1
|
Olejnik A, Gornowicz-Porowska J, Jenerowicz D, Polańska A, Dobrzyńska M, Przysławski J, Sansone A, Ferreri C. Fatty Acids Profile and the Relevance of Membranes as the Target of Nutrition-Based Strategies in Atopic Dermatitis: A Narrative Review. Nutrients 2023; 15:3857. [PMID: 37686888 PMCID: PMC10489657 DOI: 10.3390/nu15173857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Recently, the prevalence of atopic dermatitis has increased drastically, especially in urban populations. This multifactorial skin disease is caused by complex interactions between various factors including genetics, environment, lifestyle, and diet. In eczema, apart from using an elimination diet, the adequate content of fatty acids from foods (saturated, monounsaturated, and polyunsaturated fatty acids) plays an important role as an immunomodulatory agent. Different aspects regarding atopic dermatitis include connections between lipid metabolism in atopic dermatitis, with the importance of the MUFA levels, as well as of the omega-6/omega-3 balance that affects the formation of long-chain (C20 eicosanoic and C22 docosaenoic) fatty acids and bioactive lipids from them (such as prostaglandins). Impair/repair of the functioning of epidermal barrier is influenced by these fatty acid levels. The purpose of this review is to drive attention to membrane fatty acid composition and its involvement as the target of fatty acid supplementation. The membrane-targeted strategy indicates the future direction for dermatological research regarding the use of nutritional synergies, in particular using red blood cell fatty acid profiles as a tool for checking the effects of supplementations to reach the target and influence the inflammatory/anti-inflammatory balance of lipid mediators. This knowledge gives the opportunity to develop personalized strategies to create a healthy balance by nutrition with an anti-inflammatory outcome in skin disorders.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Centre for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Rokietnicka 3, 60-806 Poznań, Poland
| | - Dorota Jenerowicz
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznań, Poland; (D.J.); (A.P.)
| | - Adriana Polańska
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznań, Poland; (D.J.); (A.P.)
| | - Małgorzata Dobrzyńska
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnica 3, 60-806 Poznań, Poland; (M.D.); (J.P.)
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnica 3, 60-806 Poznań, Poland; (M.D.); (J.P.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| |
Collapse
|
2
|
Dyall SC, Nessel I, Sharpe JA, Yip PK, Michael-Titus AT, Shah DK. Long-chain omega-3 polyunsaturated fatty acids are reduced in neonates with substantial brain injury undergoing therapeutic hypothermia after hypoxic-ischemic encephalopathy. Front Neurol 2023; 14:1231743. [PMID: 37712085 PMCID: PMC10498768 DOI: 10.3389/fneur.2023.1231743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality. Although therapeutic hypothermia is an effective treatment, substantial chronic neurological impairment often persists. The long-chain omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, offer therapeutic potential in the post-acute phase. To understand how PUFAs are affected by HIE and therapeutic hypothermia we quantified for the first time the effects of HIE and therapeutic hypothermia on blood PUFA levels and lipid peroxidation. In a cross-sectional approach, blood samples from newborns with moderate to severe HIE, who underwent therapeutic hypothermia (sHIE group) were compared to samples from newborns with mild HIE, who did not receive therapeutic hypothermia, and controls. The sHIE group was stratified into cerebral MRI predictive of good (n = 10), or poor outcomes (n = 10; nine developed cerebral palsy). Cell pellets were analyzed for fatty acid content, and plasma for lipid peroxidation products, thiobarbituric acid reactive substances and 4-hydroxy-2-nonenal. Omega-3 Index (% DHA + EPA) was similar between control and HIE groups; however, with therapeutic hypothermia there were significantly lower levels in poor vs. good prognosis sHIE groups. Estimated Δ-6 desaturase activity was significantly lower in sHIE compared to mild HIE and control groups, and linoleic acid significantly increased in the sHIE group with good prognosis. Reduced long-chain omega-3 PUFAs was associated with poor outcome after HIE and therapeutic hypothermia, potentially due to decreased biosynthesis and tissue incorporation. We speculate a potential role for long-chain omega-3 PUFA interventions in addition to existing treatments to improve neurologic outcomes in sHIE.
Collapse
Affiliation(s)
- Simon C. Dyall
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jennine A. Sharpe
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Ping K. Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Divyen K. Shah
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Kasim HH, Olga L, Snowden S, Cropp E, Koulman A, Beardsall K. A comparative analyses of lipid ratios representing desaturase enzyme activity between preterm and term infants within the first ten weeks of life. Lipids Health Dis 2023; 22:133. [PMID: 37612700 PMCID: PMC10463436 DOI: 10.1186/s12944-023-01862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/26/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Desaturase enzymes play a key role in several pathways including biosynthesis of poly- and mono- unsaturated fatty acids (PUFAs, MUFA). In preterm infants, desaturase enzyme activity (DA) may be a rate-limiting step in maintaining PUFAs levels during this critical developmental window and impact on long term metabolic health. The study tested the hypothesis that DA is altered in preterm infants compared to term infants in early life and may be a marker of risk or contribute to later alterations in metabolic health. METHODS Lipidomic analyses were conducted using blood samples from two established UK-based cohorts, involving very preterm (n = 105) and term (n = 259) infants. Blood samples were taken from term infants at birth, two and six weeks and from preterm infants when established on enteral feeds and at term corrected age. DA of the 2 groups of infants were estimated indirectly from product/precursor lipids ratios of phosphatidylcholine (PC) and triglycerides (TG) species and reported according to their postmenstrual and postnatal ages. RESULTS There were changes in lipid ratios representing desaturase enzyme activity in preterm infants in the first weeks of life with higher delta 6 desaturases (D6D) triglyceride (TG) indices but significantly lower delta 9 desaturase (D9D) and D6D(PC) indices. In comparison to term infants, preterm have lower delta 5 desaturase (D5D) but higher D6D indices at all postnatal ages. Although point levels of desaturase indices were different, trajectories of changes in these indices over time were similar in preterm and term infants. CONCLUSIONS This study findings suggest the patterns of desaturase indices in preterm infants differ from that of term infants but their trajectories of change in the first 10 weeks of life were similar. These differences of DA if they persist in later life could contribute to the mechanism of diseases in preterm adulthood and warrant further investigations.
Collapse
Affiliation(s)
- Hanis Hidayu Kasim
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Laurentya Olga
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Stuart Snowden
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Eliza Cropp
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Kathryn Beardsall
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK.
- Neonatal Unit, University of Cambridge Addenbrookes Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
4
|
Küster A, Croyal M, Moyon T, Darmaun D, Ouguerram K, Ferchaud-Roucher V. Characterization of lipoproteins and associated lipidome in very preterm infants: a pilot study. Pediatr Res 2023; 93:938-947. [PMID: 35739258 DOI: 10.1038/s41390-022-02159-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm birth is associated with higher risks of suboptimal neurodevelopment and cardiometabolic disease later in life. Altered maternal-fetal lipid supply could play a role in such risks. Our hypothesis was that very preterm infants born with very low birth weight (VLBW) have altered lipidome and apolipoprotein profiles, compared with term infants. METHODS Seven mothers of VLBW infants born at <32 GA and 8 full-term mother-infant dyads were included. Cholesterol and triglycerides in lipoproteins were determined in maternal plasma and in the two blood vessels of the umbilical cord (vein (UV) and artery (UA)) following FPLC isolation. Apolipoprotein concentrations in lipoproteins and plasma lipidomic analysis were performed by LC-MS/MS. RESULTS We found higher cholesterol and VLDL-cholesterol in UV and UA and lower apolipoprotein A-I in HDL2 in UV in preterm neonates. Phosphatidylcholine (PC) containing saturated and monounsaturated fatty acids and specific sphingomyelin species were increased in UV and UA, whereas PC containing docosahexaenoic acid (DHA) was reduced in UV of VLBW neonates. CONCLUSIONS Lower DHA-PC suggests a lower DHA bioavailability and may contribute to the impaired neurodevelopment. Altered HDL-2, VLDL, and sphingomyelin profile reflect an atherogenic risk and increased metabolic risk at adulthood in infants born prematurely. IMPACT Lower ApoA-I in HDL2, and increased specific sphingomyelin and phosphatidylcholine containing saturated and monounsaturated fatty acid could explain the accumulation of cholesterol in umbilical vein in VLBW preterm neonates. Decreased phosphatidylcholine containing DHA suggest a reduced DHA availability for brain development in VLBW preterm infants. Characterization of alterations in fetal lipid plasma and lipoprotein profiles may help to explain at least in part the causes of the elevated cardiovascular risk known in people born prematurely and may suggest that a targeted nutritional strategy based on the composition of fatty acids carried by phosphatidylcholine may be promising in infants born very early.
Collapse
Affiliation(s)
- Alice Küster
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
- Division of Inborn Errors of Metabolism and Neurometabolism, CHU Nantes, INSERM, Centre d'Investigation Clinique, 44000, Nantes, France
| | - Mikael Croyal
- Nantes Université, CNRS, INSERM, l'institut du Thorax, 44000, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Thomas Moyon
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | - Dominique Darmaun
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | - Khadija Ouguerram
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | | |
Collapse
|
5
|
Matsumoto A, Kawabata T, Kagawa Y, Shoji K, Kimura F, Miyazawa T, Tatsuta N, Arima T, Yaegashi N, Nakai K. Associations of umbilical cord fatty acid profiles and desaturase enzyme indices with birth weight for gestational age in Japanese infants. Prostaglandins Leukot Essent Fatty Acids 2021; 165:102233. [PMID: 33387849 DOI: 10.1016/j.plefa.2020.102233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) required for infant development are produced by Δ6 desaturase (D6D) and Δ5 desaturase (D5D). The D6D index and D5D index are calculated based on their respective precursor/product ratios. The D5D and D6D indices are related to obesity and lifestyle-related diseases. The aim of the present study was to examine the associations of umbilical cord fatty acid profiles, D6D index, and D5D index in appropriate for gestational age (AGA), small for gestational age (SGA), and large for gestational age (LGA) infants. This was a nested case-control study, and the relationship between case and control maternal blood and umbilical cord blood fatty acid compositions was examined. Cases were small for gestational age (SGA; n = 55) and large for gestational age (LGA; n = 149) infants, whereas controls were appropriate for gestational age (AGA; n = 204) infants. Fatty acid profiles in maternal blood and umbilical cord plasma were analyzed by gas-liquid chromatography. The D6D index was calculated as dihomo-γ-linolenic acid (DGLA 20: 3 n-6) / linoleic acid (18: 2 n - 6), and the D5D index was calculated as arachidonic acid (20: 4 n - 6) / DGLA (20: 3 n - 6). Statistical analysis of umbilical cord blood fatty acids was performed with multiple comparisons. SGA infants showed high umbilical cord values for α-linolenic acid and DHA and lower values for DGLA compared to AGA infants. SGA infants showed a higher D5D index but a lower D6D index than AGA infants. LGA infants showed high values for α-linolenic acid and DGLA and lower values for arachidonic acid than AGA infants. LGA infants showed a high D6D index and a low D5D index relative to AGA infants. No significant differences in maternal blood fatty acid profiles, the D6D index, and D5D index desaturase activities were found among the three groups. There were differences in umbilical cord fatty acid profiles and D6D and D5D indices among AGA, SGA, and LGA infants, but further study is needed.
Collapse
Affiliation(s)
- Azusa Matsumoto
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan.
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Fumiko Kimura
- Faculty of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori, Miyagi 981-1295, Japan; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Nozomi Tatsuta
- Department of Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kunihiko Nakai
- Department of Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
6
|
Yakah W, Ramiro-Cortijo D, Singh P, Brown J, Stoll B, Kulkarni M, Oosterloo BC, Burrin D, Maddipati KR, Fichorova RN, Freedman SD, Martin CR. Parenteral Fish-Oil Containing Lipid Emulsions Limit Initial Lipopolysaccharide-Induced Host Immune Responses in Preterm Pigs. Nutrients 2021; 13:205. [PMID: 33445698 PMCID: PMC7828127 DOI: 10.3390/nu13010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Multicomponent lipid emulsions are available for critical care of preterm infants. We sought to determine the impact of different lipid emulsions on early priming of the host and its response to an acute stimulus. Pigs delivered 7d preterm (n = 59) were randomized to receive different lipid emulsions for 11 days: 100% soybean oil (SO), mixed oil emulsion (SO, medium chain olive oil and fish oil) including 15% fish oil (MO15), or 100% fish oil (FO100). On day 11, pigs received an 8-h continuous intravenous infusion of either lipopolysaccharide (LPS-lyophilized Escherichia coli) or saline. Plasma was collected for fatty acid, oxylipin, metabolomic, and cytokine analyses. At day 11, plasma omega-3 fatty acid levels in the FO100 groups showed the highest increase in eicosapentaenoic acid, EPA (0.1 ± 0.0 to 9.7 ± 1.9, p < 0.001), docosahexaenoic acid, DHA (day 0 = 2.5 ± 0.7 to 13.6 ± 2.9, p < 0.001), EPA and DHA-derived oxylipins, and sphingomyelin metabolites. In the SO group, levels of cytokine IL1β increased at the first hour of LPS infusion (296.6 ± 308 pg/mL) but was undetectable in MO15, FO100, or in the animals receiving saline instead of LPS. Pigs in the SO group showed a significant increase in arachidonic acid (AA)-derived prostaglandins and thromboxanes in the first hour (p < 0.05). No significant changes in oxylipins were observed with either fish-oil containing group during LPS infusion. Host priming with soybean oil in the early postnatal period preserves a higher AA:DHA ratio and the ability to acutely respond to an external stimulus. In contrast, fish-oil containing lipid emulsions increase DHA, exacerbate a deficit in AA, and limit the initial LPS-induced inflammatory responses in preterm pigs.
Collapse
Affiliation(s)
- William Yakah
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - David Ramiro-Cortijo
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Joanne Brown
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Barbara Stoll
- United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Madhulika Kulkarni
- Section Neonatology, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Berthe C Oosterloo
- United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Doug Burrin
- United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, 42 W Warren Avenue, Detroit, MI 48202, USA
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Steven D Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Camilia R Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
7
|
Fuwa K, Nagano N, Kitamura Y, Iwata F, Okada T, Morioka I. Umbilical cord blood stearoyl-CoA desaturase index and lipoprotein lipase mass level in small-for-gestational age newborns. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102028. [PMID: 31744651 DOI: 10.1016/j.plefa.2019.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/22/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
We previously reported that triglyceride (TG) levels in small-for-gestational age (SGA) newborns were significantly higher than those in appropriate-for-gestational age (AGA) newborns. Stearoyl-CoA desaturase (SCD) activity is required for TG synthesis, while lipoprotein lipase mass (LPLm) facilitates TG clearance. The purpose of this study is to reveal whether SCD activity or LPLm is the cause of high TG levels in SGA newborns. Fifty-five newborns were classified as AGA (n = 42) and SGA (n = 13). Serum LPLm, TG and fatty acids in umbilical cord blood were analyzed. Then, [16:1 (n-7)]/ [16:0] and [18:1 (n-9)]/ [18:0] were calculated as SCD16 and SCD18 activities, respectively. The SGA group showed significantly higher TG levels and significantly lower LPLm levels than the AGA group. However, SCD16 and 18 activities were lower in SGA newborns than in AGA newborns. In conclusion, LPLm, rather than SCD activity may be involved in the increased TG levels in SGA newborns.
Collapse
Affiliation(s)
- Kazumasa Fuwa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi 30-1 Itabashi, Tokyo 173-8610, Japan
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi 30-1 Itabashi, Tokyo 173-8610, Japan.
| | - Yohei Kitamura
- Wellness and Nutrition Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Japan
| | | | - Tomoo Okada
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi 30-1 Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
8
|
Yang S, Lin R, Si L, Li Z, Jian W, Yu Q, Jia Y. Cod-Liver Oil Improves Metabolic Indices and hs-CRP Levels in Gestational Diabetes Mellitus Patients: A Double-Blind Randomized Controlled Trial. J Diabetes Res 2019; 2019:7074042. [PMID: 31956660 PMCID: PMC6949680 DOI: 10.1155/2019/7074042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the effects of cod-liver oil on metabolic status and high-sensitivity C-reactive protein (hs-CRP) in patients with gestational diabetes mellitus (GDM). METHODS This study was a randomized, double-blinded, placebo-controlled trial with the allocation ratio of 1 : 1. The contents of EPA and DHA in cod-liver oil were measured using a gas chromatograph. A total of 550 GDM patients were randomly divided into the intervention group (cod-liver oil) and the control group (placebo, mineral oil), and both groups were given regular dietary care. Glycosylated hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), lipid profiles, homeostatic model assessment insulin resistance (HOMA-IR), and hs-CRP were measured. Primary outcomes were different in HbA1c, FPG, 2hPG, and HOMA-IR between the two groups after 4-week randomization. Secondary outcomes were the blood glucose levels and perinatal complications (pregnancy-induced hypertension, polyhydramnios, premature delivery, postpartum hemorrhage, postpartum infection, premature rupture of membranes, and cesarean section) between the two groups before and after 12-16 weeks of cod-liver oil intervention from middle pregnancy to late pregnancy. RESULTS EPA and DHA were the main components of cod-liver oil with 76 mg/mL and 150 mg/mL, respectively. There was no significant difference for primary outcomes in the levels of HbA1c, FPG, 2hPG, HOMA-IR, and lipid profiles between the two groups (P > 0.05). For the secondary outcomes, the levels of HbA1c, FPG, 2hPG, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol ratio (LDL-C), HOMA-IR, and hs-CRP in the intervention group were significantly lower than those in the control group (P < 0.05). The incidence of perinatal complications in the intervention group was lower than that in the control group too (P < 0.05). CONCLUSIONS Cod-liver oil consumption effectively reduced the levels of blood glucose, lipid levels, hs-CRP, and HOMA-IR and the incidence of perinatal complications.
Collapse
Affiliation(s)
- Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ruixin Lin
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Si
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Li
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenwen Jian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qing Yu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Jia
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|