1
|
Yang S, Wang Y, Huang S, Zhang T, Xu P, Jiang C, Ye C. Temporal oscillation of phospholipids promotes metabolic efficiency. Nat Chem Biol 2025:10.1038/s41589-025-01885-5. [PMID: 40229581 DOI: 10.1038/s41589-025-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Biological timing is a fundamental aspect of life, facilitating efficient resource use and adaptation to environmental changes. In this study, we unveil robust temporal oscillations in phospholipid abundance as a function of the yeast metabolic cycle (YMC). These fluctuations, occurring throughout the cell division cycle, demonstrate a systematic segregation of various phospholipid species over time. Such segregation corresponds logically with their physical properties, generating entropic forces for membrane dynamics and biogenesis. Within the YMC, the temporal oscillations in phosphatidylethanolamine and phosphatidylcholine levels require biosynthesis from triacylglycerol as a crucial lipid reservoir, with phosphatidylinositol and phosphatidylserine synthesized primarily de novo. The orchestrated regulation of gene expression in biosynthesis pathways ensures precise temporal control of phospholipid dynamics, ultimately promoting metabolic efficiency.
Collapse
Affiliation(s)
- Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sisi Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tong Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
GARAB G, BÖDE K, DLOUHÝ O, NÁSZTOR Z, KARLICKÝ V, DÉR A, ŠPUNDA V. Lipid polymorphism of plant thylakoid membranes. The dynamic exchange model - facts and hypotheses. PHYSIOLOGIA PLANTARUM 2025; 177:e70230. [PMID: 40251902 PMCID: PMC12008737 DOI: 10.1111/ppl.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
The light reactions of oxygenic photosynthesis are performed by protein complexes embedded in the lipid bilayer of thylakoid membranes (TMs). Bilayers provide optimal conditions for the build-up of the proton motive force (pmf) and ATP synthesis. However, functional plant TMs, besides the bilayer, contain an inverted hexagonal (HII) phase and isotropic phases, a lipid polymorphism due to their major, non-bilayer lipid species, monogalactosyldiacylglycerol (MGDG). The lipid phase behavior of TMs is explained within the framework of the Dynamic Exchange Model (DEM), an extension of the fluid-mosaic model. DEM portrays the bilayer phase as inclusions between photosynthetic supercomplexes - characterized by compromised membrane impermeability and restricted sizes inflicted by the segregation propensity of lipid molecules, safe-guarding the high protein density of TMs. Isotropic phases mediate membrane fusions and are associated with the lumenal lipocalin-like enzyme, violaxanthin de-epoxidase. Stromal-side proteins surrounded by lipids give rise to the HII phase. These features instigate experimentally testable hypotheses: (i) non-bilayer phases mediate functional sub-compartmentalization of plant chloroplasts - a quasi-autonomous energization and ATP synthesis of each granum-stroma TM assembly; and (ii) the generation and utilization of pmf depend on hydrated protein networks and proton-conducting pathways along membrane surfaces - rather than on strict impermeability of the bilayer.
Collapse
Affiliation(s)
- Győző GARAB
- Department of Physics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Kinga BÖDE
- Department of Physics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Ondřej DLOUHÝ
- Department of Physics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Zoltán NÁSZTOR
- Institute of BiophysicsHUN‐REN Biological Research CentreSzegedHungary
| | - Václav KARLICKÝ
- Department of Physics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - András DÉR
- Institute of BiophysicsHUN‐REN Biological Research CentreSzegedHungary
| | - Vladimír ŠPUNDA
- Department of Physics, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| |
Collapse
|
3
|
Boban A, Vrhovsek U, Masuero D, Milanović V, Budić-Leto I. Effect of Indigenous Non- Saccharomyces Yeasts on Lipid Compositions of Maraština Wine. Foods 2025; 14:269. [PMID: 39856934 PMCID: PMC11765114 DOI: 10.3390/foods14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study is the first to investigate the impact of indigenous non-Saccharomyces yeasts, including Hypopichia pseudoburtonii, Metschnikowia sinensis/shanxiensis, Metschnikowia chrysoperlae, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, Hanseniaspora pseudoguilliermondii, Pichia kluyveri, and Starmerella apicola on the lipid composition of sterile Maraština grape juice and wines using the UHPLC-MS/MS method. Yeasts were tested in monoculture and sequential fermentations alongside commercial Saccharomyces cerevisiae. Indigenous non-Saccharomyces yeasts showed the potential to improve fermentation performance and enable the development of new wine styles through the biosynthesis of an unsaturated fatty acid pathway, which was identified as the most significant pathway. In monoculture fermentations, L. thermotolerans, H. uvarum, H. guilliermondii, H. pseudoguilliermondii, and P. kluyveri significantly reduced lignoceric acid, potentially influencing wine aroma through the formation of esters and higher alcohols. Hyp. pseudoburtonii, M. chrysoperlae, M. pulcherrima, P. kluyveri, and S. apicola increased the demand for lipids, such as stearic acid, which may help preserve membrane permeability by integrating into the membrane in response to ethanol shock. The most significant impact on free fatty esters was observed in fermentations with H. pseudoguilliermondii. Furthermore, L. thermotolerans in sequential fermentations significantly reduced arachidic, stearic, and palmitic acid. P. kluyveri reduced the content of erucic and linoleic acid.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| |
Collapse
|
4
|
Cuenca VE, Pedroni VI, Morini MA. Role of DHA in a Physicochemical Study of a Model Membrane of Grey Matter. MEMBRANES 2024; 14:256. [PMID: 39728706 DOI: 10.3390/membranes14120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system's compressibility decreases, and the membrane's elasticity increases, as evidenced by the reduction in the bulk modulus. These results could be interpreted in light of the emerging model of lipid rafts, in which esterified DHA infiltrates and remodels their architecture. We contend that the results obtained may serve as a bridge between biophysics and cellular biology.
Collapse
Affiliation(s)
- Victor E Cuenca
- Laboratory of Physical-Chemistry, Department of Chemistry, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina
| | - Viviana I Pedroni
- Laboratory of Physical-Chemistry, Department of Chemistry, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina
- INQUISUR-CONICET, Bahía Blanca 8000, Argentina
| | - Marcela A Morini
- Laboratory of Physical-Chemistry, Department of Chemistry, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina
- INQUISUR-CONICET, Bahía Blanca 8000, Argentina
| |
Collapse
|
5
|
Jain M, Matysiak S. Dual Role of Anionic Lipids in Amyloid Aggregation. J Phys Chem B 2024; 128:10831-10840. [PMID: 39450869 DOI: 10.1021/acs.jpcb.4c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's, affect millions worldwide and share a common feature: the aggregation of intrinsically disordered proteins into toxic oligomers that interact with cell membranes. In Alzheimer's disease (AD), amyloid-beta (Aβ) peptides accumulate and bind to plasma membranes, potentially disrupting cellular function. The complex interplay between amyloidogenic peptides and lipid membranes, particularly the role of anionic lipids, is crucial in disease pathogenesis but challenging to characterize experimentally. The literature presents conflicting results on the influence of anionic lipids on peptide aggregation kinetics, highlighting a knowledge gap. To address this, we used coarse-grained molecular dynamics (CG-MD) simulations to study interactions between a model amyloidogenic peptide, amyloid-β's K16LVFFAE22 fragment (Aβ16-22), and mixed lipid bilayers. We used phosphatidylserine (PS) and phosphatidylcholine (PC) as representative anionic and zwitterionic lipids, respectively, examining the mixed bilayer compositions of 0% PS-100% PC, 10% PS-90% PC, and 30% PS-70% PC. Our simulations revealed that membranes enriched in anionic lipids enhance peptide adsorption and interaction kinetics. The aggregation dynamics was modulated by two competing factors: increased local peptide concentration near negatively charged membranes, which promoted aggregation, and peptide-lipid interactions, which slowed it down. Higher percentages of anionic lipids led to smaller and more ordered aggregates and enhanced lipid demixing, leading to the formation of PS clusters. These findings contribute to understanding membrane-mediated peptide aggregation in neurodegenerative disorders, potentially guiding new therapeutic strategies targeting the early stages of protein aggregation in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Meenal Jain
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Zhukov A, Vereshchagin M. Polar Glycerolipids and Membrane Lipid Rafts. Int J Mol Sci 2024; 25:8325. [PMID: 39125896 PMCID: PMC11312961 DOI: 10.3390/ijms25158325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A new consideration of the processes of formation of lipid phases Lo and Ld and lipid rafts is proposed, taking into account the division of each of the glycerophospholipids into several groups. Generally accepted three-component schemes for modeling the membrane structure are critically considered. A four-component scheme is proposed, which is designed to more accurately assume the composition of lipids in the resulting Lo and Ld phases. The role of the polar head groups of phospholipids and, in particular, phosphatidylethanolamine is considered. The structure of membrane rafts and the possible absence of a clear boundary between the Lo and Ld phases are discussed.
Collapse
Affiliation(s)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia;
| |
Collapse
|
7
|
Abstract
Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.
Collapse
Affiliation(s)
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany;
| |
Collapse
|
8
|
Fukunaga Y, Zandieh M, Liu Y, Liu J. Salt-Induced Adsorption and Rupture of Liposomes on Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16395-16403. [PMID: 37934056 DOI: 10.1021/acs.langmuir.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Microplastics have attracted considerable attention because of concerns regarding their environmental risks to living systems. The interaction between the lipid bilayer and microplastics is important for examining the potential harm to biological membranes in the presence of microplastics. In addition, membrane coatings may change the surface and colloidal properties of microplastics. Herein, phosphatidylcholine (PC) lipids, whose headgroup is most common in cell membranes, were used as model lipids. The adsorption and rupture of PC liposomes on microplastics were systematically studied. We found that divalent metal ions, such as Mg2+ and Ca2+, facilitate liposome adsorption onto microplastics and induce 40-55% liposome leakage at 2.5 mM. In contrast, to achieve a similar effect, 300 mM Na+ was required. Adsorption and rupture followed the same metal concentration requirements, suggesting that liposome adsorption was the rate-limiting step. After adsorption with liposomes, microplastics became more hydrophilic and were better dispersed in water. A similar behavior was observed for all five types of tested microplastics, including PP, PE, PVC, PET, and PS. Leakage also occurred in ocean water. This study provides fundamental insights into the interactions between liposomes and microplastics and has implications for the colloidal and transport properties of microplastics.
Collapse
Affiliation(s)
- Yu Fukunaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Ledesma-Durán A, Juárez-Valencia LH. Diffusion coefficients and MSD measurements on curved membranes and porous media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:70. [PMID: 37578670 DOI: 10.1140/epje/s10189-023-00329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
We study some geometric aspects that influence the transport properties of particles that diffuse on curved surfaces. We compare different approaches to surface diffusion based on the Laplace-Beltrami operator adapted to predict concentration along entire membranes, confined subdomains along surfaces, or within porous media. Our goal is to summarize, firstly, how diffusion in these systems results in different types of diffusion coefficients and mean square displacement measurements, and secondly, how these two factors are affected by the concavity of the surface, the shape of the possible barriers or obstacles that form the available domains, the sinuosity, tortuosity, and constrictions of the trajectories and even how the observation plane affects the measurements of the diffusion. In addition to presenting a critical and organized comparison between different notions of MSD, in this review, we test the correspondence between theoretical predictions and numerical simulations by performing finite element simulations and illustrate some situations where diffusion theory can be applied. We briefly reviewed computational schemes for understanding surface diffusion and finally, discussed how this work contributes to understanding the role of surface diffusion transport properties in porous media and their relationship to other transport processes.
Collapse
Affiliation(s)
- Aldo Ledesma-Durán
- Departmento de Matemáticas, Universidad Autónoma Metropolitana, CDMX, Mexico
| | | |
Collapse
|
10
|
Zhukov A, Popov V. Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling. Int J Mol Sci 2023; 24:11226. [PMID: 37446404 DOI: 10.3390/ijms241311226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This paper deals with the problems encountered in the study of eukaryotic cell membranes. A discussion on the structure and composition of membranes, lateral heterogeneity of membranes, lipid raft formation, and involvement of actin and cytoskeleton networks in the maintenance of membrane structure is included. Modern methods for the study of membranes and their constituent domains are discussed. Various simplified models of biomembranes and lipid rafts are presented. Computer modelling is considered as one of the most important methods. This is stated that from the study of the plasma membrane structure, it is desirable to proceed to the diverse membranes of all organelles of the cell. The qualitative composition and molar content of individual classes of polar lipids, free sterols and proteins in each of these membranes must be considered. A program to create an open access electronic database including results obtained from the membrane modelling of individual cell organelles and the key sites of the membranes, as well as models of individual molecules composing the membranes, has been proposed.
Collapse
Affiliation(s)
- Anatoly Zhukov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Popov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
11
|
Yu K, Jiang Y, Chen Y, Hu X, Chang J, Hartland GV, Wang GP. Compressible viscoelasticity of cell membranes determined by gigahertz-frequency acoustic vibrations. PHOTOACOUSTICS 2023; 31:100494. [PMID: 37131996 PMCID: PMC10149280 DOI: 10.1016/j.pacs.2023.100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. 5.7 + 2.4 / - 2.7 ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis.
Collapse
Affiliation(s)
- Kuai Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiqi Jiang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yungao Chen
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gregory V. Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Corresponding author.
| |
Collapse
|
12
|
Corucci G, Batchu KC, Luchini A, Santamaria A, Frewein MPK, Laux V, Haertlein M, Yamaryo-Botté Y, Botté CY, Sheridan T, Tully M, Maestro A, Martel A, Porcar L, Fragneto G. Developing advanced models of biological membranes with hydrogenous and deuterated natural glycerophospholipid mixtures. J Colloid Interface Sci 2023; 645:870-881. [PMID: 37178564 DOI: 10.1016/j.jcis.2023.04.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Cellular membranes are complex systems that consist of hundreds of different lipid species. Their investigation often relies on simple bilayer models including few synthetic lipid species. Glycerophospholipids (GPLs) extracted from cells are a valuable resource to produce advanced models of biological membranes. Here, we present the optimisation of a method previously reported by our team for the extraction and purification of various GPL mixtures from Pichia pastoris. The implementation of an additional purification step by High Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) enabled for a better separation of the GPL mixtures from the neutral lipid fraction that includes sterols, and also allowed for the GPLs to be purified according to their different polar headgroups. Pure GPL mixtures at significantly high yields were produced through this approach. For this study, we utilised phoshatidylcholine (PC), phosphatidylserine (PS) and phosphatidylglycerol (PG) mixtures. These exhibit a single composition of the polar head, i.e., PC, PS or PG, but contain several molecular species consisting of acyl chains of varying length and unsaturation, which were determined by Gas Chromatography (GC). The lipid mixtures were produced both in their hydrogenous (H) and deuterated (D) versions and were used to form lipid bilayers both on solid substrates and as vesicles in solution. The supported lipid bilayers were characterised by quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR), whereas the vesicles by small angle X-ray (SAXS) and neutron scattering (SANS). Our results show that despite differences in the acyl chain composition, the hydrogenous and deuterated extracts produced bilayers with very comparable structures, which makes them valuable to design experiments involving selective deuteration with techniques such as NMR, neutron scattering or infrared spectroscopy.
Collapse
Affiliation(s)
- Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | | | - Alessandra Luchini
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden; Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Andreas Santamaria
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Moritz Paul Karl Frewein
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
| | - Valèrie Laux
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team & GEMELI Lipidomics Platform, Institute for Advanced Biosciences, CNRS UMR5309, INSERM (-National Institute for Health and Medical Research) U1209, Université Grenoble Alpes, 38000 Grenoble, France
| | - Cyrille Y Botté
- ApicoLipid Team & GEMELI Lipidomics Platform, Institute for Advanced Biosciences, CNRS UMR5309, INSERM (-National Institute for Health and Medical Research) U1209, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Sheridan
- University College Dublin, Belfield, Dublin 4, Dublin, Ireland; AbbVie, Clonshaugh, Dublin 7, Co. Dublin, Ireland
| | - Mark Tully
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France; European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden.
| |
Collapse
|
13
|
Nicolson GL, Ferreira de Mattos G. The Fluid-Mosaic model of cell membranes: A brief introduction, historical features, some general principles, and its adaptation to current information. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184135. [PMID: 36746313 DOI: 10.1016/j.bbamem.2023.184135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
The Fluid-Mosaic Membrane (FMM) model was originally proposed as a general, nanometer-scale representation of cell membranes (Singer and Nicolson, 1972). The FMM model was based on some general principles, such as thermodynamic considerations, intercalation of globular proteins into a lipid bilayer, independent protein and lipid dynamics, cooperativity and other characteristics. Other models had trimolecular structures or membrane globular lipoprotein units. These latter models were flawed, because they did not allow autonomous lipids, membrane domains or discrete lateral dynamics. The FMM model was also consistent with membrane asymmetry, cis- and trans-membrane linkages and associations of membrane components into multi-molecular complexes and domains. It has remained useful for explaining the basic organizational principles and properties of various biological membranes. New information has been added, such as membrane-associated cytoskeletal assemblies, extracellular matrix interactions, transmembrane controls, specialized lipid-protein domains that differ in compositions, rotational and lateral mobilities, lifetimes, functions, and other characteristics. The presence of dense, structured membrane domains has reduced significantly the extent of fluid-lipid membrane areas, and the FMM model is now considered to be more mosaic and dense than the original proposal.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Structural Entities Associated with Different Lipid Phases of Plant Thylakoid Membranes—Selective Susceptibilities to Different Lipases and Proteases. Cells 2022; 11:cells11172681. [PMID: 36078087 PMCID: PMC9454902 DOI: 10.3390/cells11172681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that plant thylakoid membranes (TMs), in addition to a bilayer, contain two isotropic lipid phases and an inverted hexagonal (HII) phase. To elucidate the origin of non-bilayer lipid phases, we recorded the 31P-NMR spectra of isolated spinach plastoglobuli and TMs and tested their susceptibilities to lipases and proteases; the structural and functional characteristics of TMs were monitored using biophysical techniques and CN-PAGE. Phospholipase-A1 gradually destroyed all 31P-NMR-detectable lipid phases of isolated TMs, but the weak signal of isolated plastoglobuli was not affected. Parallel with the destabilization of their lamellar phase, TMs lost their impermeability; other effects, mainly on Photosystem-II, lagged behind the destruction of the original phases. Wheat-germ lipase selectively eliminated the isotropic phases but exerted little or no effect on the structural and functional parameters of TMs—indicating that the isotropic phases are located outside the protein-rich regions and might be involved in membrane fusion. Trypsin and Proteinase K selectively suppressed the HII phase—suggesting that a large fraction of TM lipids encapsulate stroma-side proteins or polypeptides. We conclude that—in line with the Dynamic Exchange Model—the non-bilayer lipid phases of TMs are found in subdomains separated from but interconnected with the bilayer accommodating the main components of the photosynthetic machinery.
Collapse
|
15
|
Scheidegger L, Stricker L, Beltramo PJ, Vermant J. Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. J Phys Chem B 2022; 126:5842-5854. [PMID: 35895895 PMCID: PMC9377339 DOI: 10.1021/acs.jpcb.2c02862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The formation of domains in multicomponent lipid mixtures has been suggested to play a role in moderating signal transduction in cells. Understanding how domain size may be regulated by both hybrid lipid molecules and impurities is important for understanding real biological processes; at the same time, developing model systems where domain size can be regulated is crucial to enable systematic studies of domain formation kinetics and thermodynamics. Here, we perform a model study of the effects of oil molecules, which swell the bilayer, and line-active hybrid phospholipids using a thermally induced liquid-solid phase separation in planar, free-standing lipid bilayers consisting of DOPC and DPPC (1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, respectively). The experiments show that the kinetics of domain growth are significantly affected by the type and molecular structure of the oil (squalene, hexadecane, or decane), with the main contributing factors being the degree of swelling of the bilayer and the changes in line tension induced by the different oils, with smaller domains resulting from systems with smaller values of the line tension. POPC (1-palmitoyl-sn-2-oleoyl-glycero-3-phosphocholine), on the other hand, acts as a line-active hybrid lipid, reducing the domain size when added in small amounts and slowing down domain coarsening. Finally, we show that despite the regulation of domain size by both methods, the phase transition temperature is influenced by the presence of oil molecules but not significantly by the presence of hybrid lipids. Overall, our results show how to regulate domain size in binary membrane model systems, over a wide range of length scales, by incorporating oil molecules and hybrid lipids.
Collapse
Affiliation(s)
- Laura Scheidegger
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Laura Stricker
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Jan Vermant
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
El-Ansary A, Al-Onazi M, Alhowikan AM, Alghamdi MA, Al-Ayadhi L. Assessment of a combination of plasma anti-histone autoantibodies and PLA2/PE ratio as potential biomarkers to clinically predict autism spectrum disorders. Sci Rep 2022; 12:13359. [PMID: 35922658 PMCID: PMC9349315 DOI: 10.1038/s41598-022-17533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficiencies in social interaction and repetitive behaviors. Multiple studies have reported abnormal cell membrane composition and autoimmunity as known mechanisms associated with the etiopathogenesis of ASD. In this study, multiple regression and combined receiver operating characteristic (ROC) curve as statistic tools were done to clarify the relationship between phospholipase A2 and phosphatidylethanolamine (PE) ratio (PLA2/PE) as marker of lipid metabolism and membrane fluidity, and antihistone-autoantibodies as marker of autoimmunity in the etiopathology of ASD. Furthermore, the study intended to define the linear combination that maximizes the partial area under an ROC curve for a panel of markers. Forty five children with ASD and forty age- and sex-matched controls were enrolled in the study. Using ELISA, the levels of antihistone-autoantibodies, and PLA2 were measured in the plasma of both groups. PE was measured using HPLC. Statistical analyses using ROC curves and multiple and logistic regression models were performed. A notable rise in the area under the curve was detected using combined ROC curve models. Additionally, higher specificity and sensitivity of the combined markers were documented. The present study indicates that the measurement of the predictive value of selected biomarkers related to autoimmunity and lipid metabolism in children with ASD using a ROC curve analysis should lead to a better understanding of the pathophysiological mechanism of ASD and its link with metabolism. This information may enable the early diagnosis and intervention.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O Box 22452, Riyadh, 11495, Saudi Arabia.
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia.
| | - Mona Al-Onazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mashael A Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Fifty Years of the Fluid–Mosaic Model of Biomembrane Structure and Organization and Its Importance in Biomedicine with Particular Emphasis on Membrane Lipid Replacement. Biomedicines 2022; 10:biomedicines10071711. [PMID: 35885016 PMCID: PMC9313417 DOI: 10.3390/biomedicines10071711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/29/2022] Open
Abstract
The Fluid–Mosaic Model has been the accepted general or basic model for biomembrane structure and organization for the last 50 years. In order to establish a basic model for biomembranes, some general principles had to be established, such as thermodynamic assumptions, various molecular interactions, component dynamics, macromolecular organization and other features. Previous researchers placed most membrane proteins on the exterior and interior surfaces of lipid bilayers to form trimolecular structures or as lipoprotein units arranged as modular sheets. Such membrane models were structurally and thermodynamically unsound and did not allow independent lipid and protein lateral movements. The Fluid–Mosaic Membrane Model was the only model that accounted for these and other characteristics, such as membrane asymmetry, variable lateral movements of membrane components, cis- and transmembrane linkages and dynamic associations of membrane components into multimolecular complexes. The original version of the Fluid–Mosaic Membrane Model was never proposed as the ultimate molecular description of all biomembranes, but it did provide a basic framework for nanometer-scale biomembrane organization and dynamics. Because this model was based on available 1960s-era data, it could not explain all of the properties of various biomembranes discovered in subsequent years. However, the fundamental organizational and dynamic aspects of this model remain relevant to this day. After the first generation of this model was published, additional data on various structures associated with membranes were included, resulting in the addition of membrane-associated cytoskeletal, extracellular matrix and other structures, specialized lipid–lipid and lipid–protein domains, and other configurations that can affect membrane dynamics. The presence of such specialized membrane domains has significantly reduced the extent of the fluid lipid membrane matrix as first proposed, and biomembranes are now considered to be less fluid and more mosaic with some fluid areas, rather than a fluid matrix with predominantly mobile components. However, the fluid–lipid matrix regions remain very important in biomembranes, especially those involved in the binding and release of membrane lipid vesicles and the uptake of various nutrients. Membrane phospholipids can associate spontaneously to form lipid structures and vesicles that can fuse with various cellular membranes to transport lipids and other nutrients into cells and organelles and expel damaged lipids and toxic hydrophobic molecules from cells and tissues. This process and the clinical use of membrane phospholipid supplements has important implications for chronic illnesses and the support of healthy mitochondria, plasma membranes and other cellular membrane structures.
Collapse
|
18
|
Zaytseva YV, Zaytseva IV, Surovtsev NV. Conformational state diagram of DOPC/DPPC d62/cholesterol mixtures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183869. [PMID: 35063400 DOI: 10.1016/j.bbamem.2022.183869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Raman spectra of aqueous suspensions of vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), deuterated 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPCd62), and cholesterol (Chol) were studied at room temperature to determine the conformational states of the phospholipid hydrocarbon chains. Deuteration of DPPCd62 allowed us to characterize the conformational states of DOPC and DPPCd62 independently. The parameters of Raman peaks, which are sensitive to the conformational order, were studied in a wide range of compositions. It was found that the DOPC molecules are conformationally disordered for all compositions. The conformational state of the DPPCd62 molecules changes with composition. Their conformational state is influenced by cholesterol-induced partial disordering and DOPC solvation, transforming the DPPC molecules into the disordered state. The conformational state diagram from the Raman experiment was compared with outcomes from the differential scanning calorimetry (DSC) experiment. The Raman spectra also revealed that the DPPC molecules coexist in the disordered and all-trans ordered states for the DOPC/DPPCd62/Chol mixtures except for the pure liquid-disordered phase.
Collapse
Affiliation(s)
- Yu V Zaytseva
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - I V Zaytseva
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
19
|
Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 2022; 86:101163. [DOI: 10.1016/j.plipres.2022.101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
20
|
Zaytseva YV, Surovtsev NV. Raman scattering in protonated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC): Indicators of conformational and lateral orders. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120583. [PMID: 34782267 DOI: 10.1016/j.saa.2021.120583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The use of deuterocarbons is an effective method in the Raman spectroscopy of multicomponent lipid materials and biological samples. Here, Raman spectra of hydrated multilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), its deuterated analog 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPCd62), and DPPC-DPPCd62 mixtures were studied in a wide temperature range to specify the Raman indicators of conformational and lateral orders. The temperature dependence of the 985 cm-1 line in the deuterated phospholipid unequivocally indicates that this line corresponds to the CC stretching vibrations of deuterated hydrocarbon chains in the all-trans conformation. It was also concluded that the ratio of Raman intensities at the maximum of the peak of the symmetric CD2 stretching and at a maximum near 2168 cm-1 reflects the conformational order of the hydrocarbon chain and can be used for an evaluation of the fraction of the all-trans sequences. The frequency of the symmetric CD2 stretching peak is sensitive to the phase state (gel or fluid) but has a low sensitivity to the partial conformational disordering within the gel phase. The Raman study of DPPC-DPPCd62 mixtures reveals that the lateral order contributes to the ratio of intensities of the antisymmetric and symmetric CH2 stretching peaks as a prefactor enhancing the effect of conformational ordering.
Collapse
Affiliation(s)
- Yu V Zaytseva
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
21
|
Duff AP, Cagnes M, Darwish TA, Krause-Heuer AM, Moir M, Recsei C, Rekas A, Russell RA, Wilde KL, Yepuri NR. Deuteration for biological SANS: Case studies, success and challenges in chemistry and biology. Methods Enzymol 2022; 677:85-126. [DOI: 10.1016/bs.mie.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Regulation and functions of membrane lipids: Insights from Caenorhabditis elegans. BBA ADVANCES 2022; 2:100043. [PMID: 37082601 PMCID: PMC10074978 DOI: 10.1016/j.bbadva.2022.100043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
The Caenorhabditis elegans plasma membrane is composed of glycerophospholipids and sphingolipids with a small cholesterol. The C. elegans obtain the majority of the membrane lipids by modifying fatty acids present in the bacterial diet. The metabolic pathways of membrane lipid biosynthesis are well conserved across the animal kingdom. In C. elegans CDP-DAG and Kennedy pathway produce glycerophospholipids. Meanwhile, the sphingolipids are synthesized through a different pathway. They have evolved remarkably diverse mechanisms to maintain membrane lipid homeostasis. For instance, the lipid bilayer stress operates to accomplish homeostasis during any perturbance in the lipid composition. Meanwhile, the PAQR-2/IGLR-2 complex works with FLD-1 to balance unsaturated to saturated fatty acids to maintain membrane fluidity. The loss of membrane lipid homeostasis is observed in many human genetic and metabolic disorders. Since C. elegans conserved such genes and pathways, it can be used as a model organism.
Collapse
|
23
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
24
|
Nicolson GL, Ferreira de Mattos G. A Brief Introduction to Some Aspects of the Fluid-Mosaic Model of Cell Membrane Structure and Its Importance in Membrane Lipid Replacement. MEMBRANES 2021; 11:947. [PMID: 34940448 PMCID: PMC8708848 DOI: 10.3390/membranes11120947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Early cell membrane models placed most proteins external to lipid bilayers in trimolecular structures or as modular lipoprotein units. These thermodynamically untenable structures did not allow lipid lateral movements independent of membrane proteins. The Fluid-Mosaic Membrane Model accounted for these and other properties, such as membrane asymmetry, variable lateral mobilities of membrane components and their associations with dynamic complexes. Integral membrane proteins can transform into globular structures that are intercalated to various degrees into a heterogeneous lipid bilayer matrix. This simplified version of cell membrane structure was never proposed as the ultimate biomembrane description, but it provided a basic nanometer scale framework for membrane organization. Subsequently, the structures associated with membranes were considered, including peripheral membrane proteins, and cytoskeletal and extracellular matrix components that restricted lateral mobility. In addition, lipid-lipid and lipid-protein membrane domains, essential for cellular signaling, were proposed and eventually discovered. The presence of specialized membrane domains significantly reduced the extent of the fluid lipid matrix, so membranes have become more mosaic with some fluid areas over time. However, the fluid regions of membranes are very important in lipid transport and exchange. Various lipid globules, droplets, vesicles and other membranes can fuse to incorporate new lipids or expel damaged lipids from membranes, or they can be internalized in endosomes that eventually fuse with other internal vesicles and membranes. They can also be externalized in a reverse process and released as extracellular vesicles and exosomes. In this Special Issue, the use of membrane phospholipids to modify cellular membranes in order to modulate clinically relevant host properties is considered.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| |
Collapse
|
25
|
Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. I. 31P-NMR Spectroscopy. Cells 2021; 10:cells10092354. [PMID: 34572003 PMCID: PMC8470346 DOI: 10.3390/cells10092354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Build-up of the energized state of thylakoid membranes and the synthesis of ATP are warranted by organizing their bulk lipids into a bilayer. However, the major lipid species of these membranes, monogalactosyldiacylglycerol, is a non-bilayer lipid. It has also been documented that fully functional thylakoid membranes, in addition to the bilayer, contain an inverted hexagonal (HII) phase and two isotropic phases. To shed light on the origin of these non-lamellar phases, we performed 31P-NMR spectroscopy experiments on sub-chloroplast particles of spinach: stacked, granum and unstacked, stroma thylakoid membranes. These membranes exhibited similar lipid polymorphism as the whole thylakoids. Saturation transfer experiments, applying saturating pulses at characteristic frequencies at 5 °C, provided evidence for distinct lipid phases—with component spectra very similar to those derived from mathematical deconvolution of the 31P-NMR spectra. Wheat-germ lipase treatment of samples selectively eliminated the phases exhibiting sharp isotropic peaks, suggesting easier accessibility of these lipids compared to the bilayer and the HII phases. Gradually increasing lipid exchanges were observed between the bilayer and the two isotropic phases upon gradually elevating the temperature from 5 to 35 °C, suggesting close connections between these lipid phases. Data concerning the identity and structural and functional roles of different lipid phases will be presented in the accompanying paper.
Collapse
|
26
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
27
|
Bagatolli LA, Stock RP. Lipids, membranes, colloids and cells: A long view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183684. [PMID: 34166642 DOI: 10.1016/j.bbamem.2021.183684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
This paper revisits long-standing ideas about biological membranes in the context of an equally long-standing, but hitherto largely unappreciated, perspective of the cell based on concepts derived from the physics and chemistry of colloids. Specifically, we discuss important biophysical aspects of lipid supramolecular structure to understand how the intracellular milieu may constrain lipid self-assembly. To this end we will develop four lines of thought: first, we will look at the historical development of the current view of cellular structure and physiology, considering also the plurality of approaches that influenced its formative period. Second, we will review recent basic research on the structural and dynamical properties of lipid aggregates as well as the role of phase transitions in biophysical chemistry and cell biology. Third, we will present a general overview of contemporary studies into cellular compartmentalization in the context of a very rich and mostly forgotten general theory of cell physiology called the Association-Induction Hypothesis, which was developed around the time that the current view of cells congealed into its present form. Fourth, we will examine some recent developments in cellular studies, mostly from our laboratory, that raise interesting issues about the dynamical aspects of cell structure and compartmentalization. We will conclude by suggesting what we consider are relevant questions about the nature of cellular processes as emergent phenomena.
Collapse
Affiliation(s)
- Luis A Bagatolli
- Instituto de Investigación Médica Mercedes y Martín Ferreyra - INIMEC (CONICET)-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; MEMPHYS - International and Interdisciplinary research network, Denmark.
| | - Roberto P Stock
- MEMPHYS - International and Interdisciplinary research network, Denmark
| |
Collapse
|
28
|
Bradbury AM, Bongarzone ER, Sands MS. Krabbe disease: New hope for an old disease. Neurosci Lett 2021; 752:135841. [PMID: 33766733 PMCID: PMC8802533 DOI: 10.1016/j.neulet.2021.135841] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022]
Abstract
Krabbe disease (globoid cell leukodystrophy) is a lysosomal storage disease (LSD) characterized by progressive and profound demyelination. Infantile, juvenile and adult-onset forms of Krabbe disease have been described, with infantile being the most common. Children with an infantile-onset generally appear normal at birth but begin to miss developmental milestones by six months of age and die by two to four years of age. Krabbe disease is caused by a deficiency of the acid hydrolase galactosylceramidase (GALC) which is responsible for the degradation of galactosylceramides and sphingolipids, which are abundant in myelin membranes. The absence of GALC leads to the toxic accumulation of galactosylsphingosine (psychosine), a lysoderivative of galactosylceramides, in oligodendrocytes and Schwann cells resulting in demyelination of the central and peripheral nervous systems, respectively. Treatment strategies such as enzyme replacement, substrate reduction, enzyme chaperones, and gene therapy have shown promise in LSDs. Unfortunately, Krabbe disease has been relatively refractory to most single-therapy interventions. Although hematopoietic stem cell transplantation can alter the course of Krabbe disease and is the current standard-of-care, it simply slows the progression, even when initiated in pre-symptomatic children. However, the recent success of combinatorial therapeutic approaches in small animal models of Krabbe disease and the identification of new pathogenic mechanisms provide hope for the development of effective treatments for this devastating disease. This review provides a brief history of Krabbe disease and the evolution of single and combination therapeutic approaches and discusses new pathogenic mechanisms and how they might impact the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, 700 Children's Drive, Columbus, OH, 43205, United States.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
29
|
Wood M, Morales M, Miller E, Braziel S, Giancaspro J, Scollan P, Rosario J, Gayapa A, Krmic M, Lee S. Ibuprofen and the Phosphatidylcholine Bilayer: Membrane Water Permeability in the Presence and Absence of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4468-4480. [PMID: 33826350 DOI: 10.1021/acs.langmuir.0c03638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interactions between drugs and cell membranes can modulate the structural and physical properties of membranes. The resultant perturbations of the membrane integrity may affect the conformation of the proteins inserted within the membrane, disturbing the membrane-hosted biological functions. In this study, the droplet interface bilayer (DIB), a model cell membrane, is used to examine the effects of ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), on transbilayer water permeability, which is a fundamental membrane biophysical property. Our results indicate that the presence of neutral ibuprofen (pH 3) increases the water permeability of the lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). When cholesterol is present with the DOPC, however, the water permeability is not influenced by addition of ibuprofen, regardless of the cholesterol content in DOPC. Given the fact that cholesterol is generally considered to impact packing in the hydrocarbon chain regions, our findings suggest that a potential competition between opposing effects of ibuprofen molecules and cholesterol on the hydrocarbon core environment of the phospholipid assembly may influence the overall water transport phenomena. Results from confocal Raman microspectroscopy and interfacial tensiometry show that ibuprofen molecules induce substantial structural and dynamic changes in the DOPC lipid bilayer. These results, demonstrating that the presence of ibuprofen increases the water permeability of pure DOPC but not that of DOPC-cholesterol mixtures, provide insight into the differential effect of a representative NSAID on heterogeneous biological membranes, depending upon the local composition and structure, results which will signal increased understanding of the gastrointestinal damage and toxicity induced by these molecules.
Collapse
Affiliation(s)
- Megan Wood
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Morales
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Elizabeth Miller
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Samuel Braziel
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Joseph Giancaspro
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Patrick Scollan
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Juan Rosario
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alyssa Gayapa
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
30
|
What Can Mushroom Proteins Teach Us about Lipid Rafts? MEMBRANES 2021; 11:membranes11040264. [PMID: 33917311 PMCID: PMC8067419 DOI: 10.3390/membranes11040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
The lipid raft hypothesis emerged as a need to explain the lateral organization and behavior of lipids in the environment of biological membranes. The idea, that lipids segregate in biological membranes to form liquid-disordered and liquid-ordered states, was faced with a challenge: to show that lipid-ordered domains, enriched in sphingomyelin and cholesterol, actually exist in vivo. A great deal of indirect evidence and the use of lipid-binding probes supported this idea, but there was a lack of tools to demonstrate the existence of such domains in living cells. A whole new toolbox had to be invented to biochemically characterize lipid rafts and to define how they are involved in several cellular functions. A potential solution came from basic biochemical experiments in the late 1970s, showing that some mushroom extracts exert hemolytic activities. These activities were later assigned to aegerolysin-based sphingomyelin/cholesterol-specific cytolytic protein complexes. Recently, six sphingomyelin/cholesterol binding proteins from different mushrooms have been identified and have provided some insight into the nature of sphingomyelin/cholesterol-rich domains in living vertebrate cells. In this review, we dissect the accumulated knowledge and introduce the mushroom lipid raft binding proteins as molecules of choice to study the dynamics and origins of these liquid-ordered domains in mammalian cells.
Collapse
|
31
|
Luchini A, Corucci G, Chaithanya Batchu K, Laux V, Haertlein M, Cristiglio V, Fragneto G. Structural Characterization of Natural Yeast Phosphatidylcholine and Bacterial Phosphatidylglycerol Lipid Multilayers by Neutron Diffraction. Front Chem 2021; 9:628186. [PMID: 33968895 PMCID: PMC8104085 DOI: 10.3389/fchem.2021.628186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic and prokaryotic cell membranes are difficult to characterize directly with biophysical methods. Membrane model systems, that include fewer molecular species, are therefore often used to reproduce their fundamental chemical and physical properties. In this context, natural lipid mixtures directly extracted from cells are a valuable resource to produce advanced models of biological membranes for biophysical investigations and for the development of drug testing platforms. In this study we focused on single phospholipid classes, i.e. Pichia pastoris phosphatidylcholine (PC) and Escherichia coli phosphatidylglycerol (PG) lipids. These lipids were characterized by a different distribution of their respective acyl chain lengths and number of unsaturations. We produced both hydrogenous and deuterated lipid mixtures. Neutron diffraction experiments at different relative humidities were performed to characterize multilayers from these lipids and investigate the impact of the acyl chain composition on the structural organization. The novelty of this work resides in the use of natural extracts with a single class head-group and a mixture of chain compositions coming from yeast or bacterial cells. The characterization of the PC and PG multilayers showed that, as a consequence of the heterogeneity of their acyl chain composition, different lamellar phases are formed.
Collapse
Affiliation(s)
| | - Giacomo Corucci
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| | | | | | | | | | - Giovanna Fragneto
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| |
Collapse
|
32
|
Hazra R, Roy D. Distinctive Weak Interactions Underlie Diverse Nucleation and Small-Angle Scattering Behavior of Aqueous Cholesterol, Cholesteryl Hemisuccinate, and Glycocholic Acid. J Phys Chem B 2021; 125:612-624. [PMID: 33417461 DOI: 10.1021/acs.jpcb.0c08931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increased total cholesterol is a major cause of serious heart ailments leading to an estimated 3 million deaths annually throughout the world. Understanding the flocculation behavior of small lipids is thus quintessential. Nucleation, small-angle scattering, and dynamical behavior of lipids and analogues like cholesterol (CHL), cholesteryl hemisuccinate (CHM), and glycocholic acid (GHL) are studied in water by molecular dynamics simulation. The study shows a distinct aggregation behavior of these physiologically relevant molecules owing to a systematic gradation in their non-bonding interactions with solvents and near neighbors. Spontaneous self-assemblies formed during simulation are observed to have different stability, aggregation patterns, and dynamics depending crucially on the nature of the hydrophobic/hydrophilic tails. With increasing hydrophilicity, in the order CHL < CHM < GHL, the aggregates become breakable and less compact, often interposed by water molecules in the interstitial spaces between the lipids. Small-angle scattering data obtained from our simulations provide insights toward the structural integrity and shape of the aggregates formed. Unique features are noticed while following the time evolution of the packing of the nucleated assemblies from the solution phase in terms of local density and molecular orientation. As hydrophilicity increases from CHL to GHL, the packing becomes progressively erratic with diverse angles between the molecular vectors. Surface electrostatic potential calculation indicates drastic increase in positive surface charge from CHL to CHM, which has strong implication in water and ion transport through membranes. These observations can be further correlated to comprehend the flocculation of cholesterol and bile acids in the human body.
Collapse
Affiliation(s)
- Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
33
|
Videv P, Mladenov N, Andreeva T, Mladenova K, Moskova-Doumanova V, Nikolaev G, Petrova SD, Doumanov JA. Condensing Effect of Cholesterol on hBest1/POPC and hBest1/SM Langmuir Monolayers. MEMBRANES 2021; 11:membranes11010052. [PMID: 33451008 PMCID: PMC7828479 DOI: 10.3390/membranes11010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Human bestrophin-1 protein (hBest1) is a transmembrane channel associated with the calcium-dependent transport of chloride ions in the retinal pigment epithelium as well as with the transport of glutamate and GABA in nerve cells. Interactions between hBest1, sphingomyelins, phosphatidylcholines and cholesterol are crucial for hBest1 association with cell membrane domains and its biological functions. As cholesterol plays a key role in the formation of lipid rafts, motional ordering of lipids and modeling/remodeling of the lateral membrane structure, we examined the effect of different cholesterol concentrations on the surface tension of hBest1/POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and hBest1/SM Langmuir monolayers in the presence/absence of Ca2+ ions using surface pressure measurements and Brewster angle microscopy studies. Here, we report that cholesterol: (1) has negligible condensing effect on pure hBest1 monolayers detected mainly in the presence of Ca2+ ions, and; (2) induces a condensing effect on composite hBest1/POPC and hBest1/SM monolayers. These results offer evidence for the significance of intermolecular protein–lipid interactions for the conformational dynamics of hBest1 and its biological functions as multimeric ion channel.
Collapse
Affiliation(s)
- Pavel Videv
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Nikola Mladenov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
- Faculty of Medicine, Medical University-Sofia, 1 Sv. Georgi Sofiiski Str., 1431 Sofia, Bulgaria
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Kirilka Mladenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Veselina Moskova-Doumanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Svetla D. Petrova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Jordan A. Doumanov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
- Correspondence: ; Tel.: +359-2-8167262
| |
Collapse
|
34
|
Oseliero Filho PL, Gerbelli BB, Fornasier F, Chaves Filho AB, Yoshinaga MY, Miyamoto S, Mortara L, Lacerda CD, Cuccovia IM, Pimentel AS, Oliveira CLP. Structure and Thermotropic Behavior of Bovine- and Porcine-Derived Exogenous Lung Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14514-14529. [PMID: 33210931 DOI: 10.1021/acs.langmuir.0c02224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two commercial exogenous pulmonary surfactants, Curosurf and Survanta, are investigated. Their thermotropic behavior and associated structural changes for the samples in bulk are characterized and described. For Survanta, the obtained results of differential scanning calorimetry showed a thermogram with three peaks on heating and only a single peak on cooling. Curosurf on the other hand, presents calorimetric thermograms with only one peak in both the heating and cooling scans. This distinct thermotropic behavior between the two pulmonary surfactants, a consequence of their particular compositions, is associated with structural changes that were evaluated by simultaneous small- and wide-angle X-ray scattering experiments with in situ temperature variation. Interestingly, for temperatures below ∼35 °C for Curosurf and ∼53 °C for Survanta, the scattering data indicated the coexistence of two lamellar phases with different carbon chain organizations. For temperatures above these limits, the coexistence of phases disappears, giving rise to a fluid phase in both pulmonary surfactants, with multilamelar vesicles for Curosurf and unilamellar vesicles for Survanta. This process is quasi-reversible under cooling, and advanced data analysis for the scattering data indicated differences in the structural and elastic properties of the pulmonary surfactants. The detailed and systematic investigation shown in this work expands on the knowledge of the structure and thermodynamic behavior of Curosurf and Survanta, being relevant from both physiological and biophysical perspectives and also providing a basis for further studies on other types of pulmonary surfactants.
Collapse
Affiliation(s)
| | - Barbara Bianca Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Franccesca Fornasier
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900, Brazil
| | - Adriano B Chaves Filho
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Marcos Yukio Yoshinaga
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Laura Mortara
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Caroline Dutra Lacerda
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Iolanda Midea Cuccovia
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900, Brazil
| | | |
Collapse
|
35
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
36
|
Frias MA, Disalvo EA. Breakdown of classical paradigms in relation to membrane structure and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183512. [PMID: 33202248 DOI: 10.1016/j.bbamem.2020.183512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Updates of the mosaic fluid membrane model implicitly sustain the paradigms that bilayers are closed systems conserving a state of fluidity and behaving as a dielectric slab. All of them are a consequence of disregarding water as part of the membrane structure and its essential role in the thermodynamics and kinetics of membrane response to bioeffectors. A correlation of the thermodynamic properties with the structural features of water makes possible to introduce the lipid membrane as a responsive structure due to the relaxation of water rearrangements in the kinetics of bioeffectors' interactions. This analysis concludes that the lipid membranes are open systems and, according to thermodynamic of irreversible formalism, bilayers and monolayers can be reasonable compared under controlled conditions. The inclusion of water in the complex structure makes feasible to reconsider the concept of dielectric slab and fluidity.
Collapse
Affiliation(s)
- M A Frias
- Applied Biophysics and Food Research Center, CIBAAL-UNSE-CONICET, Santiago del Estero, Argentina
| | - E A Disalvo
- Applied Biophysics and Food Research Center, CIBAAL-UNSE-CONICET, Santiago del Estero, Argentina.
| |
Collapse
|
37
|
Wilhelm C, Goss R, Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153246. [PMID: 32777580 DOI: 10.1016/j.jplph.2020.153246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Since the publication of the fluid-mosaic membrane theory by Singer and Nicolson in 1972 generations of scientists have adopted this fascinating concept for all biological membranes. Assuming the membrane as a fluid implies that the components embedded in the lipid bilayer can freely diffuse like swimmers in a water body. During the detailed biochemical analysis of the thylakoid protein components of chloroplasts from higher plants and algae, in the '80 s and '90 s it became clear that photosynthetic membranes are not homogeneous either in the vertical or the lateral directions. The lateral heterogeneity became obvious by the differentiation of grana and stroma thylakoids, but also the margins have been identified with a highly specific protein pattern. Further refinement of the fluid mosaic model was needed to take into account the presence of non-bilayer lipids, which are the most abundant lipids in all energy-converting membranes, and the polymorphism of lipid phases, which has also been documented in thylakoid membranes. These observations lead to the question, how mobile the components are in the lipid phase and how this ordering is made and maintained and how these features might be correlated with the non-bilayer propensity of the membrane lipids. Assuming instead of free diffusion, a "controlled neighborhood" replaced the model of fluidity by the model of a "mixed crystal structure". In this review we describe why basic photosynthetic regulation mechanisms depend on arrays of crystal-like lipid-protein macro-assemblies. The mechanisms which define the ordering in macrodomains are still not completely clear, but some recent experiments give an idea how this fascinating order is produced, adopted and maintained. We use the operation of the xanthophyll cycle as a rather well understood model challenging and complementing the standard Singer-Nicolson model via assigning special roles to non-bilayer lipids and non-lamellar lipid phases in the structure and function of thylakoid membranes.
Collapse
Affiliation(s)
- Christian Wilhelm
- Leipzig University, Institute of Biology, SenProf Algal Biotechnology, Permoserstr. 15, 04315, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
| | - Reimund Goss
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Gyözö Garab
- Biological Research Centre, Institute of Plant Biology, Temesvári körút 62, H-6726, Szeged, Hungary; University of Ostrava, Department of Physics, Faculty of Science, Chittussiho 10, CZ-710 00, Ostrava, Slezská Ostrava, Czech Republic
| |
Collapse
|
38
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Bakás LS, Muñoz-Garay C, Maté SM. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183467. [PMID: 32871116 DOI: 10.1016/j.bbamem.2020.183467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-β-cyclodextrin-mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Laura S Bakás
- Centro de Investigación en Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
39
|
Drukarch B, Jacobs GE, Wilhelmus MMM. Solving the crisis in psychopharmacological research: Cellular-membrane(s) pharmacology to the rescue? Biomed Pharmacother 2020; 130:110545. [PMID: 32731134 DOI: 10.1016/j.biopha.2020.110545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need for the introduction of novel and better (i.e., improved risk-benefit profile) compounds for the treatment of major psychiatric disorders, in particular mood and psychotic disorders. However, despite increased societal awareness and a rising public and professional demand for such agents from patients and physicians, the pharmaceutical industry continues to close down its psychopharmacology research facilities in reaction to the lack of success with the search for new psychotropics. It is high time to stop this untoward trend and explore "new" lines of investigation to solve the current crisis in psychopharmacological research. In line with the prevailing molecular view in drug research in general, also in psychopharmacology mechanistic explanations for drug effects are "traditionally" looked for at the level of molecular targets, like receptors and transporters. Also, more recent approaches, although using so-called systems- and function-based approaches to model the multidimensional characteristics of psychiatric disorders and psychotropic drug action, still emphasize this search strategy for new therapeutic leads by identification of single molecules or molecular pathways. This "psychomolecular gaze" overlooks and disregards the fact that psychotropic agents usually are highly hydrophobic and amphipathic/amphiphilic agents that, in addition to their interaction with membrane-bound proteins in the form of e.g. receptors or transporters, also interact strongly with the lipid component of cellular membranes. Here we suggest to develop a program of systematic, whole-cell level based, investigation into the role of these physical-chemical cellular membrane interactions in the therapeutic action of known psychotherapeutics. This complementary yet conceptually different approach, in our opinion, will complement drug development in psychopharmacology and thereby assist in overcoming the current crisis. In this way the "old" physical theory of drug action, which antedates the current, primary molecular, paradigm may offer "new" options for lead discovery in psychopharmacological research.
Collapse
Affiliation(s)
- B Drukarch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - G E Jacobs
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - M M M Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Salvador-Castell M, Demé B, Oger P, Peters J. Lipid Phase Separation Induced by the Apolar Polyisoprenoid Squalane Demonstrates Its Role in Membrane Domain Formation in Archaeal Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7375-7382. [PMID: 32515591 DOI: 10.1021/acs.langmuir.0c00901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Archaea synthesize methyl-branched, ether phospholipids, which confer the archaeal membrane exceptional physicochemical properties. A novel membrane organization was proposed recently to explain the thermal and high pressure tolerance of the polyextremophilic archaeon Thermococcus barophilus. According to this theoretical model, apolar molecules could populate the midplane of the bilayer and could alter the physicochemical properties of the membrane, among which is the possibility to form membrane domains. We tested this hypothesis using neutron diffraction on a model archaeal membrane composed of two archaeal diether lipids with phosphocholine and phosphoethanolamine headgroups in the presence of the apolar polyisoprenoid squalane. We show that squalane is inserted in the midplane at a maximal concentration between 5 and 10 mol % and that squalane can modify the lateral organization of the membrane and induces the coexistence of separate phases. The lateral reorganization is temperature- and squalane concentration-dependent and could be due to the release of lipid chain frustration and the induction of a negative curvature in the lipids.
Collapse
Affiliation(s)
| | - Bruno Demé
- Institut Laue Langevin, Grenoble Cedex 9 F-38042, France
| | - Phil Oger
- INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne 69621, France
| | - Judith Peters
- Institut Laue Langevin, Grenoble Cedex 9 F-38042, France
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| |
Collapse
|
41
|
van 't Klooster JS, Cheng TY, Sikkema HR, Jeucken A, Moody DB, Poolman B. Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae. J Mol Biol 2020; 432:4023-4031. [PMID: 32413406 PMCID: PMC8005870 DOI: 10.1016/j.jmb.2020.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/25/2022]
Abstract
Membrane lipids act as solvents and functional cofactors for integral membrane proteins. The yeast plasma membrane is unusual in that it may have a high lipid order, which coincides with low passive permeability for small molecules and a slow lateral diffusion of proteins. Yet, membrane proteins whose functions require altered conformation must have flexibility within membranes. We have determined the molecular composition of yeast plasma membrane lipids located within a defined diameter of model proteins, including the APC-superfamily lysine transporter Lyp1. We now use the composition of lipids that naturally surround Lyp1 to guide testing of lipids that support the normal functioning of the transporter, when reconstituted in vesicles of defined lipid composition. We find that phosphatidylserine and ergosterol are essential for Lyp1 function, and the transport activity displays a sigmoidal relationship with the concentration of these lipids. Non-bilayer lipids stimulate transport activity, but different types are interchangeable. Remarkably, Lyp1 requires a relatively high fraction of lipids with one or more unsaturated acyl chains. The transport data and predictions of the periprotein lipidome of Lyp1 support a new model in which a narrow band of lipids immediately surrounding the transmembrane stalk of a model protein allows conformational changes in the protein.
Collapse
Affiliation(s)
- Joury S van 't Klooster
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Hendrik R Sikkema
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Aike Jeucken
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
42
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
43
|
Gu RX, Baoukina S, Tieleman DP. Phase Separation in Atomistic Simulations of Model Membranes. J Am Chem Soc 2020; 142:2844-2856. [DOI: 10.1021/jacs.9b11057] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Svetlana Baoukina
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
44
|
Arias JM, Cobos Picot RA, Tuttolomondo ME, Ben Altabef A, Díaz SB. Interaction of N-acetylcysteine with DPPC liposomes at different pH: a physicochemical study. NEW J CHEM 2020. [DOI: 10.1039/c9nj06167c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-acetylcysteine (NAC) is a commonly used mucolytic and antioxidant agent.
Collapse
Affiliation(s)
- Juan Marcelo Arias
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - Rafael A. Cobos Picot
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - María Eugenia Tuttolomondo
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - Aida Ben Altabef
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - Sonia Beatriz Díaz
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| |
Collapse
|
45
|
Pezeshkian W, Ipsen JH. Fluctuations and conformational stability of a membrane patch with curvature inducing inclusions. SOFT MATTER 2019; 15:9974-9981. [PMID: 31754667 DOI: 10.1039/c9sm01762c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membranes with curvature inducing inclusions display a range of cooperative phenomena, which can be linked to biomembrane function, e.g. membrane tubulation, vesiculation, softening and spontaneous tension. We investigate how these phenomena are related for a fluctuating, framed membrane through analysis of a descretized membrane model by Monte Carlo simulation techniques. The membrane model is based on a dynamically triangulated surface equipped with non-interacting, up-down symmetry breaking inclusions where only terms coupled linearly to mean-curvature are maintained. We show that the lateral configurational entropy plays a key role for the mechanical properties of the semi-flexible membrane, e.g. a pronounced softening at intermediate inclusion coverages of the membrane and generation of membrane tension. Tensionless framed membranes will remain quasi-flat up to some threshold coverage, where a shape instability occurs with formation of pearling or tubular membranes, which below full coverage is associated with segregation of inclusions between the curved and flat membrane geometries. For inclusions with preference for highly curved membranes the instability appears at dilute inclusion coverages and is accompanied by strong configurational fluctuations.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
46
|
van IJzendoorn SCD, Agnetti J, Gassama-Diagne A. Mechanisms behind the polarized distribution of lipids in epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183145. [PMID: 31809710 DOI: 10.1016/j.bbamem.2019.183145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/28/2023]
Abstract
Epithelial cells are polarized cells and typically display distinct plasma membrane domains: basal plasma membrane domains face the underlying tissue, lateral domains contact adjacent cells and apical domains face the exterior lumen. Each membrane domain is endowed with a specific macromolecular composition that constitutes the functional identity of that domain. Defects in apical-basal plasma membrane polarity altogether or more subtle defects in the composition of either apical or basal plasma membrane domain can give rise to severe diseases. Lipids are the main component of cellular membranes and mechanisms that control their polarized distribution in epithelial cells are emerging. In particular sphingolipids and phosphatidylinositol lipids have taken center stage in the organization of the apical and basolateral plasma membrane domain. This short review article discusses mechanisms that contribute to the polarized distribution of lipids in epithelial cells.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jean Agnetti
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| |
Collapse
|
47
|
Bagatolli LA, Stock RP, Olsen LF. Coupled Response of Membrane Hydration with Oscillating Metabolism in Live Cells: An Alternative Way to Modulate Structural Aspects of Biological Membranes? Biomolecules 2019; 9:E687. [PMID: 31684090 PMCID: PMC6921054 DOI: 10.3390/biom9110687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
We propose that active metabolic processes may regulate structural changes in biological membranes via the physical state of cell water. This proposition is based on recent results obtained from our group in yeast cells displaying glycolytic oscillations, where we demonstrated that there is a tight coupling between the oscillatory behavior of glycolytic metabolites (ATP, NADH) and the extent of the dipolar relaxation of intracellular water, which oscillates synchronously. The mechanism we suggest involves the active participation of a polarized intracellular water network whose degree of polarization is dynamically modulated by temporal ATP fluctuations caused by metabolism with intervention of a functional cytoskeleton, as conceived in the long overlooked association-induction hypothesis (AIH) of Gilbert Ling. Our results show that the polarized state of intracellular water can be propagated from the cytosol to regions containing membranes. Since changes in the extent of the polarization of water impinge on its chemical activity, we hypothesize that metabolism dynamically controls the local structure of cellular membranes via lyotropic effects. This hypothesis offers an alternative way to interpret membrane related phenomena (e.g., changes in local curvature pertinent to endo/exocytosis or dynamical changes in membranous organelle structure, among others) by integrating relevant but mostly overlooked physicochemical characteristics of the cellular milieu.
Collapse
Affiliation(s)
- Luis A Bagatolli
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC (CONICET)-Universidad Nacional de Córdoba, Friuli 2434, Córdoba 5016, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Roberto P Stock
- MEMPHYS-International and Interdisciplinary Research Network, 5230 Odense, Denmark.
| | - Lars F Olsen
- University of Southern Denmark, Institute for Biochemistry and Molecular Biology, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
48
|
Fakhree MAA, Blum C, Claessens MMAE. Shaping membranes with disordered proteins. Arch Biochem Biophys 2019; 677:108163. [PMID: 31672499 DOI: 10.1016/j.abb.2019.108163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.
Collapse
Affiliation(s)
| | - Christian Blum
- Nanobiophysics Group, University of Twente, 7522, NB, Enschede, the Netherlands
| | | |
Collapse
|
49
|
Cimato A, Facorro G, Martínez Sarrasague M. Determining the fluid ordered and disordered phases in a pulmonary surfactant by electron spin resonance technique. Respir Physiol Neurobiol 2019; 271:103309. [PMID: 31561012 DOI: 10.1016/j.resp.2019.103309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/26/2022]
Abstract
Pulmonary surfactant main function is to reduce surface tension at alveolar interface. Two lipids phases coexist in surfactant membranes: a liquid-ordered (Lo) and a liquid-disordered (Ld) phases. This coexistence of phases would be crucial for the surfactant activity. Until now, the proportion of phases was determined qualitatively. We design an electronic spin resonance technique to quantify the lipid fraction in Ld phase. An exogenous pulmonary surfactant (EPS) with or without extra Cho was labeled with 5-doxil stearic acid to estimate the membrane fluidity and with TEMPO to determine the PL in Ld phase. A unique equation was established for the calculation of PL in Ld phase with an error of less than 3%. TEMPO partition coefficient was (0.78 ± 0.03). Cholesterol added to EPS did not modify this coefficient. The equation is valid for different batches of surfactant regardless of the cholesterol content. The proposed method is simple, precise and allows evaluating changes in lateral structure that could affect surfactant biophysical properties.
Collapse
Affiliation(s)
- Alejandra Cimato
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Graciela Facorro
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Margarita Martínez Sarrasague
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
50
|
Otosu T, Yamaguchi S. Reduction of glass-surface charge density slows the lipid diffusion in the proximal leaflet of a supported lipid bilayer. J Chem Phys 2019; 151:025102. [PMID: 31301703 DOI: 10.1063/1.5103221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the effect of a solid support on the dynamical properties of a supported lipid bilayer (SLB) is a prerequisite for the applications of SLB as a model biomembrane. Here, we applied two-dimensional fluorescence lifetime correlation spectroscopy to examine the effect of solution pH on the diffusion of lipids in the proximal/distal leaflets of a zwitterionic SLB. Leaflet-specific diffusion analyses at various pH revealed that the diffusion of lipids in the proximal leaflet facing a glass surface becomes slower by decreasing pH with the transition pH of ∼7.4. We attributed it to the reduction of the surface charge density of a glass support. Furthermore, the data clearly showed that the lipid diffusion in the distal leaflet facing a bulk solution is insensitive to the change in the diffusion property of the proximal leaflet. This reflects a weak interleaflet coupling between the proximal and distal leaflets of the SLB.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|