1
|
Xiong B, Li Y, Yao J, Wang J, Han L, Ma Q, Deng T, Liao L, Deng L, Sun G, Zhang M, Wan X, He S, He J, Wang Z. Integration of transcriptomic and metabolomic analysis reveals light-regulated anthocyanin accumulation in the peel of 'Yinhongli' plum. BMC PLANT BIOLOGY 2025; 25:391. [PMID: 40148754 PMCID: PMC11948737 DOI: 10.1186/s12870-025-06414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The 'Yinhongli' cultivar of Chinese plum (Prunus salicina Lindl.) is characterized by a distinctive bicolored peel phenotype, in which anthocyanins serve as crucial determinants of both its visual characteristics and nutritional quality. However, the molecular mechanism of underlying light-dependent anthocyanin biosynthesis of plum, especially its regulatory network and pathway, need to be further studied and explored. RESULTS Comprehensive physiological analyses demonstrated distinct pigmentation patterns, revealing that dark-treated (YD) plum peels retained green coloration, whereas light-exposed (YL) and bag-removed samples (YDL) exhibited red pigmentation. Utilizing an integrated approach combining metabolomic and transcriptomic analyses, we identified 266 differentially accumulated flavonoids (DAFs), among which seven anthocyanin metabolites were established as principal determinants of peel coloration. Transcriptomic profiling revealed 6,900 differentially expressed genes (DEGs) between YD and YL, demonstrating significant correlations between the phenylpropanoid and flavonoid biosynthetic pathways. Through Weighted Gene Co-expression Network Analysis (WGCNA) and correlation heatmap analysis, we identified crucial regulatory networks encompassing five structural genes (PAL, 4CL, F3'H, CHI, and UFGT) and 15 candidate regulatory genes, including six light signal transduction factor genes (UVR8, COP1, PHYBs, PIF3, and HY5) and nine transcription factor genes (MYB1, MYB20, MYB73, MYB111, LHY, DRE2B, ERF5, bHLH35, and NAC87). Subsequent RT-qPCR validation demonstrated significant light-mediated up-regulation of key structural genes (PAL, F3H, CHI, 4CL, and UFGT) involved in anthocyanin biosynthesis along with positive regulatory factors (DRE2B and NAC87). Conversely, a cohort of negative regulators, including HY5, MYB1, MYB20, MYB73, MYB111, LHY, ERF5, and bHLH35, showed marked down-regulation in response to light exposure, suggesting their potential repressive roles in the light-dependent anthocyanin biosynthesis pathway. CONCLUSIONS This investigation provides comprehensive insights into the molecular mechanisms of anthocyanin biosynthesis in light-dependent anthocyanin biosynthesis in 'Yinhongli' plum, identifying critical structural genes and potential regulatory TFs. The findings offer substantial contributions to the understanding of anthocyanin regulation in fruit crops and provide a valuable foundation for molecular breeding initiatives aimed at enhancing quality traits in plum cultivars.
Collapse
Affiliation(s)
- Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yisong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junfei Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jialu Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linlyu Han
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingqing Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taimei Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Zhao Q, Zheng X, Wang C, Wang Q, Wei Q, Liu X, Liu Y, Chen A, Jiang J, Zhao X, He T, Qi J, Han Y, Qin H, Xie F, Chen Y. Exogenous Melatonin Improves Drought Tolerance by Regulating the Antioxidant Defense System and Photosynthetic Efficiency in Fodder Soybean Seedings. PLANTS (BASEL, SWITZERLAND) 2025; 14:460. [PMID: 39943023 PMCID: PMC11819762 DOI: 10.3390/plants14030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Fodder soybean (Glycine max L.) with high protein and yield is a popular forage grass in northeast China. Seasonal drought inhibits its growth and development during seedling stage. The objective of this study was to observe morpho-physiological changes in fodder soybean seedlings under melatonin (MT) treatments and identify appropriate concentration to alleviate the drought damage. Two varieties commonly used in northeast China were treated with 0, 50, 100, and 150 μM melatonin at soil water content of 30%. The results indicated that applying melatonin enhanced height, biomass and altered root morphology of fodder soybean seedlings under water-deficient conditions. The treatments with melatonin at different concentrations significantly reduced the contents of H2O2, O2- and MDA, while boosting the capacity of the antioxidant defense system and the content of osmotic adjustment substances. Meanwhile, increases in light energy capture and transmission efficiency were observed. Furthermore, treatment with melatonin regulated the expression levels of genes associated with photosynthesis and the antioxidant defense system. Notably, 100 μM melatonin treatment produced the most favorable effect in all treatments under drought conditions. These research results provide new information for enhancing the drought tolerance of fodder soybean using chemical measures.
Collapse
Affiliation(s)
- Qianhan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xueling Zheng
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Chen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Qinyi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Qiyun Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xiashun Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Yujiao Liu
- Fujian Zhongke Biological Co., Ltd., Xiamen 361001, China
| | - Along Chen
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Jia Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xueying Zhao
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Tiantian He
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Jiayi Qi
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Yuchen Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Haonan Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| |
Collapse
|
3
|
Zhang T, Zhang C, Wang W, Hu S, Tian Q, Li Y, Cui L, Li L, Wang Z, Cao X, Wang D. Effects of drought stress on the secondary metabolism of Scutellaria baicalensis Georgi and the function of SbWRKY34 in drought resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109362. [PMID: 39642440 DOI: 10.1016/j.plaphy.2024.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The pharmacological properties of the dried root of Scutellaria baicalensis Georgi, a Chinese medicinal herb, include antioxidant, antibacterial, and antiviral effects. In S. baicalensis quality assessment, concentrations of baicalin, wogonoside, baicalein, and wogonin in the root are crucial. Drought stress commonly affects the biomass and build-up of active compounds in medicinal sections of medicinal plants and thus their quality. The molecular mechanisms underlying the response of S. baicalensis to drought stress remain unexplored. To delve into the impacts of drought stress on the growth and metabolic processes of S. baicalensis, as well as to unravel the underlying molecular mechanisms. We found prolonged and intensified drought treatment causes an initial surge in its fresh weight, plant height, and stem diameter followed by a gradual slowdown, while malondialdehyde (MDA) content rises; while the fresh weight, length, superoxide dismutase (SOD), and catalase (CAT) activities peak before declining, and the root's diameter continuously narrows. In this study, flavonoid index ingredient levels in S. baicalensis initially decreased, then rose as the drought duration extended, followed by a notable post-rehydration increase in baicalin, wogonoside, and baicalein content and decrease in levels of wogonin and oroxylin A. Transcriptome sequencing and KEGG analysis revealed a significant enrichment of DEGs involved in phenylpropanoid biosynthesis and plant hormone signal transduction pathways. The expression levels of SbPAL, SbCCL, Sb4CL, SbCHI, SbFNSII, SbF6H, and SbUGT genes in the flavonoid biosynthetic pathway and PYR/PYL, PP2C, ABF, and SnRK2 genes in the abscisic acid signal transduction pathway were significantly changed. Drought responsive SbWRKY34 was selected for the subsequent investigation. SbWRKY34 showed the highest level in stems, and the encoding protein was localized in the nucleus. Overexpression of SbWRKY34 in Arabidopsis thaliana (OE-SbWRKY34 lines) resulted in increased sensitivity to drought stress, with considerably reduced MDA content and elevated SOD and CAT activities. Concurrently, the expression levels of AtCAT3, AtDREB, AtRD22, AtRD29A, and AtRD29B were significantly reduced in these lines, suggesting that SbWRKY34 functions to negatively regulate drought resistance in A. thaliana.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China; Chengdu Institute of Chinese Herbal Medicine, Chengdu, 610016, China
| | - Caijuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Wentao Wang
- University of Chinese Academy of Science, Beijing, 100049, China; Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Suying Hu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Qian Tian
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Yunyun Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Langjun Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Lin Li
- Taiyuan University, Taiyuan, 030032, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
4
|
Cai Z, Ma C, Hao Y, Jia W, Cao Y, Wu H, Xu X, Han L, Li C, Shang H, Liang A, White JC, Xing B. Molecular Evidence of CeO 2 Nanoparticle Modulation of ABA and Genes Containing ABA-Responsive Cis-Elements to Promote Rice Drought Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21804-21816. [PMID: 39584419 DOI: 10.1021/acs.est.4c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) have enzyme-like properties and scavenge excess ROS induced by stressors such as drought. However, the underlying molecular mechanisms by which CeO2 NPs enhance drought resistance are unknown. In this work, both foliar application and soil injection of CeO2 NPs were used to rice seedlings under a 30 day moderate drought (40% soil relative moisture). Foliar application of 4 mg of CeO2 NPs per pot reduced excess reactive oxygen species and abscisic acid (ABA) in rice leaves, thereby maintaining chloroplast structural integrity and photosynthetic output, ultimately increasing drought-stressed rice biomass by 31.3%. Genes associated with photosynthesis and ribosome activity provided the foundation by which CeO2 NPs enhanced rice drought resistance. Importantly, these genes were tightly regulated by ABA due to the large number of abscisic acid responsive elements in their promoter regions. CeO2 NPs also upregulated the expression of soluble sugar and fatty acid synthesis associated genes in drought-stressed rice, thereby contributing to osmotic balance and membrane lipid stability. These results highlight the potential of CeO2 NPs to enhance rice photosynthesis and drought-resistant biomolecule accumulation by regulating ABA-dependent responses. This work provides further evidence demonstrating nanomaterials have great potential to sustainably promote stress resistance and climate resilient crops.
Collapse
Affiliation(s)
- Zeyu Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Yin J, Li A, Wang Y, Li X, Ning W, Zhou X, Liu J, Sun Z. Melatonin improves cadmium tolerance in Salix viminalis by enhancing amino acid and saccharide metabolism, and increasing polyphenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117393. [PMID: 39581114 DOI: 10.1016/j.ecoenv.2024.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
As a short-rotation woody plant, Salix viminalis has the potential for phytoremediation of cadmium (Cd), but it has poor tolerance to high Cd concentrations. Melatonin (MEL), a candidate bio-promoter, was considered to play an active role in plant responses to Cd. However, the molecular mechanism by which MEL regulates metabolic processes in plants to defend against Cd stress remain unclear. Transcriptomics and global untargeted metabolomic sequencing were used to investigate the rapid response of S. viminalis to high Cd concentrations during initial growth stage after foliar application of MEL. Four treatments were set up in a pot experiment involving foliar application of MEL on the first day, followed by irrigation with a Cd solution the next day. Significant variations in the relevant defence genes and metabolites in leaves exposed to Cd were observed between willows treated with and without MEL. Foliar application of MEL upregulated sulphur metabolism-related genes such as methionine and S-adenosylmethionine synthases in leaves exposed to Cd; glutamine content, which is the key point of nitrogen assimilation, also increased. Additionally, glycolysis and sucrose metabolic genes, including hexokinase, sucrose synthase, invertase, and the inositol phosphate metabolic gene myo-inositol-1-phosphate synthase were also upregulated in leaves. Moreover, MEL also upregulated genes related to the synthesis of flavonoids, anthocyanins, and proanthocyanins in the leaves. These results demonstrated that MEL improved amino acid and saccharide metabolism in the leaves of S. viminalis in response to Cd. It also improved the antioxidant capacity and Cd tolerance in S. viminalis leaves by enhancing synthetic capacity of polyphenol compounds. MEL may be involved in processes of photorespiration, ethylene metabolism, GABA shunt, nitric oxide metabolism, osmotic adjustment, and the synthesis of glutathione and ascorbate in S. viminalis under Cd stress. This series of metabolic changes in S. viminalis occurred within 24 h of the foliar application of MEL, which provided a sufficient substrate for subsequent defence reactions to cope with Cd stress. Our findings will help elucidate the molecular mechanism by which MEL regulates metabolic processes in plants in response to Cd challenges and guide the application of MEL to improve Cd phytoremediation efficiency.
Collapse
Affiliation(s)
- Jiahui Yin
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Ao Li
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuancheng Wang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274000, China
| | - Wei Ning
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinglu Zhou
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
6
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
7
|
Zhu S, Mi J, Zhao B, Wang Z, Yang Z, Wang M, Liu J. Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat. FRONTIERS IN PLANT SCIENCE 2024; 15:1439747. [PMID: 39363917 PMCID: PMC11446754 DOI: 10.3389/fpls.2024.1439747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Drought stress inhibits oat growth and yield. The application of fulvic acid (FA) can improve the drought resistance of oats, but the corresponding molecular mechanism of FA-mediated drought resistance remains unclear. Here, we studied the effects of FA on the drought tolerance of oat leaves through physiological, transcriptomic, and metabolomics analyses, and identified FA-induced genes and metabolites related to drought tolerance. Physiological analysis showed that under drought stress, FA increased the relative water and chlorophyll contents of oat leaves, enhanced the activity of antioxidant enzymes (SOD, POD, PAL, CAT and 4CL), inhibited the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and dehydroascorbic acid (DHA), reduced the degree of oxidative damage in oat leaves, improved the drought resistance of oats, and promoted the growth of oat plants. Transcriptome and metabolite analyses revealed 652 differentially expressed genes (DEGs) and 571 differentially expressed metabolites (DEMs) in FA-treated oat leaves under drought stress. These DEGs and DEMs are involved in a variety of biological processes, such as phenylspropanoid biosynthesis and glutathione metabolism pathways. Additionally, FA may be involved in regulating the role of DEGs and DEMs in phenylpropanoid biosynthesis and glutathione metabolism under drought stress. In conclusion, our results suggest that FA promotes oat growth under drought stress by attenuating membrane lipid peroxidation and regulating the antioxidant system, phenylpropanoid biosynthesis, and glutathione metabolism pathways in oat leaves. This study provides new insights into the complex mechanisms by which FA improves drought tolerance in crops.
Collapse
Affiliation(s)
- Shanshan Zhu
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
| | - Junzhen Mi
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
- Oat Engineering Research Center of Inner Mongolia Agricultural University, Oat Engineering Laboratory of Inner Mongolia Autonomous Region, Hohhot, China
| | - Baoping Zhao
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
- Oat Engineering Research Center of Inner Mongolia Agricultural University, Oat Engineering Laboratory of Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhaoming Wang
- National Center of Pratacultural Technology Innovation (under way)/M-Grass Ecology And Environment (Group) Co., Ltd., Hohhot, China
| | - Zhixue Yang
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
| | - Mengxin Wang
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
| | - Jinghui Liu
- Coarse Cereals Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National agricultural scientific research outstanding talents and their innovation team, Inner Mongolia grassland talents innovation team, Hohhot, China
- Oat Engineering Research Center of Inner Mongolia Agricultural University, Oat Engineering Laboratory of Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
8
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
9
|
Yang Q, Zhang X, Gu C, Li M, Hu X, Gao Y, Min Z, Zhang W, Wu W. The mediation mechanism of calcium ions on black bean type 3 resistant starch: Metabolomics, structure characteristics and digestibility. Food Chem 2024; 446:138883. [PMID: 38430774 DOI: 10.1016/j.foodchem.2024.138883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The type 3 resistant starch (RS3) is beneficial for blood glucose management. A high quality RS3 was provided and its formation mechanism after calcium ion (Ca2+) treatment was investigated in this study. The metabolomics, structure and digestion properties were evaluated. Metabolomics was performed by untargeted UHPLC-Q-TOF/MS, and a total of 11 significantly different metabolites was found. The NMR, ATR-FTIR, and XRD results showed that the degree of double helix decreased from 5.34 to 1.07, crystallinity decreased from 33.58 % to 19.88 %, and the amorphous region increased from 69.76 % to 78.33 %. Large particle polymers were observed by SEM on the granule surface of starch with Ca2+ treatment. Digestion test showed that Ca2+ increased the RS3 from 9.70 % to 22.26 %. The result indicated that Ca2+ induced the formation of chelates between Ca2+ and -OH, promoted the RS3 content and regulated carbohydrate metabolism. The study provided theoretical basis for producing low-glycemic black bean foods.
Collapse
Affiliation(s)
- Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; Liaoning Key Laboratory of Characteristic Grain and Oil Processing and Quality Control, Shenyang 110034, China
| | - Xiling Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Chenqi Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Man Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Xiufa Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yuzhe Gao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; Liaoning Key Laboratory of Characteristic Grain and Oil Processing and Quality Control, Shenyang 110034, China
| | - Zhongman Min
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; Liaoning Key Laboratory of Characteristic Grain and Oil Processing and Quality Control, Shenyang 110034, China
| | - Weijia Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| | - Weijie Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Chen S, Zhong K, Li Y, Bai C, Xue Z, Wu Y. Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2024; 15:1364631. [PMID: 38766468 PMCID: PMC11102048 DOI: 10.3389/fpls.2024.1364631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Introduction Watermelon is an annual vine of the family Cucurbitaceae. Watermelon plants produce a fruit that people love and have important nutritional and economic value. With global warming and deterioration of the ecological environment, abiotic stresses, including drought, have become important factors that impact the yield and quality of watermelon plants. Previous research on watermelon drought resistance has included analyzing homologous genes based on known drought-responsive genes and pathways in other species. Methods However, identifying key pathways and genes involved in watermelon drought resistance through high-throughput omics methods is particularly important. In this study, RNA-seq and metabolomic analysis were performed on watermelon plants at five time points (0 h, 1 h, 6 h, 12 h and 24 h) before and after drought stress. Results Transcriptomic analysis revealed 7829 differentially expressed genes (DEGs) at the five time points. The DEGs were grouped into five clusters using the k-means clustering algorithm. The functional category for each cluster was annotated based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database; different clusters were associated with different time points after stress. A total of 949 metabolites were divided into 10 categories, with lipids and lipid-like molecules accounting for the most metabolites. Differential expression analysis revealed 22 differentially regulated metabolites (DRMs) among the five time points. Through joint analysis of RNA-seq and metabolome data, the 6-h period was identified as the critical period for watermelon drought resistance, and the starch and sucrose metabolism, plant hormone signal transduction and photosynthesis pathways were identified as important regulatory pathways involved in watermelon drought resistance. In addition, 15 candidate genes associated with watermelon drought resistance were identified through joint RNA-seq and metabolome analysis combined with weighted correlation network analysis (WGCNA). Four of these genes encode transcription factors, including bHLH (Cla97C03G068160), MYB (Cla97C01G002440), HSP (Cla97C02G033390) and GRF (Cla97C02G042620), one key gene in the ABA pathway, SnRK2-4 (Cla97C10G186750), and the GP-2 gene (Cla97C05G105810), which is involved in the starch and sucrose metabolism pathway. Discussion In summary, our study provides a theoretical basis for elucidating the molecular mechanisms underlying drought resistance in watermelon plants and provides new genetic resources for the study of drought resistance in this crop.
Collapse
Affiliation(s)
- Sheng Chen
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kaiqin Zhong
- Fuzhou Institute of Vegetable Science, Fuzhou, China
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changhui Bai
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhuzheng Xue
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yufen Wu
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|