identified a total of 74 CYP genes in the P. bretschneideri genome, which were categorized into fourteen families. Motif analysis reveals that most of the ten motifs predicted were with the p450 conserved domain. The majority of the CYP genes have exon arrangements. Furthermore, promoter analysis unveiled a multitude of cis-acting elements associated with diverse responsiveness including hormones, light responsive, anoxic specific inducibility and anaerobic induction. Analysis of the transcriptome data reveal that about 80% of the pear CYPs genes were upregulated and they were positively correlated with the antioxidant's parameters such as total flavonoids and total phenol content as well as ABTS and DPPH radicals. RT-qPCR analysis confirmed that the CYP genes could be regulated in pear. Collectively, our results reveal comprehensive insights into the CYP superfamily in pear and make a valuable contribution to the ongoing process of functional validation.
Collapse
Affiliation(s)
- Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Nana Adwoa Serwah Boateng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China; Ho Technical University, P.O.BOX HP 217, Ho, Volta Region, Ghana
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Orlov YL, Chen M. Special Issue on "Plant Biology and Biotechnology: Focus on Genomics and Bioinformatics 2.0". Int J Mol Sci 2023; 24:17588. [PMID: 38139417 PMCID: PMC10743833 DOI: 10.3390/ijms242417588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The analysis of molecular mechanisms underlying plant adaptation to environmental changes and stress response is crucial for plant biotechnology [...].
Collapse
Affiliation(s)
- Yuriy L. Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Li J, Wang L, Ackah M, Amoako FK, Jiang Z, Shi Y, Li H, Zhao W. The Competing Endogenous RNAs Regulatory Genes Network Mediates Leaf Shape Variation and Main Effector Gene Function in Mulberry Plant ( Morus alba). Int J Mol Sci 2023; 24:16860. [PMID: 38069181 PMCID: PMC10706577 DOI: 10.3390/ijms242316860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Mulberry plants (Morus alba) have leaf shapes, ranging from unlobed to lobed, which are crucial for yield, growth, and adaptability, indicating their ability to adapt to their environment. Competing endogenous RNAs (ceRNAs) constitute a web of RNAs within the organism's transcriptional regulatory system, including protein-coding genes (mRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and others. In this study, samples for ceRNA sequencing were categorized into two groups: whole leaves and lobed leaves, each group with three replicates. In addition, we isolated, cloned, and characterized the precursor miRNA (miR156x) from the leaves of M. alba. miR156x precursor had a length of 107 base pairs and a minimum folding free energy of 50.27 kcal/mol. We constructed a pCAMBIA-35S-GUS-miR156x dual overexpression vector and established a transient transformation system for mulberry. At an optimal transformation solution (OD600 = 0.7), the GUS gene showed a higher expression in the leaves of transiently transformed mulberry with miR156x overexpression, four days after transformation, while the target genes of miR156x had decreased expression in the same leaves. Investigations into the transgenic mulberry plants uncovered various modifications to physio-chemical parameters including POD, SOD, PRO, MDA, soluble proteins and sugars, and chlorophyl content. miRNAs in the plants were found to act as negative regulators of gene expression in response to changes in leaf shape regulation, which was confirmed in vitro using dual-luciferase reporter assays. Subsequently, we cloned Maspl3 in vitro and conducted GST-Pull down assays, obtaining multiple proteins that interacted with the Maspl3 gene. This indicates that the miR156x/Maspl3/MSTRG.25812.1 regulatory module contributes to the differences in mulberry leaf shape.
Collapse
Affiliation(s)
- Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (J.L.); (Z.J.); (Y.S.); (H.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
10
|
Jin X, Ackah M, Wang L, Amoako FK, Shi Y, Essoh LG, Li J, Zhang Q, Li H, Zhao W. Magnesium Nutrient Application Induces Metabolomics and Physiological Responses in Mulberry ( Morus alba) Plants. Int J Mol Sci 2023; 24:ijms24119650. [PMID: 37298601 DOI: 10.3390/ijms24119650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Mulberry (Morus alba) is a significant plant with numerous economic benefits; however, its growth and development are affected by nutrient levels. A high level of magnesium (Mg) or magnesium nutrient starvation are two of the significant Mg factors affecting plant growth and development. Nevertheless, M. alba's metabolic response to different Mg concentrations is unclear. In this study, different Mg concentrations, optimal (3 mmol/L), high (6 mmol/L and 9 mmol/L), or low (1 and 2 mmol/L) and deficient (0 mmol/L), were applied to M. alba for three weeks to evaluate their effects via physiological and metabolomics (untargeted; liquid chromatography-mass spectrometry (LC-MS)) studies. Several measured physiological traits revealed that Mg deficiency and excess Mg altered net photosynthesis, chlorophyll content, leaf Mg content and fresh weight, leading to remarkable reductions in the photosynthetic efficiency and biomass of mulberry plants. Our study reveals that an adequate supply of the nutrient Mg promoted the mulberry's physiological response parameters (net photosynthesis, chlorophyll content, leaf and root Mg content and biomass). The metabolomics data show that different Mg concentrations affect several differential metabolite expressions (DEMs), particularly fatty acyls, flavonoids, amino acids, organic acid, organooxygen compounds, prenol lipids, coumarins, steroids and steroid derivatives, cinnamic acids and derivatives. An excessive supply of Mg produced more DEMs, but negatively affected biomass production compared to low and optimum supplies of Mg. The significant DEMs correlated positively with mulberry's net photosynthesis, chlorophyll content, leaf Mg content and fresh weight. The mulberry plant's response to the application of Mg used metabolites, mainly amino acids, organic acids, fatty acyls, flavonoids and prenol lipids, in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. These classes of compounds were mainly involved in lipid metabolism, amino acid metabolism, energy metabolism, the biosynthesis of other secondary metabolites, the biosynthesis of other amino acids, the metabolism of cofactors and vitamin pathways, indicating that mulberry plants respond to Mg concentrations by producing a divergent metabolism. The supply of Mg nutrition was an important factor influencing the induction of DEMs, and these metabolites were critical in several metabolic pathways related to magnesium nutrition. This study provides a fundamental understanding of DEMs in M. alba's response to Mg nutrition and the metabolic mechanisms involved, which may be critical to the mulberry genetic breeding program.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lionnelle Gyllye Essoh
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|