1
|
Orellana AM, Port's NMS, de Sá Lima L, Leite JA, Andreotti DZ, Kinoshita PF, Cantanzaro AB, Neto JAM, Scavone C, Kawamoto EM. Ouabain increases neuronal differentiation of hippocampal neural precursor cells. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100147. [PMID: 40166632 PMCID: PMC11957680 DOI: 10.1016/j.crneur.2025.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 04/02/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Natacha Medeiros S. Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, 74045-155, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Arthur B. Cantanzaro
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - João Agostinho M. Neto
- Laboratory of Cancer biology and Antineoplastic agents. Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Elisa M. Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Zhang J, Liu T, Wu H, Wei J, Qu Q. Identification of NDUFV2, NDUFS7, OPA1, and NDUFA1 as biomarkers for Alzheimer's disease: Insights from oxidative stress and mitochondrial dysfunction in the hippocampus. J Alzheimers Dis 2025:13872877251339771. [PMID: 40329774 DOI: 10.1177/13872877251339771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BackgroundAlzheimer's disease (AD) is characterized by amyloid-β deposits, neurofibrillary tangles, and hippocampal neurodegeneration, with oxidative stress and mitochondrial dysfunction playing critical roles in its pathogenesis. Identifying hub genes associated with these processes could advance biomarker discovery and therapeutic strategies.ObjectiveThis study aimed to identify key oxidative stress- and mitochondrial dysfunction-related genes in the AD hippocampus, evaluate their diagnostic potential, and explore therapeutic agents targeting these genes.MethodsWe analyzed datasets GSE48350 and GSE5281, encompassing 56 controls and 29 AD patients. Weighted gene co-expression network analysis (WGCNA) selected genes with significance (adjusted p-value < 0.05 and |logFC| ≥ 0.5). Further studies involved immune cell infiltration, Gene set enrichment analysis (GSEA), and intersecting differentially expressed genes (DEGs) with oxidative stress-related genes (ORGs) and mitochondrial dysfunction-related genes (MDRGs). Functional enrichment and Protein-protein interaction (PPI) analyses were conducted. Experimental validation was done in AD mouse models, and diagnostic potential was tested using datasets GSE28146 and GSE29652. Therapeutic drugs were predicted based on hub genes.ResultsAD showed altered immune cell expression. GSEA linked DEGs to nervous system processes and neurotransmitters. 194 oxidative stress-related DEGs were enriched in neuronal death and mitochondrial processes. PPI analysis identified 24 DEGs related to both oxidative stress and mitochondrial dysfunction (DEO-MDRGs), with diagnostic potential (AUC > 0.5). LASSO regression selected four DEO-MDRGs: NDUFV2, NDUFS7, OPA1, and NDUFA1. Their protein levels were reduced in AD mice with decreased mitochondrial function. These genes showed good diagnostic performance. Potential drugs, like ME-344 and metformin hydrochloride, may be useful in AD treatment.ConclusionsNDUFV2, NDUFS7, OPA1, and NDUFA1 can serve as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Junshi Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianshe Wei
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Li MJ, Lan MN, Du YX, Liu Y, Zhang HY, Guo M, Liu SW, Xia HY, Wu ZJ, Zheng HJ. EPRCN exerts neuroprotective function by regulating gut microbiota and restoring gut immune homeostasis in Alzheimer's disease model mice. J Alzheimers Dis 2025:13872877251339762. [PMID: 40325871 DOI: 10.1177/13872877251339762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundNo effective drug treatment is currently available for Alzheimer's disease (AD), highlighting the urgent need to develop efficient therapeutic options. We have developed a formula based on medicine and food homology (MFH) consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN), and demonstrated that it can treat AD by alleviating neuroinflammation and oxidative stress. However, whether EPRCN can improve AD by regulating gut microbiota remains unknown.ObjectiveThe current study aimed to evaluate the effect of EPRCN on regulating gut microbiota and neuroprotection.Methods16S rRNA sequencing was used to assess the structure of gut microbiota. Hematoxylin-eosin (HE) staining, qRT-PCR, and ELISA were used to evaluate gut inflammation. Detected indexes associated with cholinergic dysfunction and neuronal damage to investigate the neuroprotective effects of EPRCN.Results16S rRNA gene analysis revealed that EPRCN remodeled the gut microbiota, inhibited gut metabolic disorders, and promoted CoA biosynthesis in scopolamine-induced mice. EPRCN can ameliorates gut inflammation by activating the cholinergic anti-inflammatory pathway. The results further indicated that EPRCN improved cholinergic dysfunction by inhibiting the activity of acetylcholinesterase and restoring cholinergic receptors. Additionally, EPRCN administration suppressed the neuronal loss and elevated brain derived neurotrophic factor expression in hippocampus. Correlation analysis found that alteration of several gut microbes was associated with indexes improved by EPRCN.ConclusionsThese findings suggest that EPRCN may serve as a promising dietary intervention for treating AD by regulating the microbiota-gut-brain axis and exerting neuroprotective function.
Collapse
Affiliation(s)
- Ming-Jie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zheng-Jun Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
4
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
5
|
Morrissey ZD, Kumar P, Phan TX, Maienschein-Cline M, Leow A, Lazarov O. Neurogenesis drives hippocampal formation-wide spatial transcription alterations in health and Alzheimer's disease. FRONTIERS IN DEMENTIA 2025; 4:1546433. [PMID: 40309339 PMCID: PMC12041076 DOI: 10.3389/frdem.2025.1546433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The mechanism by which neurogenesis regulates the profile of neurons and glia in the hippocampal formation is not known. Further, the effect of neurogenesis on neuronal vulnerability characterizing the entorhinal cortex in Alzheimer's disease (AD) is unknown. Here, we used in situ sequencing to investigate the spatial transcription profile of neurons and glia in the hippocampal circuitry in wild-type mice and in familial AD (FAD) mice expressing varying levels of neurogenesis. This approach revealed that in addition to the dentate gyrus, neurogenesis modulates the cellular profile in the entorhinal cortex and CA regions of the hippocampus. Notably, enhancing neurogenesis in FAD mice led to partial restoration of neuronal and cellular profile in these brain areas, resembling the profile of their wild-type counterparts. This approach provides a platform for the examination of the cellular dynamics in the hippocampal formation in health and in AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Trongha X. Phan
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | | | - Alex Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Zhang X, Xu H, Yin S, Gozal D, Khalyfa A. Obstructive sleep apnea and memory impairments: Clinical characterization, treatment strategies, and mechanisms. Sleep Med Rev 2025; 81:102092. [PMID: 40286536 DOI: 10.1016/j.smrv.2025.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Obstructive sleep apnea (OSA), is associated with dysfunction in the cardiovascular, metabolic and neurological systems. However, the relationship between OSA and memory impairment, intervention effects, and underlying pathways are not well understood. This review summarizes recent advances in the clinical characterization, treatment strategies, and mechanisms of OSA-induced memory impairments. OSA patients may exhibit significant memory declines, including impairments in working memory from visual and verbal sources. The underlying mechanisms behind OSA-related memory impairment are complex and multifactorial with poorly understood aspects that require further investigation. Neuroinflammation, oxidative stress, neuronal damage, synaptic plasticity, and blood-brain barrier dysfunction, as observed under exposures to intermittent hypoxia and sleep fragmentation are likely contributors to learning and memory dysfunction. Continuous positive airway pressure treatment can provide remarkable relief from memory impairment in OSA patients. Other treatments are emerging but need to be rigorously evaluated for cognitive improvement. Clinically, reliable and objective diagnostic tools are necessary for accurate diagnosis and clinical characterization of cognitive impairments in OSA patients. The complex links between gut-brain axis, epigenetic landscape, genetic susceptibility, and OSA-induced memory impairments suggest new directions for research. Characterization of clinical phenotypic clusters can facilitate advances in precision medicine to predict and treat OSA-related memory deficits.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
7
|
Jiang X, Yu S, Yao S, Wang S, Cai J, Tang Z, Zhu S. Investigation of Tongqiao Huashuan Granules' effect on hippocampal neuron autophagy in vascular dementia rats via the PI3K/Akt-mTOR signaling pathway using network pharmacology and experimental validation. Front Neurol 2025; 16:1555411. [PMID: 40191596 PMCID: PMC11968393 DOI: 10.3389/fneur.2025.1555411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Objective This study aimed to apply network pharmacology to identify the active components and key targets of Tongqiao Huashuan Granules in vascular dementia (VaD) and to evaluate its effects on autophagy in hippocampal neurons of VaD rats through animal testing. Materials and methods This study first employed network pharmacology (NP) to identify potential components and pathway targets for THg intervention in VaD. A modified two-vessel occlusion (2-VO) method was subsequently analyzed to establish a VaD rat model. Following the interventions, the spatial learning and memory abilities of the rats were assess using a water maze experiment. Morphological and structural changes in neuronal cells within the CA1 region of the rat hippocampus were examined using hematoxylin and eosin (HE) staining. Immunohistochemistry was utilized to assess the proportions of Beclin1-positive and LC3-positive cells in the CA1 region of each rat group, while performed Western blot analysis was conducted to measure protein expression levels of PI3K, p-PI3K, AKT, p-AKT, mTOR, p-mTOR, Beclin1, and LC3 in the hippocampal tissue of the rats. Results A total of 76 active components were identified through network pharmacology analysis, with notable components including β-sitosterol, kaempferol, and cinnamophilin. In total, 825 key targets were identified, including IL1B, AKT1, JAK1, and MAPK3. THg and VaD shared 69 common genes. The Gene Ontology (GO) functional enrichment analysis yielded a total of 569 items (BP: 366, CC: 97, MF: 106). KEGG pathway enrichment analysis identified 143 signaling pathways, including TNF, MAPK, AGE-RAGE, and PI3K/Akt pathways. Subsequent validation experiments demonstrated that THg enhanced the learning and memory abilities of VaD rats, improve the morphology of neuronal cells in the CA1 region of the hippocampus, and decreasing the proportion of Beclin1-and LC3-positive cells in this region. Additionally, THg was shown to enhance the expression levels of p-PI3K, p-AKT, and p-mTOR proteins while reducing the expression levels of Beclin1 and LC3 proteins. Conclusion This study represents the first investigation into the effects of THg intervention in VaD, indicating that its mechanism may involve inhibiting autophagy in hippocampal neurons through activation of the PI3K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaoqu Jiang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuyao Yu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuaifeng Yao
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Sikai Wang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Cai
- Department of Neurology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhongsheng Tang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shijie Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Zhou BY, Li ZX, Li YW, Li JN, Liu WT, Liu XY, Hu ZB, Zhao L, Chen JY, Hu L, Song NN, Feng X, Wang G, Xu L, Ding YQ. Central Med23 deficiency leads to malformation of dentate gyrus and ADHD-like behaviors in mice. Neuropsychopharmacology 2025:10.1038/s41386-025-02088-1. [PMID: 40114018 DOI: 10.1038/s41386-025-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent psychiatric disorder with high heritability, while its etiology and pathophysiology remain unclear. Med23 is a subunit of the Mediator complex, a key regulator of gene expression by linking transcription factors to RNA polymerase II. The mutations of Med23 are associated with several brain diseases including microcephaly, epilepsy and intellectual disability, but its biological roles in brain development and possible behavioral consequence have not been explored in the animal model. In this study, Emx1-Cre mice were used to generate Med23 conditional knockout (Med23 CKO) mice that showed severe hypoplasia of the dentate gyrus (DG) with malformation of the dendritic tree and spines along with impaired short-term synaptic plasticity. Interestingly, Med23 CKO mice exhibited ADHD-like behaviors as shown by hyperactivity, inattention and impulsivity, as well as impaired sensory gating and working memory. Importantly, methylphenidate (MPH), a common drug for ADHD ameliorated these deficits in the CKO mice. Furthermore, we also revealed that the impaired synaptic plasticity was partially restored by MPH in an N-methyl-d-aspartate (NMDA) receptor-dependent way. Collectively, our data demonstrate Med23 deficiency causes DG malformation and ADHD-like behaviors, suggesting a novel mechanism underlying relevant brain diseases.
Collapse
Affiliation(s)
- Bing-Yao Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Yi-Wei Li
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming, 650223, China
| | - Wei-Tang Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Ling Hu
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Xue Feng
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming, 650223, China.
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China.
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Huashan Institute of Medicine (HS-IOM), Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
9
|
Xu FH, Sun X, Zhu J, Kong LY, Chang Y, Li N, Hui WX, Zhang CP, Cheng YM, Han WX, Tian ZM, Qiao YN, Chen DF, Liu L, Feng DY, Han J. Significance of the gut tract in the therapeutic mechanisms of polydopamine for acute cerebral infarction: neuro-immune interaction through the gut-brain axis. Front Cell Infect Microbiol 2025; 14:1413018. [PMID: 40104260 PMCID: PMC11913817 DOI: 10.3389/fcimb.2024.1413018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/25/2024] [Indexed: 03/20/2025] Open
Abstract
Background Recent research has made significant progress in elucidating gastrointestinal complications following acute cerebral infarction (ACI), which includes disorders in intestinal motility and dysbiosis of the gut microbiota. Nevertheless, the role of the gut (which is acknowledged as being the largest immune organ) in the immunoreactive effects of polydopamine nanoparticles (PDA) on acute ischemic stroke remains inadequately understood. In addition to its function in nutrient absorption, the gut acts as a protective barrier against microbes. Systemic immune responses, which are triggered by the disruption of gut barrier integrity, are considered as one of the mechanisms underlying acute ischemic stroke, with the gut-brain axis (GBA) playing a pivotal role in this process. Methods In this study, we used a PDA intervention in an ACI model to investigate ACI-like behavior, intestinal barrier function, central and peripheral inflammation, and hippocampal neuron excitability, thus aiming to elucidate the mechanisms through which PDA improves ACI via the GBA. Results Our findings indicated that as ACI mice experienced dysbiosis of the gut microbiota and intestinal barrier damage, the levels of proinflammatory factors in the serum and brain significantly increased. Additionally, the activation of astrocytes in the hippocampal region and neuronal apoptosis were observed in ACI mice. Importantly, our study is the first to provide evidence demonstrating that PDA effectively suppresses the neuroimmune interactions of the gut-brain axis and significantly improves intestinal epithelial barrier integrity. Conclusion We hope that our discoveries will serve as a foundation for further explorations of the therapeutic mechanisms of PDA in ACI, particularly in elucidating the protective roles of gut microbiota and intestinal barrier function, as well as in the development of more targeted clinical interventions for ACI.
Collapse
Affiliation(s)
- Feng-Hua Xu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Xiao Sun
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Jun Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Ling-Yang Kong
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yuan Chang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Ning Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen-Xiang Hui
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Cong-Peng Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yi-Ming Cheng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Xin Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Zhi-Min Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yan-Ning Qiao
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Dong-Feng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Da-Yun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
10
|
Yamamoto M, Itokazu T, Uno H, Maki T, Shibuya N, Yamashita T. Anti-RGMa neutralizing antibody ameliorates vascular cognitive impairment in mice. Neurotherapeutics 2025; 22:e00500. [PMID: 39613526 PMCID: PMC12014345 DOI: 10.1016/j.neurot.2024.e00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Repulsive Guidance Molecule A (RGMa) is well-recognized for its role in axon guidance. Recent studies have unveiled its diverse functions under pathological conditions within the central nervous system, such as spinal cord injury, multiple sclerosis, and Parkinson's disease. In this study, we explored the involvement of RGMa and the therapeutic effects of an anti-RGMa neutralizing antibody in a mouse model of vascular dementia (VaD). The VaD mouse model was established using the bilateral common carotid artery stenosis (BCAS) method. Immunohistochemical analysis revealed that these mice exhibited increased RGMa expression in the hippocampus, which coincided with reduced neurogenesis and impaired cholinergic innervation. These alterations manifested as cognitive impairments in the BCAS mice. Significantly, treatment with anti-RGMa neutralizing antibody reversed these pathological changes and cognitive deficits. Our findings suggest that RGMa plays a pivotal role in VaD pathology within the hippocampus and propose the anti-RGMa antibody as a promising therapeutic avenue for treating VaD.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Hiroki Uno
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nao Shibuya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan; WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
11
|
Yu L, Feng M, Shang Y, Ren Z, Xing H, Chang Y, Dong K, Xiao Y, Dai H. Reduced Functional Connectivity in Nucleus Accumbens Subregions Associates With Cognitive Changes in Alzheimer's Disease. Brain Behav 2025; 15:e70440. [PMID: 40135639 PMCID: PMC11938111 DOI: 10.1002/brb3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND AND PURPOSE The nucleus accumbens (NAc), an important component of the reward circuit, is believed to play an indispensable role in Alzheimer's disease (AD). This study aimed to explore alterations in the functional connectivity (FC) of NAc subregions in AD patients and to explore their associations with neuropsychological profiles. METHODS Total 45 AD patients and 41 healthy controls (HCs) were recruited for this study. Four subregions of the NAc were used as regions of interest for whole-brain FC analysis. Correlation analyses were conducted to explore the relationships between the changed FC of brain regions with significant differences and neuropsychological profiles. RESULTS Compared with HCs, decreased FC was observed between NAc subregions and regions of the orbitofrontal cortex (OFC), precuneus (PCUN), insula (INS), cerebellum 8, and putamen in AD patients (Gaussian random field [GRF] corrected, voxel-level p < 0.001, cluster-level p < 0.05). Furthermore, the FC between the left core and left PCUN was correlated with the score of the auditory verbal learning test immediate recall task in AD patients (r = 0.441, p = 0.003, Bonferroni corrected). CONCLUSION Disruptions in connectivity between the NAc subregions and important cognitive-related areas may be related to the cognitive deficits observed in AD patients, especially episodic memory function.
Collapse
Affiliation(s)
- Lefan Yu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mengmeng Feng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Shang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhaohai Ren
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hanqi Xing
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yue Chang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ke Dong
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yao Xiao
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hui Dai
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
12
|
Tang Y, Zhang Y, Chen C, Cao Y, Wang Q, Tang C. Gut microbiota: A new window for the prevention and treatment of neuropsychiatric disease. J Cent Nerv Syst Dis 2025; 17:11795735251322450. [PMID: 39989718 PMCID: PMC11846125 DOI: 10.1177/11795735251322450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Under normal physiological conditions, gut microbiota and host mutually coexist. They play key roles in maintaining intestinal barrier integrity, absorption, and metabolism, as well as promoting the development of the central nervous system (CNS) and emotional regulation. The dysregulation of gut microbiota homeostasis has attracted significant research interest, specifically in its impact on neurological and psychiatric disorders. Recent studies have highlighted the important role of the gut- brain axis in conditions including Alzheimer's Disease (AD), Parkinson's Disease (PD), and depression. This review aims to elucidate the regulatory mechanisms by which gut microbiota affect the progression of CNS disorders via the gut-brain axis. Additionally, we discuss the current research landscape, identify gaps, and propose future directions for microbial interventions against these diseases. Finally, we provide a theoretical reference for clinical treatment strategies and drug development for AD, PD, and depression.
Collapse
Affiliation(s)
- Yali Tang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yizhu Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Qiaona Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China
| | - Chuanfeng Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Qiu H, Zhang M, Chen C, Wang H, Yue X. Decreasing β-Catenin Leads to Altered Endothelial Morphology, Increased Barrier Permeability and Cognitive Impairment During Chronic Methamphetamine Exposure. Int J Mol Sci 2025; 26:1514. [PMID: 40003980 PMCID: PMC11854931 DOI: 10.3390/ijms26041514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Cognitive impairment induced by chronic methamphetamine (METH) exposure exhibits similarities to neurodegenerative disorders and is associated with blood-brain barrier (BBB) dysfunction. However, the potential involvement of β-catenin in maintaining BBB integrity during METH exposure remains unexplored. In this study, Y-maze and novel object recognition tests were conducted to assess cognitive impairment in mice exposed chronically to methamphetamine for 2 and 4 weeks. Gd-DTPA and Evans blue leakage tests revealed disruption of the BBB in the hippocampus, while chronic METH exposure for 2 and 4 weeks significantly decreased β-catenin levels along with its transcriptionally regulated protein, claudin5. Additionally, various neural injury-related proteins, such as APP, Aβ1-42, p-tau (Thr181) and p-tau (Ser396), as well as neuroinflammation-related proteins, such as IL-6, IL-1β, and TNF-α, exhibited increased levels following chronic METH exposure. Furthermore, plasma analysis indicated elevated levels of p-Tau (total), neurofilament light chain, and GFAP. In vitro experiments demonstrated that exposure to METH resulted in dose-dependent and time-dependent reductions in cellular activity and connectivity of bEnd.3 and hcmec/D3 cells. Furthermore, β-catenin exhibited decreased levels and altered subcellular localization, transitioning from the cell membrane to the cytoplasm and nucleus upon METH exposure. Overexpression of β-catenin was found to alleviate endothelial toxicity and attenuate junctional weakening induced by METH. The aforementioned findings underscore the crucial involvement of β-catenin in endothelial cells during chronic METH exposure-induced disruption of the BBB, thereby presenting a potential novel target for addressing METH-associated cerebrovascular dysfunction and cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Huijun Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| |
Collapse
|
14
|
Li Q, Zheng JW, Wang ZY, Liao SP, Zhu L, Wang X, Wan LH. Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway. Drug Des Devel Ther 2025; 19:39-50. [PMID: 39816847 PMCID: PMC11733956 DOI: 10.2147/dddt.s481646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells. Methods The efficacy of RA was evaluated using an endotoxin-induced cognitive dysfunction mice model and an in vitro neuronal injury model. Brain injury was assessed using behavioral tests and hematoxylin and eosin (HE) staining. Western blotting and Immunohistochemistry (IHC) were performed to determine NeuN, GRP78, PERK, ATF6, IRE1α, and MANF expression levels. Molecular docking was used to assess the associated mechanisms. Results Behavioral tests indicated that 20 and 40 mg/kg RA significantly improve endotoxin-induced cognitive dysfunction without dose differences. Histological analysis revealed no significant alterations in the number, morphology, and arrangement of neurons in the hippocampus and amygdala. However, 40 mg/kg RA treatment significantly decreased the hippocampal level of PERK protein and increased MANF in CA1 and DG in mice. Furthermore, our data showed that 120 μM RA pretreatment significantly inhibited LPS-conditioned culture-induced GRP78, PERK, and MANF upregulation in vitro. Finally, molecular docking studies suggested that RA could directly interact with GRP78, PERK, and IRE1, but not with MANF. Conclusion RA plays a protective role in improving cognitive function against endotoxemia-associated encephalopathy in mice via inhibiting the GRP78/PERK/MANF pathway.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing-Wen Zheng
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zi-Yao Wang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Shi-Ping Liao
- Functional Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Ling Zhu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- NHC Key Laboratory of Chronobiology (Sichuan University), West China School of Basic Medical Sciences & Forensic Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
15
|
Xiong W, She W, Liu Y, Zhou H, Wang X, Li F, Li R, Wang J, Qin D, Jing S, Duan X, Jiang C, Xu C, He Y, Wang Z, Ye Q. Clinical-grade human dental pulp stem cells improve adult hippocampal neural regeneration and cognitive deficits in Alzheimer's disease. Theranostics 2025; 15:894-914. [PMID: 39776809 PMCID: PMC11700856 DOI: 10.7150/thno.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. Methods: We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD. Specifically, we investigated the effect of neural crest-specific derived hDPSCs on endogenous neural regeneration and long-term efficacy following a single transplantation in the triple-transgenic mouse model (3xTg-AD). Results: Our research demonstrated that a single administration of clinical-grade hDPSCs yielded dramatic short-term therapeutic benefits (5 weeks) and sustained partial efficacy (6 months) with respect to improving cognitive impairment and delaying typical pathological progression in 3xTg-AD mice. Intriguingly, exogenous hDPSCs were robustly self-differentiated into newborn functional neurons in the hippocampus of 3xTg-AD mice. The foremost evidence is provided that hDPSCs promote endogenic neural regeneration by enhancing the activation of the Wnt/β-catenin pathway, which may contribute to stabilizing the hippocampal neural network to reverse memory deficits. Conclusion: These findings highlight the multifunctional potential of hDPSCs in AD treatment, which enhances cognition through alleviating neuropathology and providing neural regenerative driving force. Understanding these multiplicity effects is critical to advancing the clinical translation of stem cell-based therapies for AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenting She
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Fang Li
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruohan Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dongdong Qin
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cailei Jiang
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chun Xu
- Sydney School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Zhihao Wang
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Sydney School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
17
|
Milenkovic D, Nuthikattu S, Norman JE, Villablanca AC. Single Nuclei Transcriptomics Reveals Obesity-Induced Endothelial and Neurovascular Dysfunction: Implications for Cognitive Decline. Int J Mol Sci 2024; 25:11169. [PMID: 39456952 PMCID: PMC11508525 DOI: 10.3390/ijms252011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic alterations modulated by obesity in endothelial cells in the brain and their relationship to other neurovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq) of the NVU (endothelial cells, astrocytes, microglia, and neurons) from the hippocampus of obese (ob/ob) and wild-type (WT) male mice to characterize obesity-induced transcriptomic changes in a key brain memory center and assessed blood-brain barrier permeability (BBB) by gadolinium-enhanced magnetic resonance imaging (MRI). Ob/ob mice displayed obesity, hyperinsulinemia, and impaired glucose tolerance. snRNAseq profiled 14 distinct cell types and 32 clusters within the hippocampus of ob/ob and WT mice and uncovered differentially expressed genes (DEGs) in all NVU cell types, namely, 4462 in neurons, 1386 in astrocytes, 125 in endothelial cells, and 154 in microglia. Gene ontology analysis identified important biological processes such as angiogenesis in endothelial cells and synaptic trafficking in neurons. Cellular pathway analysis included focal adhesion and insulin signaling, which were common to all NVU cell types. Correlation analysis revealed significant positive correlations between endothelial cells and other NVU cell types. Differentially expressed long non-coding RNAs (lncRNAs) were observed in cells of the NVU-affecting pathways such as TNF and mTOR. BBB permeability showed a trend toward increased signal intensity in ob/ob mice. Taken together, our study provides in-depth insight into the molecular mechanisms underlying cognitive dysfunction in obesity and may have implications for therapeutic gene targeting.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Amparo C. Villablanca
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| |
Collapse
|
18
|
Patil N, Patil K, Jain M, Mohammed A, Yadav A, Dhanda PS, Kole C, Dave K, Kaushik P, Azhar Abdul Razab MK, Hamzah Z, Nawi NM. A systematic study of molecular targets of cannabidiol in Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1339-1360. [PMID: 40034365 PMCID: PMC11863746 DOI: 10.1177/25424823241284464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent, incurable, and chronic neurodegenerative condition characterized by the accumulation of amyloid-β protein (Aβ), disrupting various bodily systems. Despite the lack of a cure, phenolic compounds like cannabidiol (CBD), a non-psychoactive component of cannabis, have emerged as potential therapeutic agents for AD. Objective This systematic review explores the impact of different types of cannabidiol on AD, unveiling their neuroprotective mechanisms. Methods The research used PubMed, Scopus, and Web of Science databases with keywords like "Alzheimer's disease" and "Cannabidiol." Studies were evaluated based on title, abstract, and relevance to treating AD with CBD. No restrictions on research type or publication year. Excluded were hypothesis papers, reviews, books, unavailable articles, etc. Results Microsoft Excel identified 551 articles, with 92 included in the study, but only 22 were thoroughly evaluated. In-vivo and in-silico studies indicate that CBD may disrupt Aβ42, reduce pro-inflammatory molecule release, prevent reactive oxygen species formation, inhibit lipid oxidation, and counteract Aβ-induced increases in intracellular calcium, thereby protecting neurons from apoptosis. Conclusions In summary, the study indicates that CBD and its analogs reduce the production of Aβ42. Overall, these findings support the potential of CBD in alleviating the underlying pathology and symptoms associated with AD, underscoring the crucial need for further rigorous scientific investigation to elucidate the therapeutic applications and mechanisms of CBD in AD.
Collapse
Affiliation(s)
- Nil Patil
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Khushalika Patil
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mukul Jain
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, Rewari, India
| | | | | | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Zulhazman Hamzah
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Norazlina Mat Nawi
- Department of Nuclear Medicine, Radiotherapy & Oncology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
19
|
Liu N, Tu J, Yi F, Zhang X, Zhong X, Wang L, Xie L, Zhou J. The Identification of Potential Anti-Depression/Anxiety Drug Targets by Stress-Induced Rat Brain Regional Proteome and Network Analyses. Neurochem Res 2024; 49:2957-2971. [PMID: 39088164 DOI: 10.1007/s11064-024-04220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
20
|
Wang J, Wang X, Yang J, Zhen Y, Ban W, Zhu G. Molecular profiling of a rat model of vascular dementia: Evidences from proteomics, metabolomics and experimental validations. Brain Res 2024; 1846:149254. [PMID: 39341485 DOI: 10.1016/j.brainres.2024.149254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Decrease of cerebral blood flow is the primary cause of vascular dementia (VD), but its pathophysiological mechanisms are still not known. This study aims to profile the molecular changes of a rat model of VD induced by bilateral common carotid artery ligation. The Morris water maze and new object recognition tasks were used to test the cognitive function of rats. Hematoxylin and Eosin (HE) staining was used to detect pathological changes in the hippocampus. After confirming the model, proteomics was used to detect differentially expressed proteins in the hippocampus, and metabolomics was used to detect differential metabolites in rat serum. Thereafter, bioinformatics were used to integrate and analyze the potential molecular profile. The results showed that compared with the sham control group, the spatial and recognition memory of the rats were significantly reduced, and pathological changes were observed in the hippocampal CA1 region of the model group. Proteomic analysis suggested 206 differentially expressed proteins in the hippocampus of VD rats, with 117 proteins upregulated and 89 downregulated. Protein-protein interaction network analysis suggested that those differentially expressed proteins might play crucial roles in lipid metabolism, cell adhesion, intracellular transport, and signal transduction. Metabolomics analysis identified 103 differential metabolites, and comparison with the human metabolome database revealed 22 common metabolites, which predicted 265 potential targets. Afterwards, by intersecting the predicted results from metabolomics with the differentially expressed proteins from proteomics, we identified five potential targets, namely ACE, GABBR1, Rock1, Abcc1 and Mapk10. Furthermore, western blotting confirmed that compared with control group, hippocampal GABBR1 and Rock1 were enhanced in the model group. Together, this study showed the molecular profile of VD rats through a combination of proteomics, metabolomics, and experimental confirmation methods, offering crucial molecular targets for the diagnosis and treatment of VD.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China; Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Xueqing Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jun Yang
- The First Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenming Ban
- Taihe County Hospital of Traditional Chinese Medicine, Fuyang 236600, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
21
|
Yao D, Li S, You M, Chen Y, Yan S, Li B, Wang Y. Developmental exposure to nonylphenol leads to depletion of the neural precursor cell pool in the hippocampal dentate gyrus. Chem Biol Interact 2024; 401:111187. [PMID: 39111523 DOI: 10.1016/j.cbi.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.
Collapse
Affiliation(s)
- Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yin Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
22
|
Zou C, Cai R, Li Y, Xue Y, Zhang G, Alitongbieke G, Pan Y, Zhang S. β-chitosan attenuates hepatic macrophage-driven inflammation and reverses aging-related cognitive impairment. iScience 2024; 27:110766. [PMID: 39280626 PMCID: PMC11401205 DOI: 10.1016/j.isci.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, increasing evidence has shown the association between liver abnormal inflammation and cognition impairment, yet their age-related pathogenesis remains obscure. Here, our study provides a potential mechanistic link between liver macrophage excessive activation and neuroinflammation in aging progression. In aged and LPS-injected C57BL/6J mice, systemic administration of β-chitosan ameliorates hepatic macrophage-driven inflammation and reduces peripheral accumulations of TNF-α and IL-1β. Downregulation of circulatory pro-inflammatory cytokines then decreases vascular VCAM1 expression and neuroinflammation in the hippocampus, leading to cognitive improvement in aged/LPS-stimulated mice. Interestingly, β-chitosan treatment also exhibits the beneficial effects on the behavioral recovery of aged/LPS-stimulated zebrafish and Caenorhabditis elegans. In our cell culture and molecular docking experiments, we found that β-chitosan prefers shielding the MD-2 pocket, thus blocking the activation of TLR4-MD-2 complex to suppress NF-κB signaling pathway activation. Together, our findings highlight the extensive therapeutic potential of β-chitosan in reversing aged-related/LPS-induced cognitive impairment via the liver-brain axis.
Collapse
Affiliation(s)
- Chenming Zou
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Ruihua Cai
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yunbing Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Sanguo Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
23
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Chung RS, Cavaleri J, Sundaram S, Gilbert ZD, Del Campo-Vera RM, Leonor A, Tang AM, Chen KH, Sebastian R, Shao A, Kammen A, Tabarsi E, Gogia AS, Mason X, Heck C, Liu CY, Kellis SS, Lee B. Understanding the human conflict processing network: A review of the literature on direct neural recordings during performance of a modified stroop task. Neurosci Res 2024; 206:1-19. [PMID: 38582242 DOI: 10.1016/j.neures.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The Stroop Task is a well-known neuropsychological task developed to investigate conflict processing in the human brain. Our group has utilized direct intracranial neural recordings in various brain regions during performance of a modified color-word Stroop Task to gain a mechanistic understanding of non-emotional human conflict processing. The purpose of this review article is to: 1) synthesize our own studies into a model of human conflict processing, 2) review the current literature on the Stroop Task and other conflict tasks to put our research in context, and 3) describe how these studies define a network in conflict processing. The figures presented are reprinted from our prior publications and key publications referenced in the manuscript. We summarize all studies to date that employ invasive intracranial recordings in humans during performance of conflict-inducing tasks. For our own studies, we analyzed local field potentials (LFPs) from patients with implanted stereotactic electroencephalography (SEEG) electrodes, and we observed intracortical oscillation patterns as well as intercortical temporal relationships in the hippocampus, amygdala, and orbitofrontal cortex (OFC) during the cue-processing phase of a modified Stroop Task. Our findings suggest that non-emotional human conflict processing involves modulation across multiple frequency bands within and between brain structures.
Collapse
Affiliation(s)
- Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
25
|
Kong Y, Ji J, Zhan X, Yan W, Liu F, Ye P, Wang S, Tai J. Tet1-mediated 5hmC regulates hippocampal neuroinflammation via wnt signaling as a novel mechanism in obstructive sleep apnoea leads to cognitive deficit. J Neuroinflammation 2024; 21:208. [PMID: 39169375 PMCID: PMC11340128 DOI: 10.1186/s12974-024-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a sleep-disordered breathing characterized by intermittent hypoxia (IH) that may cause cognitive dysfunction. However, the impact of IH on molecular processes involved in cognitive function remains unclear. METHODS C57BL / 6 J mice were exposed to either normoxia (control) or IH for 6 weeks. DNA hydroxymethylation was quantified by hydroxymethylated DNA immunoprecipitation (hMeDIP) sequencing. ten-eleven translocation 1 (Tet1) was knocked down by lentivirus. Specifically, cognitive function was assessed by behavioral experiments, pathological features were assessed by HE staining, the hippocampal DNA hydroxymethylation was examined by DNA dot blot and immunohistochemical staining, while the Wnt signaling pathway and its downstream effects were studied using qRT-PCR, immunofluorescence staining, and Luminex liquid suspension chip analysis. RESULTS IH mice showed pathological changes and cognitive dysfunction in the hippocampus. Compared with the control group, IH mice exhibited global DNA hydroxylmethylation in the hippocampus, and the expression of three hydroxylmethylases increased significantly. The Wnt signaling pathway was activated, and the mRNA and 5hmC levels of Wnt3a, Ccnd2, and Prickle2 were significantly up-regulated. Further caused downstream neurogenesis abnormalities and neuroinflammatory activation, manifested as increased expression of IBA1 (a marker of microglia), GFAP (a marker of astrocytes), and DCX (a marker of immature neurons), as well as a range of inflammatory cytokines (e.g. TNFa, IL3, IL9, and IL17A). After Tet1 knocked down, the above indicators return to normal. CONCLUSION Activation of Wnt signaling pathway by hippocampal Tet1 is associated with cognitive dysfunction induced by IH.
Collapse
Affiliation(s)
- Yaru Kong
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Jie Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Weiheng Yan
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Fan Liu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pengfei Ye
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Tai
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China.
| |
Collapse
|
26
|
Ou Z, Li P, Wu L, Wu Y, Qin L, Fang L, Xu H, Pei K, Chen J. Albiflorin alleviates neuroinflammation of rats after MCAO via PGK1/Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2024; 137:112439. [PMID: 38870884 DOI: 10.1016/j.intimp.2024.112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is acknowledged as one of the most frequent causes of death and disability, in which neuroinflammation plays a critical role. Emerging evidence supports that the PGK1/Nrf2/HO-1 signaling can modulate inflammation and oxidative injury. Albiflorin (ALB), a main component of Radix paeoniae Alba, possesses anti-inflammatory and antioxidative properties. However, how it exerts a protective role still needs further exploration. In our study, the middle cerebral artery occlusion (MCAO) model was established, and the Longa score was applied to investigate the degree of neurological impairment. Dihydroethidium (DHE) staining and Malondialdehyde (MDA) assay were used to detect the level of lipid peroxidation. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was used to measure the infarct area. Evans blue staining was employed to observe the integrality of the blood-brain barrier (BBB). The injury of brain tissue in each group was observed via HE staining. Immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and western blot assay were used for the measurement of inflammatory factors and protein levels. We finally observed that ALB relieved cerebral infarction symptoms, attenuated oxidative damage in brain tissues, and reduced neuroinflammation and cell injury in MCAO rats. The overexpression of PGK1 abrogated the protective effect of ALB after experimental cerebral infarction. ALB promoted PGK1 degradation and induced Nrf2 signaling cascade activation for subsequent anti-inflammatory and antioxidant damage. Generally speaking, ALB exerted a protective role in treating cerebral ischemia, and it might target at PGK1/Nrf2/HO-1 signaling. Thus, ALB might be a potential therapeutic agent to alleviate neuroinflammation and protect brain cells after cerebral infarction.
Collapse
Affiliation(s)
- Zhijie Ou
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Peiyi Li
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Wu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yan Wu
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Lina Qin
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Li Fang
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Hong Xu
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Ke Pei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| | - Juping Chen
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China.
| |
Collapse
|
27
|
Wu Z, Dong L, Tian Z, Yu C, Shu Q, Chen W, Li H. Integrative Analysis of the Age-Related Dysregulated Genes Reveals an Inflammation and Immunity-Associated Regulatory Network in Alzheimer's Disease. Mol Neurobiol 2024; 61:5353-5368. [PMID: 38190023 DOI: 10.1007/s12035-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a long incubation period. While extensive research has led to the construction of long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) regulatory networks, which primarily derived from differential analyses between clinical AD patients and control individuals or mice, there remains a critical knowledge gap pertaining to the dynamic alterations in transcript expression profiles that occur with age, spanning from the pre-symptomatic stage to the onset of AD. In the present study, we examined the transcriptomic changes in AD model mice at three distinct stages: the unaffected (un-) stage, the pre-onset stage, and the late-onset stage, and identified 14, 57, and 99 differentially expressed mRNAs (DEmRs) in AD model mice at 3, 6, and 12 months, respectively. Among these, we pinpointed 16 mRNAs closely associated with inflammation and immunity and excavated their lncRNA-mRNA regulatory network based on a comprehensive analysis. Notably, our preliminary analysis suggested that four lncRNAs (NONMMUT102943, ENSMUST00000160309, NONMMUT083044, and NONMMUT126468), eight miRNAs (miR-34a-5p, miR-22-5p, miR-302a/b-3p, miR-340-5p, miR-376a/b-5p, and miR-487b-5p), and four mRNAs (C1qa, Cd68, Ctss, and Slc11a1) may play pivotal roles in orchestrating immune and inflammatory responses during the early stages of AD. Our study has unveiled age-related AD risk genes, and provided an analytical framework for constructing lncRNA-mRNA networks using time series data and correlation analysis. Most notably, we have successfully constructed a comprehensive regulatory ceRNA network comprising genes intricately linked to inflammatory and immune functions in AD.
Collapse
Affiliation(s)
- Zhuoze Wu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Dong
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhixiao Tian
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Chenhui Yu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Qingrong Shu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Wei Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Kang K, Chen SH, Wang DP, Chen F. Inhibition of Endoplasmic Reticulum Stress Improves Chronic Ischemic Hippocampal Damage Associated with Suppression of IRE1α/TRAF2/ASK1/JNK-Dependent Apoptosis. Inflammation 2024; 47:1479-1490. [PMID: 38401021 PMCID: PMC11343861 DOI: 10.1007/s10753-024-01989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral ischemia is a complex form of stress, of which the most common hemodynamic characteristic is chronic cerebral hypoperfusion (CCH). Lasting endoplasmic reticulum (ER) stress can drive neurological disorders. Targeting ER stress shows potential neuroprotective effects against stroke. However, the role of ER stress in CCH pathological processes and the effects of targeting ER stress on brain ischemia are unclear. Here, a CCH rat model was established by bilateral common carotid artery occlusion. Rats were treated with 4-PBA, URB597, or both for 4 weeks. Neuronal morphological damage was detected using hematoxylin-eosin staining. The expression levels of the ER stress-ASK1 cascade-related proteins GRP78, IRE1α, TRAF2, CHOP, Caspase-12, ASK1, p-ASK1, JNK, and p-JNK were assessed by Western blot. The mRNA levels of TNF-α, IL-1β, and iNOS were assessed by RT-PCR. For oxygen-glucose deprivation experiments, mouse hippocampal HT22 neurons were used. Apoptosis of the hippocampus and HT22 cells was detected by TUNEL staining and Annexin V-FITC analysis, respectively. CCH evoked ER stress with increased expression of GRP78, IRE1α, TRAF2, CHOP, and Caspase-12. Co-immunoprecipitation experiments confirmed the interaction between TRAF2 and ASK1. ASK1/JNK signaling, inflammatory cytokines, and neuronal apoptosis were enhanced, accompanied by persistent ER stress; these were reversed by 4-PBA and URB597. Furthermore, the ASK1 inhibitor GS4997 and 4-PBA displayed synergistic anti-apoptotic effects in cells with oxygen-glucose deprivation. In summary, ER stress-induced apoptosis in CCH is associated with the IRE1α/TRAF2/ASK1/JNK signaling pathway. Targeting the ER stress-ASK1 cascade could be a novel therapeutic approach for ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, 330029, Jiangxi, China
| | - Da-Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
29
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Babalola JA, Stracke A, Loeffler T, Schilcher I, Sideromenos S, Flunkert S, Neddens J, Lignell A, Prokesch M, Pazenboeck U, Strobl H, Tadic J, Leitinger G, Lass A, Hutter-Paier B, Hoefler G. Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice. Mol Metab 2024; 85:101959. [PMID: 38763496 PMCID: PMC11153249 DOI: 10.1016/j.molmet.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice. CONCLUSIONS We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
Collapse
Affiliation(s)
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | | | | | - Spyridon Sideromenos
- QPS Austria GmbH, Grambach, Austria; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Ute Pazenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology Medical University of Graz, Graz, Austria.
| |
Collapse
|
31
|
Liu Y, Zhang J, Gu X, Jia S. Mapping the current trends and hotspots of adult hippocampal neurogenesis from 2004-2023: a bibliometric analysis. Front Neurosci 2024; 18:1416738. [PMID: 38957185 PMCID: PMC11217541 DOI: 10.3389/fnins.2024.1416738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Objective We utilized bibliometric and data visualization techniques to discern the primary research domains and emerging frontiers in the field of adult hippocampal neurogenesis (AHN). Methods We systematically searched the Web of Science database for AHN-related articles published between 2004 and 2023. The retrieved articles were filtered based on publication types (articles and reviews) and language (English). We employed CiteSpace, VOSviewer, and the online bibliometric platform (bibliometric.com) to visualize and analyze the collected data. Results In total, 1,590 AHN-related publications were discovered, exhibiting a steady increase in yearly publications over time. The United States emerged as the leading contributor in AHN research in terms of both publication quantity and national influence. Among all research institutions in the field of AHN, the University of California System exhibited the highest impact. Kempermann, Gerd was the most active author. The publications of the top three active authors primarily focused on the functions of AHN, and reversing hippocampal damage and cognitive impairment by improving AHN. An analysis of reference co-citation clustering revealed 8 distinct research clusters, and the notable ones included "adult hippocampal neurogenesis," "neurogenesis," "hippocampus," "dentate gyrus," "neural stem cell," and "depression." Additionally, a burst keyword detection indicated that 'anxiety' is a current research hotspot in the field of AHN. Conclusion This in-depth bibliographic assessment of AHN offers a deeper insight into the present research hotspots in the field. The association between AHN and cognitive diseases, such as Alzheimer's disease (AD) and anxiety, has emerged as a prominent research hotspot.
Collapse
Affiliation(s)
- Ye Liu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jian Zhang
- Department of Anesthesiology, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyao Gu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shushan Jia
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| |
Collapse
|
32
|
Ren W, Yan XS, Fan JC, Huo DS, Wang XX, Jia JX, Yang ZJ. Effect of total flavonoids of Dracocephalum moldavica L. On neuroinflammation in Alzheimer's disease model amyloid-β (Aβ1-42)-peptide-induced astrocyte activation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:436-447. [PMID: 38557424 DOI: 10.1080/15287394.2024.2336570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated β-amyloid (Aβ1-42)-peptides. Excess deposition of amyloid-β oligomers (AβO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aβ1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aβ1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 μM Aβ1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aβ1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.
Collapse
Affiliation(s)
- Wei Ren
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Jia-Cheng Fan
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Xin-Xin Wang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
- Department of pathology, Baotou Medical College, Inner Mongolia, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
- Department of Human Anatomy, Chifeng University, Inner Mongolia, China
| |
Collapse
|
33
|
Li JQ, Shi YH, Min-Xu, Shi CX, Teng-Wang, Wang TH, Zuo ZF, Liu XZ. Discovery of astragaloside IV against high glucose-induced apoptosis in retinal ganglion cells: Bioinformatics and in vitro studies. Gene 2024; 905:148219. [PMID: 38286267 DOI: 10.1016/j.gene.2024.148219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE To examine the therapeutic mechanism of astragaloside IV (AS-IV) in the management of retinal ganglion cell (RGC) injury induced by high glucose (HG), a comprehensive approach involving the integration of network pharmacology and conducting in vitro and in vivo experiments was utilized. METHODS A rat model of diabetic retinopathy (DR) injury was created by administering streptozotocin through intraperitoneal injection. Additionally, a model of RGC injury induced by HG was established using a glucose concentration of 0.3 mmol/mL. Optical coherence tomography (OCT) images were captured 8 weeks after the injection of AS-IV. AS-IV and FBS were added to the culture medium and incubated for 48 h. The viability of cells was assessed using a CCK-8 assay, while the content of reactive oxygen species (ROS) was measured using DCFH-DA. Apoptosis was evaluated using Annexin V-PI. To identify the targets of AS-IV, hyperglycemia, and RGC, publicly available databases were utilized. The Metascape platform was employed for conducting GO and KEGG enrichment analyses. The STRING database in conjunction with Cytoscape 3.7.2 was used to determine common targets of protein-protein interactions (PPIs) and to identify the top 10 core target proteins in the RGC based on the MCC algorithm. qRT-PCR was used to measure the mRNA expression levels of the top10 core target proteins in RGCs. RESULTS OCT detection indicated that the thickness of the outer nucleus, and inner and outer accessory layers of the retina increased in the AS-IV treated retina compared to that in the DM group but decreased compared to that in the CON group. Coculturing RGC cells with AS-IV after HG induction resulted in a significant increase in cell viability and a decrease in ROS and apoptosis, suggesting that AS-IV can reduce damage to RGC cells caused by high glucose levels by inhibiting oxidative stress. There were 14 potential targets of AS-IV in the treatment of RGC damage induced by high glucose levels. The top 10 core target proteins identified by the MCC algorithm were HIF1α, AKT1, CTNNB1, SMAD2, IL6, SMAD3, IL1β, PPARG, TGFβ1, and NOTCH3. qRT-PCR analysis showed that AS-IV could upregulate the mRNA expression levels of SMAD3, TGF-β1, and NOTCH3, and downregulate the mRNA expression levels of HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1β in high glucose-induced RGC cells. CONCLUSION The findings of this study validate the efficacy of astragaloside IV in the treatment of DR and shed light on the molecular network involved. Specifically, HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1β were identified as the crucial candidate molecules responsible for the protective effects of astragaloside IV on RGCs.
Collapse
Affiliation(s)
- Jun-Qi Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China
| | - Ya-Hui Shi
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China
| | - Min-Xu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China
| | - Cai-Xing Shi
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Teng-Wang
- The First Affiliated Hospital of Jinzhou Medical University, 121000, China
| | - Ting-Hua Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Institute of Neuroscience, Kunming Medical University, Kunming 650500, China.
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China.
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
34
|
Liampas A, Tseriotis VS, Artemiadis A, Zis P, Argyropoulou C, Grigoriadis N, Hadjigeorgiou GM, Vavougyios G. Adult Neoneurogenesis and Oligodendrogenesis in Multiple Sclerosis: A Systematic Review of Human and Animal Studies. Brain Connect 2024; 14:209-225. [PMID: 38534961 DOI: 10.1089/brain.2023.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Introduction: The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. Materials and Methods: Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms "subventricular zone" and "multiple sclerosis," including English-written in vivo and postmortem studies. Results: Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. Discussion: Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. Conclusion: The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.
Collapse
Affiliation(s)
- Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | | | | | | | | | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Vavougyios
- Medical School, University of Cyprus, Nicosia, Cyprus
- University of Thessaly School of Health Sciences, Thessaloniki, Greece
| |
Collapse
|
35
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Zeng Q, Qi Z, He X, Luo C, Wen J, Wei J, Yue F, Zhao X, Wei H, Chen T. Bifidobacterium pseudocatenulatum NCU-08 ameliorated senescence via modulation of the AMPK/Sirt1 signaling pathway and gut microbiota in mice. Food Funct 2024; 15:4095-4108. [PMID: 38563760 DOI: 10.1039/d3fo04575g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aging is a degenerative disease in which organisms and neurological functions decline. Emerging research has underscored the vital role of the gut microbiota in age-related processes. However, the identification of aging-associated core microbiota remains limited. In this investigation, we isolated a strain of B. pseudocatenulatum NCU-08 from the feces of centenarians and assessed its impact on aging using a mouse model induced by D-gal. Our study revealed the exceptional probiotic attributes of B. pseudocatenulatum NCU-08. Administration of B. pseudocatenulatum NCU-08 significantly ameliorated age-related memory impairment, motor dysfunction, and anxiety-like behaviors in aging mice (p < 0.01). Moreover, tissue staining analysis demonstrated that B. pseudocatenulatum NCU-08 reduced the intensity of SA-β-gal-positive in the hippocampus of aging mice. It also reversed pathological damage and structural abnormalities in brain and intestinal tissue. B. pseudocatenulatum NCU-08 inhibited neuroinflammation induced by TLR4/NF-κB (p < 0.01) and preserved the blood-brain barrier integrity by activating the AMPK/Sirt1 pathway (p < 0.05). Furthermore, it mitigated neuronal apoptosis and oxidative stress by upregulating the PI3K/AKT signaling pathway (p < 0.01) and enhancing the activities of antioxidant enzymes, including GSH-Px (p < 0.01), SOD (p < 0.01), and CAT (p < 0.01). Besides, analysis of 16S rRNA sequencing data demonstrated that treatment with B. pseudocatenulatum NCU-08 restored intestinal microbiota homeostasis after senescence. It enhanced the abundance of beneficial bacteria while suppressing the growth of pathogenic microorganisms. In summary, our study unveiled that this novel strain of B. pseudocatenulatum NCU-08 exerts anti-aging effects through regulating the AMPK/Sirt1 pathway and intestinal microbiota. It holds promise as a functional food for promoting anti-aging effects and offers a novel approach to address aging and associated metabolic disorders.
Collapse
Affiliation(s)
- Qingwei Zeng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Xia He
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Chuanlin Luo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jianing Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Fenfang Yue
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xuanqi Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hong Wei
- The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, P. R. China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
37
|
Liu S, Wang M, Xiao H, Ye J, Cao L, Li W, Sun G. Advancements in research on the effects of panax notoginseng saponin constituents in ameliorating learning and memory disorders. Heliyon 2024; 10:e28581. [PMID: 38586351 PMCID: PMC10998096 DOI: 10.1016/j.heliyon.2024.e28581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, β-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.
Collapse
Affiliation(s)
- Shusen Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
38
|
Parashar A, Jha D, Mehta V, Chauhan B, Ghosh P, Deb PK, Jaiswal M, Prajapati SK. Sonic hedgehog signalling pathway contributes in age-related disorders and Alzheimer's disease. Ageing Res Rev 2024; 96:102271. [PMID: 38492808 DOI: 10.1016/j.arr.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is caused by the aging process and manifested by cognitive deficits and progressive memory loss. During aging, several conditions, including hypertension, diabetes, and cholesterol, have been identified as potential causes of AD by affecting Sonic hedgehog (Shh) signalling. In addition to being essential for cell differentiation and proliferation, Shh signalling is involved in tissue repair and the prevention of neurodegeneration. Neurogenesis is dependent on Shh signalling; inhibition of this pathway results in neurodegeneration. Several protein-protein interactions that are involved in Shh signalling are implicated in the pathophysiology of AD like overexpression of the protein nexin-1 inhibits the Shh pathway in AD. A protein called Growth Arrest Specific-1 works with another protein called cysteine dioxygenase (CDO) to boost Shh signalling. CDO is involved in the development of the central nervous system (CNS). Shh signalling strengthened the blood brain barrier and therefore prevent the entry of amyloid beta and other toxins to the brain from periphery. Further, several traditional remedies used for AD and dementia, including Epigallocatechin gallate, yokukansan, Lycium barbarum polysaccharides, salvianolic acid, and baicalin, are known to stimulate the Shh pathway. In this review, we elaborated that the Shh signalling exerts a substantial influence on the pathogenesis of AD. In this article, we have tried to explore the various possible connections between the Shh signalling and various known pathologies of AD.
Collapse
Affiliation(s)
- Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India.
| | - Dhruv Jha
- Birla Institute of Technology, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | - Bonney Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Pappu Ghosh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Prashanta Kumar Deb
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | | | | |
Collapse
|
39
|
Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang C, Chung SK, Huang Y, Sun J, Deng M, Zhou L, Cheng X. Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism. Neural Regen Res 2024; 19:650-656. [PMID: 37721297 PMCID: PMC10581554 DOI: 10.4103/1673-5374.380906] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular etiology is the second most prevalent cause of cognitive impairment globally. Endothelin-1, which is produced and secreted by endothelial cells and astrocytes, is implicated in the pathogenesis of stroke. However, the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood. Here, using mice in which astrocytic endothelin-1 was overexpressed, we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia (1 hour of ischemia; 7 days, 28 days, or 3 months of reperfusion). We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion. Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6, which were differentially expressed in the brain, were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke. Moreover, the levels of the enriched differentially expressed proteins were closely related to lipid metabolism, as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis. Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine, sphingomyelin, and phosphatidic acid. Overall, this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Li
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Wen Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuefang Cai
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhenqiu Ning
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yingying Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Chengyi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sookja Ki Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Yan Huang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Jingbo Sun
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Minzhen Deng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xiao Cheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| |
Collapse
|
40
|
Wang X, Gan W, Kang M, Lv C, Zhao Z, Wu Y, Zhang X, Wang R. Asthma aggravates alzheimer's disease by up-regulating NF- κB signaling pathway through LTD4. Brain Res 2024; 1825:148711. [PMID: 38092296 DOI: 10.1016/j.brainres.2023.148711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Clinical studies have shown that asthma is a risk factor for dementia or Alzheimer's disease (AD). To investigate whether asthma aggravates AD in APP/PS1 mice and explore the potential mechanisms, an asthma model was established using six-month-old APP/PS1 mice, and montelukast was used as a therapeutic agent in APP/PS1 mice with asthma. The Morris water maze test showed that asthma aggravates spatial learning and memory abilities. Asthma also upregulates the NF-κB inflammatory pathway in APP/PS1 mice and promotes the expression of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), amyloid-β (Aβ) deposition, neuronal damage, synaptic plasticity deficiency, activation of microglia and astrocytes. The level of LTD4 and its receptor CysLT1R in the hippocampus of APP/PS1 mice after the asthma modeling was established was higher than that in APP/PS1 mice, suggesting that asthma may affect the pathology of AD through LTD4 and its receptor Cys-LT1R. Montelukast ameliorates these pathological changes and cognitive impairment. These results suggest that asthma aggravates AD pathology and cognitive impairment of APP/PS1 mice via upregulation of the NF-κB inflammatory pathway, and montelukast ameliorates these pathological changes.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Wenjing Gan
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Meimei Kang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Caizhen Lv
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Zhiwei Zhao
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Yanchuan Wu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Xu Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China; Beijing Institute for Brain Disorders, Beijing, PR China; National Clinical Research Center for Geriatric Disorders, Beijing, PR China.
| |
Collapse
|
41
|
Kim D, Shin Y, Cho S, Kim H, Hwang H, Shin H, Chung Y, Jun YH. Dexmedetomidine Stereotaxic Injection Alleviates Neuronal Loss Following Bilateral Common Carotid Artery Occlusion via Up-Regulation of BDNF Expression. In Vivo 2024; 38:184-189. [PMID: 38148065 PMCID: PMC10756478 DOI: 10.21873/invivo.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Neurogenesis is an important process in the recovery from neurological damage caused by ischemic lesions. Endogenous neurogenesis is insufficient to restore neuronal damage following cerebral ischemia. Dexmedetomidine (DEX) exerts neuroprotective effects against cerebral ischemia and ischemia/reperfusion injury. DEX promotes neurogenesis, including neuronal proliferation and maturation in the hippocampus. In a previous study, we showed that early neurogenesis increased 3 days after bilateral common carotid artery occlusion (BCCAO). In this study, we investigated the effect of DEX on neurogenesis 3 days after BCCAO. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats (7-8 weeks old) were used as a BCCAO model. Right and left common carotid arteries of the rats were occluded using 4-0 silk sutures. Two hours after surgery, an intracranial DEX injection was administered to rats that underwent surgery using a stereotaxic injector. Brains were obtained from control and BCCAO rats 3 days after surgery. Immunohistochemistry was performed on the cortex and dentate gyrus of the hippocampus using a NeuN antibody. Western blot was performed with HIF1α and brain-derived neurotrophic factor (BDNF) antibodies. RESULTS The number of mature neurons decreased 3 days after BCCAO, but DEX treatment alleviated neural loss in the parietal cortex and hippocampus. Up-regulation of BDNF was also observed after dexmedetomidine treatment. CONCLUSION Stereotaxic injection of dexmedetomidine alleviates neural loss following BCCAO by up-regulating BDNF expression.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Yejin Shin
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Suyeon Cho
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Haksung Kim
- Department of Neurosurgery, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Hyoin Hwang
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Hyekyoung Shin
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Yoonyoung Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Yong-Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| |
Collapse
|
42
|
Li X, Chen S, Zheng G, Yang Y, Yin N, Niu X, Yao L, Lv P. Atorvastatin Calcium Ameliorates Cognitive Deficits Through the AMPK/Mtor Pathway in Rats with Vascular Dementia. Comb Chem High Throughput Screen 2024; 27:148-156. [PMID: 37282650 DOI: 10.2174/1386207326666230606114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
AIM In this study, the protective effects of atorvastatin calcium (AC) on nerve cells and cognitive improvement in vivo and in vitro were investigated by establishing cell models and vascular dementia (VD) rat models. BACKGROUND VD is a neurodegenerative disease characterized by cognitive deficits caused by chronic cerebral hypoperfusion. AC has been studied for its potential to cure VD but its efficacy and underlying mechanism are still unclear. OBJECTIVE The mechanism of action of AC on cognitive deficits in the early stages of VD is unclear. Here, the 2-vessel occlusion (2-VO) model in vivo and the hypoxia/reoxygenation (H/R) cell model in vitro was established to investigate the function of AC in VD. METHODS The spatial learning and memory abilities of rats were detected by the Morris method. The IL-6, tumour necrosis factor-α (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD) in cell supernatant was tested by ELISA kits. After behavioural experiments, rats were anaesthetized and sacrificed, and their brains were extracted. One part was immediately fixed in 4% paraformaldehyde for H&E, Nissl, and immunohistochemical analyses, and the other was stored in liquid nitrogen. All data were shown as mean ± SD. Statistical comparison between the two groups was performed by Student's t-test. A two-way ANOVA test using GraphPad Prism 7 was applied for escape latency analysis and the swimming speed test. The difference was considered statistically significant at p < 0.05. RESULTS AC decreased apoptosis, increased autophagy, and alleviated oxidative stress in primary hippocampal neurons. AC regulated autophagy-related proteins in vitro by western blotting. VD mice improved cognitively in the Morris water maze. Spatial probing tests showed that VD animals administered AC had considerably longer swimming times to the platform than VD rats. H&E and Nissl staining showed that AC reduces neuronal damage in VD rats. Western blot and qRT-PCR indicated that AC in VD rats inhibited Bax and promoted LC3-II, Beclin-1, and Bcl-2 in the hippocampus region. AC also improves cognition via the AMPK/mTOR pathway. CONCLUSION This study found that AC may relieve learning and memory deficits as well as neuronal damage in VD rats by changing the expression of apoptosis/autophagy-related genes and activating the AMPK/mTOR signalling pathway in neurons.
Collapse
Affiliation(s)
- Xiuqin Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
- Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Shaopeng Chen
- Department of Preventive Health, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Guiming Zheng
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Yanyan Yang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Nan Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Lixia Yao
- Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| |
Collapse
|
43
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Malik SC, Lin JD, Ziegler-Waldkirch S, Tholen S, Deshpande SS, Schwabenland M, Schilling O, Vlachos A, Meyer-Luehmann M, Schachtrup C. Tpr Misregulation in Hippocampal Neural Stem Cells in Mouse Models of Alzheimer's Disease. Cells 2023; 12:2757. [PMID: 38067185 PMCID: PMC10706632 DOI: 10.3390/cells12232757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-β plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.
Collapse
Affiliation(s)
- Subash C. Malik
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Sachin S. Deshpande
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
45
|
Umino M, Okuda M, Ohkubo T, Fujii T, Matsubara K. Long-term intake of α-glycerophosphocholine (GPC) suppresses microglial inflammation and blood-brain barrier (BBB) disruption and promotes neurogenesis in senescence-accelerated mice prone 8 (SAMP8). Biosci Biotechnol Biochem 2023; 87:1537-1542. [PMID: 37723613 DOI: 10.1093/bbb/zbad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
We evaluated the effects of long-term glycerophosphocholine (GPC) intake on microglia, the blood-brain barrier (BBB), and neurogenesis in senescence-accelerated mice prone 8 (SAMP8). The GPC intake suppressed microglial activation and BBB disruption and sustained doublecortin-positive cells in the hippocampus. The results indicate that GPC intake exerts anti-inflammatory and neuroprotective effects in the brain of aged mice.
Collapse
Affiliation(s)
- Mitsuki Umino
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mayumi Okuda
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Ohkubo
- Department of Health Nutrition, Sendai Shirayuri Women's College, Sehndai, Miyagi, Japan
| | - Tsutomu Fujii
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
46
|
Kirchner K, Garvert L, Kühn L, Bonk S, Grabe HJ, Van der Auwera S. Detrimental Effects of ApoE ε4 on Blood-Brain Barrier Integrity and Their Potential Implications on the Pathogenesis of Alzheimer's Disease. Cells 2023; 12:2512. [PMID: 37947590 PMCID: PMC10649078 DOI: 10.3390/cells12212512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease representing the most common type of dementia in older adults. The major risk factors include increased age, genetic predisposition and socioeconomic factors. Among the genetic factors, the apolipoprotein E (ApoE) ε4 allele poses the greatest risk. Growing evidence suggests that cerebrovascular dysfunctions, including blood-brain barrier (BBB) leakage, are also linked to AD pathology. Within the scope of this paper, we, therefore, look upon the relationship between ApoE, BBB integrity and AD. In doing so, both brain-derived and peripheral ApoE will be considered. Despite the considerable evidence for the involvement of brain-derived ApoE ε4 in AD, information about the effect of peripheral ApoE ε4 on the central nervous system is scarce. However, a recent study demonstrated that peripheral ApoE ε4 might be sufficient to impair brain functions and aggravate amyloid-beta pathogenesis independent from brain-based ApoE ε4 expression. Building upon recent literature, we provide an insight into the latest research that has enhanced the understanding of how ApoE ε4, secreted either in the brain or the periphery, influences BBB integrity and consequently affects AD pathogenesis. Subsequently, we propose a pathway model based on current literature and discuss future research perspectives.
Collapse
Affiliation(s)
- Kevin Kirchner
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Luise Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Sarah Bonk
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, 17475 Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
47
|
Shim YJ, Jung WH, Billig AJ, Sedley W, Song JJ. Hippocampal atrophy is associated with hearing loss in cognitively normal adults. Front Neurosci 2023; 17:1276883. [PMID: 37942139 PMCID: PMC10628109 DOI: 10.3389/fnins.2023.1276883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives A growing body of evidence suggests that age-related hearing loss (HL) is associated with morphological changes of the cerebral cortex, but the results have been drawn from a small amount of data in most studies. The aim of this study is to investigate the correlation between HL and gray matter volume (GMV) in a large number of subjects, strictly controlling for an extensive set of possible biases. Methods Medical records of 576 subjects who underwent pure tone audiometry, brain magnetic resonance imaging (MRI), and the Korean Mini-Mental State Exam (K-MMSE) were reviewed. Among them, subjects with normal cognitive function and free of central nervous system disorders or coronary artery disease were included. Outliers were excluded after a sample homogeneity check. In the end, 405 subjects were enrolled. Pure tone hearing thresholds were determined at 0.5, 1, 2, and 4 kHz in the better ear. Enrolled subjects were divided into 3 groups according to pure tone average: normal hearing (NH), mild HL (MHL), and moderate-to-severe HL (MSHL) groups. Using voxel-based morphometry, we evaluated GMV changes that may be associated with HL. Sex, age, total intracranial volume, type of MRI scanner, education level, K-MMSE score, smoking status, and presence of hypertension, diabetes mellitus and dyslipidemia were used as covariates. Results A statistically significant negative correlation between the hearing thresholds and GMV of the hippocampus was elucidated. Additionally, in group comparisons, the left hippocampal GMV of the MSHL group was significantly smaller than that of the NH and MHL groups. Conclusion Based on the negative correlation between hearing thresholds and hippocampal GMV in cognitively normal old adults, the current study indicates that peripheral deafferentation could be a potential contributing factor to hippocampal atrophy.
Collapse
Affiliation(s)
- Ye Ji Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Wi Hoon Jung
- Department of Psychology, Gachon University, Seongnam, Republic of Korea
| | | | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Jae-Jin Song
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
48
|
Xue H, Xu X, Yan Z, Cheng J, Zhang L, Zhu W, Cui G, Zhang Q, Qiu S, Yao Z, Qin W, Liu F, Liang M, Fu J, Xu Q, Xu J, Xie Y, Zhang P, Li W, Wang C, Shen W, Zhang X, Xu K, Zuo XN, Ye Z, Yu Y, Xian J, Yu C. Genome-wide association study of hippocampal blood-oxygen-level-dependent-cerebral blood flow correlation in Chinese Han population. iScience 2023; 26:108005. [PMID: 37822511 PMCID: PMC10562876 DOI: 10.1016/j.isci.2023.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Correlation between blood-oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) has been used as an index of neurovascular coupling. Hippocampal BOLD-CBF correlation is associated with neurocognition, and the reduced correlation is associated with neuropsychiatric disorders. We conducted the first genome-wide association study of the hippocampal BOLD-CBF correlation in 4,832 Chinese Han subjects. The hippocampal BOLD-CBF correlation had an estimated heritability of 16.2-23.9% and showed reliable genome-wide significant association with a locus at 3q28, in which many variants have been linked to neuroimaging and cerebrospinal fluid markers of Alzheimer's disease. Gene-based association analyses showed four significant genes (GMNC, CRTC2, DENND4B, and GATAD2B) and revealed enrichment for mast cell calcium mobilization, microglial cell proliferation, and ubiquitin-related proteolysis pathways that regulate different cellular components of the neurovascular unit. This is the first unbiased identification of the association of hippocampal BOLD-CBF correlation, providing fresh insights into the genetic architecture of hippocampal neurovascular coupling.
Collapse
Affiliation(s)
- Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Shijun Qiu
- Department of Medical Imaging, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
49
|
Chaaya R, Steele JR, Oliver BG, Chen H, Machaalani R. Effects of e-vapour and high-fat diet on the immunohistochemical staining of nicotinic acetylcholine receptors, apoptosis, microglia and astrocytes in the adult male mouse hippocampus. J Chem Neuroanat 2023; 132:102303. [PMID: 37343645 DOI: 10.1016/j.jchemneu.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The use of e-cigarettes/e-vapour, and the consumption of a high-fat diet (HFD), are two popular lifestyle choices associated with alterations in the hippocampus. This study, using a mouse model, investigated the effects of exposure to e-vapour (± nicotine) and HFD (43% fat) consumption, on the expression of nicotinic acetylcholine receptor (nAChR) subunits α3, α4, α7 and β2, apoptosis markers caspase-3 and TUNEL, microglial marker Iba-1, and astrocyte marker GFAP, in hippocampal subregions of dentate gyrus (DG) and cornu ammonis (CA) 1-3. The major findings included: (1) HFD alone had minimal effect with no consistent pattern or interaction between the markers, (2) E-vapour (± nicotine) predominantly affected the CA2 subregion, decreasing α7 and β2 nAChR subunits and Iba-1, (3) Nicotine e-vapour increased TUNEL across all subregions, and (4) HFD, in the presence of nicotine-free e-vapour, decreased caspase-3 and increased TUNEL across all regions, and decreased Iba-1 in the CA subregions, while HFD and nicotine-containing e-vapour, subregion specifically affected the α3, α4 and α7 nAChR subunits, with a protective effect against change in GFAP in the DG and Iba-1 in the CA1 and CA3. These findings highlight that e-vapour itself alters nAChRs, particularly in the CA2 subregion, associated with a decrease in neuroinflammatory response (Iba-1) across the whole hippocampus, and the addition of nicotine increases cell apoptosis across the whole hippocampus. HFD alone was not detrimental in our model, but in the presence of nicotine-free e-vapour, it differentially affected apoptosis, while the addition of nicotine increased nAChR subunits.
Collapse
Affiliation(s)
- Rita Chaaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Joel R Steele
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
50
|
Kim H, Choi M, Han S, Park SY, Jeong M, Kim SR, Hwang EM, Lee SG. Expression patterns of AEG-1 in the normal brain. Brain Struct Funct 2023; 228:1629-1641. [PMID: 37421418 DOI: 10.1007/s00429-023-02676-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Astrocyte elevated gene-1 (AEG-1) is a well-known oncogene implicated in various types of human cancers, including brain tumors. Recently, AEG-1 has also been reported to play pivotal roles in glioma-associated neurodegeneration and neurodegenerative diseases like Parkinson's disease and amyotrophic lateral sclerosis. However, the normal physiological functions and expression patterns of AEG-1 in the brain are not well understood. In this study, we investigated the expression patterns of AEG-1 in the normal mouse brain and found that AEG-1 is widely expressed in neurons and neuronal precursor cells, but little in glial cells. We observed differential expression levels of AEG-1 in various brain regions, and its expression was mainly localized in the cell body of neurons rather than the nucleus. Additionally, AEG-1 was expressed in the cytoplasm of Purkinje cells in both the mouse and human cerebellum, suggesting its potential role in this brain region. These findings suggest that AEG-1 may have important functions in normal brain physiology and warrant further investigation. Our results may also shed light on the differential expression patterns of AEG-1 in normal and pathological brains, providing insights into its roles in various neurological disorders.
Collapse
Affiliation(s)
- Hail Kim
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang-Yoon Park
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myoungseok Jeong
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|