1
|
Jeong H, Chon Y, Yoon S, Choi EK, Lee N, Oh JK, Chung YA, Song IU. Structural and functional alterations in hypothalamic subregions in male patients with alcohol use disorder. Drug Alcohol Depend 2025; 268:112554. [PMID: 39848134 DOI: 10.1016/j.drugalcdep.2025.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND The hypothalamus is involved in stress regulation and reward processing, with its various nuclei exhibiting unique functions and connections. However, human neuroimaging studies on the hypothalamic subregions are limited in drug addiction. This study examined the volumes and functional connectivity of hypothalamic subregions in individuals with alcohol use disorder (AUD). METHOD The study included 24 male patients with AUD who had maintained abstinence and 24 healthy male controls, all of whom underwent brain structural and resting-state functional magnetic resonance imaging. The hypothalamus was segmented into five subunits using a deep learning-based algorithm, with comparisons of volumes and functional connectivity (FC) between the two groups. The relationships between these measures and alcohol-related characteristics were examined in the AUD group. RESULTS Findings indicated lower volumes in the anterior-superior (corrected-p < 0.001) and tuberal-superior subunits (corrected-p = 0.002) and altered FC of these and the anterior-inferior subunit among AUD patients (corrected-p < 0.05). Moreover, greater disease severity and a longer history of heavy drinking correlated with lower volumes in the anterior-superior (r = -0.42, p = 0.045) and tuberal-superior subregions (r = -0.61, p = 0.013), respectively. Conversely, a longer abstinence duration was associated with larger volumes in the anterior-superior (r = 0.56, p = 0.008) and tuberal-superior subunits (r = 0.40, p = 0.048) and with higher FC between the tuberal-superior hypothalamus and the thalamus, caudate, and anterior cingulate cortex (r = 0.55, p = 0.014). CONCLUSIONS Our results suggest that specific regional alterations within the hypothalamus, particularly the superior subregions, are associated with AUD, and more importantly, that these alterations may be reversible with prolonged abstinence.
Collapse
Affiliation(s)
- Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Younghoon Chon
- Department of Psychiatry, Incheon Chamsarang Hospital, Incheon, Republic of Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Eun Kyoung Choi
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Narae Lee
- Department of Psychiatry, Incheon Chamsarang Hospital, Incheon, Republic of Korea
| | - Jin Kyoung Oh
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Yong-An Chung
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Dankert AM, Kash TL, Thiele TE. Repeated cycles of binge-like ethanol consumption and abstinence alter neuropeptide mRNA in prefrontal and insular cortex, amygdala, and lateral hypothalamus of male and female C57BL/6J mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:573-586. [PMID: 39888221 PMCID: PMC11928273 DOI: 10.1111/acer.15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Binge drinking is a risky pattern of alcohol (ethanol) consumption associated with a variety of negative outcomes, including the development of alcohol use disorder (AUD). Many neuropeptide systems are thought to become dysregulated in AUD; however, whether repeated cycles of binge-like ethanol consumption and abstinence following binge-like drinking alter neuropeptide mRNA in key brain regions, such as the medial prefrontal cortex (mPFC), insular cortex (IC), amygdala, and lateral hypothalamus (LH), remains unknown. METHODS Male and female mice underwent 0, 3, or 6 cycles of binge-like ethanol consumption using the "Drinking in the Dark" (DID) paradigm. Brain tissue was collected either immediately following the final session of DID or after a 24-h period of abstinence, and quantitative polymerase chain reaction (qPCR) was performed to assess how repeated cycles of binge-like ethanol intake and abstinence alter relative mRNA expression for 22 neuropeptide-related targets. RESULTS We observed that repeated cycles of binge-like ethanol consumption and abstinence altered relative mRNA expression for 11 targets in the mPFC, five targets in the IC, eight targets in the amygdala, and two targets in the LH. Two of these alterations were specific to female mice, while one was specific to male mice. CONCLUSIONS These data suggest that neuropeptide mRNA is altered by repeated cycles of binge-like ethanol intake and abstinence in a brain region and sex-dependent manner. The current findings provide a useful foundation from which to explore potential targets to decrease binge-like ethanol consumption and prevent the development of AUD.
Collapse
Affiliation(s)
- Anne M Dankert
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas L Kash
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Flores-Ramirez FJ, Illenberger JM, Martin-Fardon R. Interaction between corticotropin-releasing factor, orexin, and dynorphin in the infralimbic cortex may mediate exacerbated alcohol-seeking behavior. Neurobiol Stress 2024; 33:100695. [PMID: 39640001 PMCID: PMC11617300 DOI: 10.1016/j.ynstr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
A major challenge for the treatment of alcohol use disorder (AUD) is relapse to alcohol use, even after protracted periods of self-imposed abstinence. Stress significantly contributes to the chronic relapsing nature of AUD, given its long-lasting ability to elicit intense craving and precipitate relapse. As individuals transition to alcohol dependence, compensatory allostatic mechanisms result in insults to hypothalamic-pituitary-adrenal axis function, mediated by corticotropin-releasing factor (CRF), which is subsequently hypothesized to alter brain reward pathways, influence affect, elicit craving, and ultimately perpetuate problematic drinking and relapse vulnerability. Orexin (OX; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and has been shown to interact with CRF. Interestingly, most hypothalamic cells that express Ox mRNA also express Pdyn mRNA. Both dynorphin and OX are located in the same synaptic vesicles, and they are co-released. The infralimbic cortex (IL) of the medial prefrontal cortex (mPFC) has emerged as being directly involved in the compulsive nature of alcohol consumption during dependence. The IL is a CRF-rich region that receives OX projections from the hypothalamus and where OX receptor mRNA has been detected. Although not thoroughly understood, anatomical and behavioral pharmacology data suggest that CRF, OX, and dynorphin may interact, particularly in the IL, and that functional interactions between these three systems in the IL may be critical for the etiology and pervasiveness of compulsive alcohol seeking in dependent subjects that may render them vulnerable to relapse. The present review presents evidence of the role of the IL in AUD and discusses functional interactions between CRF, OX, and dynorphin in this structure and how they are related to exacerbated alcohol drinking and seeking.
Collapse
Affiliation(s)
- Francisco J. Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychology, California State University, San Marcos, CA, USA
| | | | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
4
|
Li G, Dong Y, Chen Y, Li B, Chaudhary S, Bi J, Sun H, Yang C, Liu Y, Li CSR. Drinking severity mediates the relationship between hypothalamic connectivity and rule-breaking/intrusive behavior differently in young women and men: an exploratory study. Quant Imaging Med Surg 2024; 14:6669-6683. [PMID: 39281112 PMCID: PMC11400642 DOI: 10.21037/qims-24-815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Background The hypothalamus is a key hub of the neural circuits of motivated behavior. Alcohol misuse may lead to hypothalamic dysfunction. Here, we investigated how resting-state hypothalamic functional connectivities are altered in association with the severity of drinking and clinical comorbidities and how men and women differ in this association. Methods We employed the data of the Human Connectome Project. A total of 870 subjects were included in data analyses. The severity of alcohol use was quantified for individual subjects with the first principal component (PC1) identified from principal component analyses of all drinking measures. Rule-breaking and intrusive scores were evaluated with the Achenbach Adult Self-Report Scale. We performed a whole-brain regression of hypothalamic connectivities on drinking PC1 in all subjects and men/women separately and evaluated the results at a corrected threshold. Results Higher drinking PC1 was associated with greater hypothalamic connectivity with the paracentral lobule (PCL). Hypothalamic PCL connectivity was positively correlated with rule-breaking score in men (r=0.152, P=0.002) but not in women. In women but not men, hypothalamic connectivity with the left temporo-parietal junction (LTPJ) was negatively correlated with drinking PC1 (r=-0.246, P<0.001) and with intrusiveness score (r=-0.127, P=0.006). Mediation analyses showed that drinking PC1 mediated the relationship between hypothalamic PCL connectivity and rule-breaking score in men and between hypothalamic LTPJ connectivity and intrusiveness score bidirectionally in women. Conclusions We characterized sex-specific hypothalamic connectivities in link with the severity of alcohol misuse and its comorbidities. These findings extend the literature by elucidating the potential impact of problem drinking on the motivation circuits.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yun Dong
- University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Bao Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Hao Sun
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chunlan Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Youjun Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
6
|
Goel M, Mittal A, Jain VR, Bharadwaj A, Modi S, Ahuja G, Jain A, Kumar K. Integrative Functions of the Hypothalamus: Linking Cognition, Emotion and Physiology for Well-being and Adaptability. Ann Neurosci 2024:09727531241255492. [PMID: 39544638 PMCID: PMC11559822 DOI: 10.1177/09727531241255492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Background The hypothalamus, a small yet crucial neuroanatomical structure, integrates external (e.g., environmental) and internal (e.g., physiological/hormonal) stimuli. This integration governs various physiological processes and influences cognitive, emotional, and behavioral outcomes. It serves as a functional bridge between the nervous and endocrine systems, maintaining homeostasis and coordinating bodily functions. Summary Recent advancements in the neurobiology of the hypothalamus have elucidated its functional map, establishing a causal relationship between its responses-such as respiration, sleep, and stress-and various physiological processes. The hypothalamus facilitates and coordinates these complex processes by processing diverse stimuli, enabling the body to maintain internal balance and respond effectively to external demands. This review delves into the hypothalamus's intricate connections with cognition, emotion, and physiology, exploring how these interactions promote overall well-being and adaptability. Key Message Targeted external stimuli can modulate hypothalamic neuronal activities, impacting the physiological, cognitive, and emotional landscape. The review highlights non-invasive techniques, such as controlled breathing exercises, optimized sleep architecture, and stress management, as potential methods to enhance hypothalamic function. Ultimately, this comprehensive review underscores the multifaceted role of the hypothalamus in integrating signals, maintaining homeostasis, and influencing cognition, emotion, and physiology.
Collapse
Affiliation(s)
- Mansi Goel
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | - Vijaya Raje Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | | | - Shivani Modi
- Ceekr Concepts Private Limited, New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD, New Delhi, India
| | - Ankur Jain
- Ceekr Concepts Private Limited, New Delhi, India
| | | |
Collapse
|
7
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Sadeghi A, Nejat F, Mehramiz A. The Role of Orexin Receptor Antagonists in Inhibiting Drug Addiction: A Review Article. ADDICTION & HEALTH 2024; 16:130-139. [PMID: 39051042 PMCID: PMC11264478 DOI: 10.34172/ahj.2024.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/15/2024] [Indexed: 07/27/2024]
Abstract
The orexinergic system and its receptors are involved in many physiological processes. Their functions in energy homeostasis, arousal, cognition, stress processing, endocrine functions, and pain modulation have been investigated. Many studies have shown that the orexinergic system cooperates with the dopaminergic system in the addiction process. Emerging evidence suggests that the orexinergic system can be effective in the induction of drug dependence and tolerance. Therefore, several researches have been conducted on the effect of orexin receptor (OXR) antagonists on reducing tolerance and dependence caused by drug abuse. Due to the significant growth of the studies on the orexinergic system, the current literature was conducted to collect the findings of previous studies on orexin and its receptors in the induction of drug addiction. In addition, cellular and molecular mechanisms of the possible role of orexin in drug tolerance and dependence are discussed. The findings indicate that the administration of OXR antagonists reduces drug dependence. OXR blockers seem to counteract the addictive effects of drugs through multiple mechanisms, such as preventing neuronal adaptation. This review proposes the potential clinical use of OXR antagonists in the treatment of drug dependence.
Collapse
Affiliation(s)
- Peyman Esmaili-Shahzade-Ali-Akbari
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Atena Sadeghi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | - Alireza Mehramiz
- Department of Physical Therapy, Faculty of Paramedical and Rehabilitation Science, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Kuebler IRK, Suárez M, Wakabayashi KT. Sex differences and sex-specific regulation of motivated behavior by Melanin-concentrating hormone: a short review. Biol Sex Differ 2024; 15:33. [PMID: 38570844 PMCID: PMC10993549 DOI: 10.1186/s13293-024-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA
| | - Mauricio Suárez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA.
- Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE, 68588, USA.
| |
Collapse
|
9
|
Collier AD, Yasmin N, Karatayev O, Abdulai AR, Yu B, Fam M, Campbell S, Leibowitz SF. Embryonic ethanol exposure and optogenetic activation of hypocretin neurons stimulate similar behaviors early in life associated with later alcohol consumption. Sci Rep 2024; 14:3021. [PMID: 38321123 PMCID: PMC10847468 DOI: 10.1038/s41598-024-52465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The initiation of alcohol use early in life is one of the strongest predictors of developing a future alcohol use disorder. Clinical studies have identified specific behaviors during early childhood that predict an increased risk for excess alcohol consumption later in life. These behaviors, including increased hyperactivity, anxiety, novelty-seeking, exploratory behavior, impulsivity, and alcohol-seeking, are similarly stimulated in children and adolescent offspring of mothers who drink alcohol during pregnancy. Here we tested larval zebrafish in addition to young pre-weanling rats and found this repertoire of early behaviors along with the overconsumption of alcohol during adolescence to be increased by embryonic ethanol exposure. With hypocretin/orexin (Hcrt) neurons known to be stimulated by ethanol and involved in mediating these alcohol-related behaviors, we tested their function in larval zebrafish and found optogenetic activation of Hcrt neurons to stimulate these same early alcohol-related behaviors and later alcohol intake, suggesting that these neurons have an important role in producing these behaviors. Together, these results show zebrafish to be an especially useful animal model for investigating the diverse neuronal systems mediating behavioral changes at young ages that are produced by embryonic ethanol exposure and predict an increased risk for developing alcohol use disorder.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Kuebler IRK, Liu Y, Bueno Álvarez BS, Huber NM, Jolton JA, Dasari R, Wakabayashi KT. Melanin-concentrating hormone receptor antagonism differentially attenuates nicotine experience-dependent locomotor behavior in female and male rats. Pharmacol Biochem Behav 2023; 232:173649. [PMID: 37793486 PMCID: PMC10985048 DOI: 10.1016/j.pbb.2023.173649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Nicotine is a significant public health concern because it is the primary pharmacological agent in tobacco use disorder. One neural system that has been implicated in the symptoms of several substance use disorders is the melanin-concentrating hormone (MCH) system. MCH regulates various motivated behaviors depending on sex, yet little is known of how this interaction affects experience with drugs of abuse, particularly nicotine. The goal of this study was to determine the effect of MCH receptor antagonism on experience-dependent nicotine-induced locomotion after chronic exposure, particularly on the expression of locomotor sensitization. Adult female and male Wistar rats were given saline then cumulative doses of nicotine (0.1, 0.32, 0.56, and 1.0 mg/kg) intraperitoneally to determine the acute effects of nicotine (day 1). Next, rats were treated with 1.0 mg/kg nicotine for 6 days, given an identical series of cumulative doses (day 8), and then kept in a drug-free state for 6 days. On day 15, rats were pretreated with vehicle or the MCH receptor antagonist GW803430 (10 or 30 mg/kg) before another series of cumulative doses to assess response to chronic nicotine. After vehicle, male rats increased nicotine locomotor activation from day 1 to day 15, and both sexes showed a sensitized response when normalized to saline. The lower dose of GW803430 decreased locomotion compared to vehicle in females, while the higher dose decreased locomotion in males. Both sexes showed nicotine dose-dependent effects of GW803430, strongest at lower doses of nicotine. Controlling for sex-based locomotor differences revealed that females are more sensitive to GW803430. The high dose of GW803430 also decreased saline locomotion in males. Together, the results of our study suggest that MCH is involved in the expression of nicotine locomotor sensitization, and that MCH regulates these nicotine behavioral symptoms differently across sex.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Youxi Liu
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Bárbara S Bueno Álvarez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Noah M Huber
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Raaga Dasari
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America; Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE 68588, United States of America.
| |
Collapse
|
11
|
Tarragon E. Alcohol and energy drinks: individual contribution of common ingredients on ethanol-induced behaviour. Front Behav Neurosci 2023; 17:1057262. [PMID: 36865774 PMCID: PMC9971501 DOI: 10.3389/fnbeh.2023.1057262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Since energy drinks (EDs) were sold to the general public as soft drinks and recreational beverages, mixing EDs with ethanol has grown in popularity, particularly among younger people. Given the research that links these drinks with higher risk behaviors and increased ethanol intake, ethanol combined with EDs (AmEDs) is a particularly worrying combination. EDs generally commonly include a variety of ingredients. Sugar, caffeine, taurine, and B-group vitamins are almost always present. Studies on the combined effect of ethanol and sugar and caffeine on ethanol-induced behaviors are extensive. Not so much in regards to taurine and vitamins. This review briefly summarises available information from research on the isolated compounds on EtOH-induced behaviors first, and secondly, the combination of AmEDs on EtOH effects. The conclusion is that additional research is needed to fully comprehend the characteristics and consequences of AmEDs on EtOH-induced behaviors.
Collapse
|
12
|
Flores-Ramirez FJ, Illenberger JM, Pascasio GE, Matzeu A, Mason BJ, Martin-Fardon R. Alternative use of suvorexant (Belsomra ®) for the prevention of alcohol drinking and seeking in rats with a history of alcohol dependence. Front Behav Neurosci 2022; 16:1085882. [PMID: 36620860 PMCID: PMC9813433 DOI: 10.3389/fnbeh.2022.1085882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Alcohol use disorder (AUD) is one of the most treatment-resistant medical conditions globally. The orexin (Orx) system regulates diverse physiological processes, including stress, and is a system of interest for the development of pharmaceuticals to treat substance use disorders, particularly AUD. The present study tested the ability of the dual orexin receptor antagonist suvorexant (SUV), marketed by Merck as Belsomra®, for the treatment of insomnia, to decrease alcohol self-administration and the stress-induced reinstatement of alcohol-seeking behavior in male Wistar rats with a history of alcohol dependence. Rats were trained to orally self-administer 10% alcohol (30 min/day for 3 weeks) and were either made dependent via chronic intermittent alcohol vapor exposure (14 h ON, 10 h OFF) for 6 weeks or exposed to air (non-dependent). Starting on week 7, the effect of SUV (0-20 mg/kg, p.o.) was tested on alcohol self-administration at acute abstinence (8 h after vapor was turned OFF) twice weekly. A separate cohort of rats that were prepared in parallel was removed from alcohol vapor exposure and then subjected to extinction training for 14 sessions. Once extinction was achieved, the rats received SUV (0 and 5 mg/kg, p.o.) and were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. Suvorexant at 5, 10, and 20 mg/kg selectively decreased alcohol intake in dependent rats. Furthermore, 5 mg/kg SUV prevented the stress-induced reinstatement of alcohol-seeking behavior in dependent rats only. These results underscore the significance of targeting the Orx system for the treatment of substance use disorders generally and suggest that repurposing SUV could be an alternative approach for the treatment of AUD.
Collapse
|
13
|
Similar role of mPFC orexin-1 receptors in the acquisition and expression of morphine- and food-induced conditioned place preference in male rats. Neuropharmacology 2021; 198:108764. [PMID: 34450116 DOI: 10.1016/j.neuropharm.2021.108764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Self-control problems are a typical character of drug addiction and excessive food consumption and it has been shown that natural rewards and drugs of abuse share parts of the same neural substrate and reward processing in the brain. Different brain areas are involved in natural and drug reward processing including the mesolimbic pathway, amygdala, nucleus accumbens (NAc), and prefrontal cortex. Considering the important role of orexins in the addictive behavior and the presence of orexin-1 subtype receptors (Orx1R) in the medial prefrontal cortex (mPFC), this study investigated the role of mPFC in natural- and drug-reward seeking behaviors to deepen our understanding of possible similarities or differences. To induce food- or morphine-conditioned place preference (CPP), adult male Wistar rats underwent CPP testing and received intra-mPFC doses of SB334867 (3, 10, or 30 nM/0.5 μl DMSO 12%), as an Orx1R antagonist, during the acquisition or expression phases of the CPP test. Results indicated that microinjection of Orx1R antagonist into the mPFC had similar effects on both morphine- and food-induced CPP and attenuated CPP scores in the acquisition and expression phases of the CPP test. The data demonstrated that Orx1Rs in the mPFC regulate the reward-related effects of morphine- and food-induced reward.
Collapse
|
14
|
Wakabayashi KT, Greeman EA, Barrett ST, Bevins RA. The Sugars in Alcohol Cocktails Matter. ACS Chem Neurosci 2021; 12:3284-3287. [PMID: 34428024 PMCID: PMC8447180 DOI: 10.1021/acschemneuro.1c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While sugar consumption and alcohol drinking have traditionally been studied by different basic science fields, most commercially available flavored alcoholic beverages are sweetened with some kind of sugar. The prevailing view is that these sugars potentiate drinking by making the alcohol taste better, particularly for adolescents, overlooking that some central nervous system circuits implicated in alcohol drinking are also sensitive to brain penetrant sugars like glucose. In this Viewpoint, we highlight the need for basic researchers to carefully consider how the sugars mixed with alcoholic beverages may impact the neurochemical and biological mechanisms influencing alcohol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Ken T. Wakabayashi
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0308, United States
| | - Esther A. Greeman
- Department of Chemistry, Oakwood University, Huntsville, Alabama 35896, United States
| | - Scott T. Barrett
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0308, United States
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0308, United States
| |
Collapse
|
15
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
16
|
RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS One 2020; 15:e0243756. [PMID: 33307547 PMCID: PMC7732368 DOI: 10.1371/journal.pone.0243756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
Reproduction is highly sensitive to changes in physiology and the external environment. Neuropeptides are evolutionarily conserved signaling molecules that regulate multiple physiological processes. However, the potential reproductive roles of many neuropeptide signaling pathways remain underexplored. Here, we describe the results of RNAi-based screens in Drosophila melanogaster to identify neuropeptides/neuropeptide receptors with potential roles in oogenesis. The screen read-outs were either the number of eggs laid per female per day over time or fluorescence microscopy analysis of dissected ovaries. We found that the orphan neuropeptide receptor encoded by moody (homologous to mammalian melatonin receptors) is likely required in somatic cells for normal egg production and proper germline stem cell maintenance. However, the egg laying screens had low signal-to-noise ratio and did not lead to the identification of additional candidates. Thus, although egg count assays might be useful for large-scale screens to identify oogenesis regulators that result in dramatic changes in oogenesis, more labor-intensive microscopy-based screen are better applicable for identifying new physiological regulators of oogenesis with more subtle phenotypes.
Collapse
|
17
|
Brain anatomical covariation patterns linked to binge drinking and age at first full drink. NEUROIMAGE-CLINICAL 2020; 29:102529. [PMID: 33321271 PMCID: PMC7745054 DOI: 10.1016/j.nicl.2020.102529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022]
Abstract
We identified a reproducible cortical and subcortical brain structural covariation pattern. A novel pattern discovery method Joint and Individual Variance Explained (JIVE) was used. The cortical and subcortical structural covariation pattern is related to alcohol use initiation. The identified pattern is dominated by covariation among brainstem, thalamus and PFC. A thalamic-PFC-brainstem circuitry might be related to alcohol use initiation.
Binge drinking and age at first full drink (AFD) of alcohol prior to 21 years (AFD < 21) have been linked to neuroanatomical differences in cortical and subcortical grey matter (GM) volume, cortical thickness, and surface area. Despite the importance of understanding network-level relationships, structural covariation patterns among these morphological measures have yet to be examined in relation to binge drinking and AFD < 21. Here, we used the Joint and Individual Variance Explained (JIVE) method to characterize structural covariation patterns common across and specific to morphological measures in 293 participants (149 individuals with past-12-month binge drinking and 144 healthy controls) from the Human Connectome Project (HCP). An independent dataset (Nathan Kline Institute Rockland Sample; NKI-RS) was used to examine reproducibility/generalizability. We identified a reproducible joint component dominated by structural covariation between GM volume in the brainstem and thalamus proper, and GM volume and surface area in prefrontal cortical regions. Using linear mixed regression models, we found that participants with AFD < 21 showed lower joint component scores in both the HCP (beta = 0.059, p-value = 0.016; Cohen’s d = 0.441) and NKI-RS (beta = 0.023, p-value = 0.040, Cohen’s d = 0.216) datasets, whereas the individual thickness component associated with binge drinking (p-value = 0.02) and AFD < 21 (p-value < 0.001) in the HCP dataset was not statistically significant in the NKI-RS sample. Our findings were also generalizable to the HCP full sample (n = 880 participants). Taken together, our results show that use of JIVE analysis in high-dimensional, large-scale, psychiatry-related datasets led to discovery of a reproducible cortical and subcortical structural covariation pattern involving brain regions relevant to thalamic-PFC-brainstem neural circuitry which is related to AFD < 21 and suggests a possible extension of existing addiction neurocircuitry in humans.
Collapse
|
18
|
Morales-Mulia S, Magdaleno-Madrigal VM, Nicolini H, Genis-Mendoza A, Morales-Mulia M. Orexin-A up-regulates dopamine D2 receptor and mRNA in the nucleus accumbens Shell. Mol Biol Rep 2020; 47:9689-9697. [PMID: 33170427 DOI: 10.1007/s11033-020-05979-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023]
Abstract
Orexins-A (OrxA) and -B (OrxB) neuropeptides are synthesized by a group of neurons located in the lateral hypothalamus and adjacent perifornical area, which send their projections to the mesolimbic dopaminergic (DAergic) system including ventral tegmental area and nucleus accumbens (NAc), where orexin receptors are expressed. NAc plays a central role in reward-seeking behavior and drug abuse. NAc-neurons express dopamine-1 (D1R) and dopamine-2 (D2R) receptors. Orexins bind to their two cognate G-protein-coupled receptors, orexin-receptor type-1 (Orx1R) and type-2 (Orx2R). Orexin receptor signaling is involved in behaviors such as motivation and addiction. Orexin-containing neurons modulate DAergic activity that is key in synaptic plasticity induced by addictive drugs. However, the effect of OrxA on expression and content of DAergic receptors in NAc is unknown. The purpose of this study was to investigate whether OrxA can alter gene expression and protein levels of D1R/D2R in NAc. Gene expression was evaluated by real-time PCR analysis and protein levels by western blot in rats. The results show that intracerebroventricular (i.c.v.) injection of OrxA increases both gene transcription and protein content of D2R but fails to modify D1R. This effect was also confirmed with OrxA infusion in NAc/Shell. Our results demonstrate for the first time that OrxA induces up-regulation of gene and protein of D2R in NAc. These findings support the hypothesis that OrxA modulates the DAergic transmission and this may serve to understand how orexin signaling enhances DA responses at baseline conditions and in response to psychostimulants.
Collapse
Affiliation(s)
- Sandra Morales-Mulia
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Mexico, DF, Mexico
| | | | - Humberto Nicolini
- Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, National Institute of Genomic Medicine, Mexico, Mexico
| | - Alma Genis-Mendoza
- Laboratory of Genomics of Psychiatric Diseases, Neurodegenerative and Addictions, National Institute of Genomic Medicine, Mexico, Mexico.,Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro" Psychiatric Attention Services, Mexico, Mexico
| | - Marcela Morales-Mulia
- Bases Moleculares de las Adicciones, Subdirección de Investigaciones Clínicas, INPRFM, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, 14370, Mexico, DF, Mexico.
| |
Collapse
|
19
|
Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020; 14:599710. [PMID: 33240054 PMCID: PMC7683390 DOI: 10.3389/fnint.2020.599710] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Neural systems involved in processing natural rewards and drugs of abuse overlap and exposure to drugs of abuse induce neuroadaptations that can cause compulsive-like behavior. For example, the recruitment of the orexin (Orx) system by drugs of abuse has been proposed to induce neuroadaptations that in turn alter its function, reflected by maladaptive, compulsive, and addictive behavior. Orexin neurons project to the paraventricular nucleus of the thalamus (PVT)—particularly the posterior part (pPVT), a structure that plays a key role in stress regulation. This study investigated whether Orx transmission in the pPVT plays a role in stress-induced reinstatement of reward-seeking behavior toward ethanol (EtOH) and a highly palatable food reward [sweetened condensed milk (SCM)] in rats and whether this role changes with EtOH dependence. After being trained to orally self-administer EtOH or SCM, the rats were made dependent (EtOHD and SCMD) by chronic intermittent EtOH vapor exposure. The control nondependent groups (EtOHND and SCMND) were exposed to air. Following extinction, the rats were tested for stress-induced reinstatement of EtOH- and SCM-seeking behavior. Stress reinstated EtOH- and SCM-seeking behavior in all groups (EtOHD/ND and SCMD/ND). Administration of the dual Orx receptor (OrxR) antagonist TCS1102 (15 μg) in the pPVT prevented stress-induced reinstatement only in dependent rats (EtOHD and SCMD). In parallel, the qPCR analysis showed that Orx mRNA expression in the hypothalamus and OrxR1/R2 mRNA expression in the pPVT were increased at the time of testing in the EtOHD and SCMD groups. These results are the first to implicate Orx transmission in the pPVT in the stress-induced reinstatement of reward-seeking behavior in EtOH dependent rats and indicate the maladaptive recruitment of Orx transmission in the pPVT by EtOH dependence.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
20
|
The role of neuropeptides in drug and ethanol abuse: Medication targets for drug and alcohol use disorders. Brain Res 2020; 1740:146876. [DOI: 10.1016/j.brainres.2020.146876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Flores-Bastías O, Gómez GI, Orellana JA, Karahanian E. Activation of Melanocortin-4 Receptor by a Synthetic Agonist Inhibits Ethanolinduced Neuroinflammation in Rats. Curr Pharm Des 2020; 25:4799-4805. [PMID: 31840601 DOI: 10.2174/1381612825666191216145153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND High ethanol intake induces a neuroinflammatory response resulting in the subsequent maintenance of chronic alcohol consumption. The melanocortin system plays a pivotal role in the modulation of alcohol consumption. Interestingly, it has been shown that the activation of melanocortin-4 receptor (MC4R) in the brain decreases the neuroinflammatory response in models of brain damage other than alcohol consumption, such as LPS-induced neuroinflammation, cerebral ischemia, glutamate excitotoxicity, and spinal cord injury. OBJECTIVES In this work, we aimed to study whether MC4R activation by a synthetic MC4R-agonist peptide prevents ethanol-induced neuroinflammation, and if alcohol consumption produces changes in MC4R expression in the hippocampus and hypothalamus. METHODS Ethanol-preferring Sprague Dawley rats were selected offering access to 20% ethanol on alternate days for 4 weeks (intermittent access protocol). After this time, animals were i.p. administered an MC4R agonist peptide in the last 2 days of the protocol. Then, the expression of the proinflammatory cytokines interleukin 6 (IL-6), interleukin 1-beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus, hypothalamus and prefrontal cortex. It was also evaluated if ethanol intake produces alterations in the expression of MC4R in the hippocampus and the hypothalamus. RESULTS Alcohol consumption increased the expression of MC4R in the hippocampus and the hypothalamus. The administration of the MC4R agonist reduced IL-6, IL-1β and TNF-α levels in hippocampus, hypothalamus and prefrontal cortex, to those observed in control rats that did not drink alcohol. CONCLUSION High ethanol consumption produces an increase in the expression of MC4R in the hippocampus and hypothalamus. The administration of a synthetic MC4R-agonist peptide prevents neuroinflammation induced by alcohol consumption in the hippocampus, hypothalamus, and prefrontal cortex. These results could explain the effect of α-MSH and other synthetic MC4R agonists in decreasing alcohol intake through the reduction of the ethanol-induced inflammatory response in the brain.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile
| | - Gonzalo I Gómez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile
| | - Juan A Orellana
- Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile.,Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Santiago, Chile
| |
Collapse
|
22
|
Wang D, Zhang J, Bai Y, Zheng X, Alizamini MM, Shang W, Yang Q, Li M, Li Y, Sui N. Melanin-concentrating hormone in rat nucleus accumbens or lateral hypothalamus differentially impacts morphine and food seeking behaviors. J Psychopharmacol 2020; 34:478-489. [PMID: 31909693 DOI: 10.1177/0269881119895521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identifying neural substrates that are differentially affected by drugs of abuse and natural rewards is key to finding a target for an efficacious treatment for substance abuse. Melanin-concentrating hormone is a polypeptide with an inhibitory effect on the mesolimbic dopamine system. Here we test the hypothesis that melanin-concentrating hormone in the lateral hypothalamus and nucleus accumbens shell is differentially involved in the regulation of morphine and food-rewarded behaviors. METHODS Male Sprague-Dawley rats were trained with morphine (5.0 mg/kg, subcutaneously) or food pellets (standard chow, 10-14 g) to induce a conditioned place preference, immediately followed by extinction training. Melanin-concentrating hormone (1.0 µg/side) or saline was infused into the nucleus accumbens shell or lateral hypothalamus before the reinstatement primed by morphine or food, and locomotor activity was simultaneously monitored. As the comparison, melanin-concentrating hormone was also microinjected into the nucleus accumbens shell or lateral hypothalamus before the expression of food or morphine-induced conditioned place preference. RESULTS Microinfusion of melanin-concentrating hormone into the nucleus accumbens shell (but not into the lateral hypothalamus) prevented the reinstatement of morphine conditioned place preference but had no effect on the reinstatement of food conditioned place preference. In contrast, microinfusion of melanin-concentrating hormone into the lateral hypothalamus (but not in the nucleus accumbens shell) inhibited the reinstatement of food conditioned place preference but had no effect on the reinstatement of morphine conditioned place preference. CONCLUSIONS These results suggest a clear double dissociation of melanin-concentrating hormone in morphine/food rewarding behaviors and melanin-concentrating hormone in the nucleus accumbens shell. Melanin-concentrating hormone could be a potential target for therapeutic intervention for morphine abuse without affecting natural rewards.
Collapse
Affiliation(s)
- Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yunjing Bai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xigeng Zheng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mirmohammadali M Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Shang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxiong Yang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Sex differences in cognitive performance and alcohol consumption in High Alcohol-Drinking (HAD-1) rats. Behav Brain Res 2020; 381:112456. [PMID: 31891743 DOI: 10.1016/j.bbr.2019.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022]
Abstract
Excessive alcohol (ethanol) consumption negatively impacts social, emotional, as well as cognitive function and well-being. Thus, identifying behavioral and/or biological predictors of excessive ethanol consumption is important for developing prevention and treatment strategies against alcohol use disorders (AUDs). Sex differences in alcohol consumption patterns are observed in humans, primates, and rodents. Selectively bred high alcohol-drinking rat lines, such as the "HAD-1" lines are recognized animal models of alcoholism. The present work examined sex differences in alcohol consumption, object recognition, and exploratory behavior in male and female HAD-1 rats. Naïve male and female HAD-1 rats were tested in an object recognition test (ORT) prior to a chronic 24 h intermittent ethanol access procedure for five weeks. Object recognition parameters measured included exploratory behavior, object investigation, and time spent near objects. During the initial training trial, rearing, active object investigation and amount of time spent in the object-containing section was significantly greater in female HAD-1 rats compared to their male counterparts. During the subsequent testing trial, time spent in the object-containing section was greater in female, compared to male, rats; but active object investigation and rearing did not statistically differ between females and males. In addition, female HAD-1 rats consumed significantly more ethanol than their male counterparts, replicating previous findings. Moreover, across all animals there was a significant positive correlation between exploratory behavior in ORT and ethanol consumption level. These results indicate there are significant sex differences in cognitive performance and alcohol consumption in HAD-1 rats, which suggests neurobiological differences as well.
Collapse
|
24
|
Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020; 168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The neuropeptide hypocretin/orexin plays a broad and important role in physiological functions ranging from addiction, stress, and anxiety to sleep, energy metabolism, and homeostatic regulation. A number of recent reviews addressing the importance of orexin for different addictive behaviors, especially the contribution of orexin-1-receptors (Ox1Rs) in responding for intoxicants in higher-motivation individuals and situations, and orexin-2-receptor (Ox2Rs) in stress-related aspects of addictive responding. This may parallel the importance of more lateral orexin neurons in the hypothalamus for reward and more medial for stress and arousal. However, there is clearly also some crossover, which may reflect, in part, where positive and negative conditioning (reward- and relief-seeking) are both present concurrently in established addiction, and also where orexin signaling can differ in subregions of a particular brain region. Here, we attempt to examine and synthesize some of the most recent work addressing orexin functions in addiction, including a particular role for Ox1Rs for driving responding in higher-motivation individuals and under higher levels of effort. While there are some commonalities across addictive substances addressed here (alcohol, cocaine, opiates), there are also some differences, which may relate to several factors including the speed of intoxication with a given substance. Together, recent findings have shed important insight and clues into what a more unified role of Ox1Rs might entail, and critical areas for future work. In addition, these many studies support the development of Ox1R blockers for use in humans to counteract addiction and other disorders of motivation. This article is part of the special issue on Neuropeptides.
Collapse
|
25
|
Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020; 14:5. [PMID: 32063838 PMCID: PMC6997842 DOI: 10.3389/fncel.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The concept that neuroinflammation induced by excessive alcohol intake in adolescence triggers brain mechanisms that perpetuate consumption has strengthened in recent years. The melanocortin system, composed of the melanocortin 4 receptor (MC4R) and its ligand α-melanocyte-stimulating hormone (α-MSH), has been implicated both in modulation of alcohol consumption and in ethanol-induced neuroinflammation decrease. Chronic alcohol consumption in adolescent rats causes a decrease in an α-MSH release by the hypothalamus, while the administration of synthetic agonists of MC4R causes a decrease in neuroinflammation and a decrease in voluntary alcohol consumption. However, the mechanism that connects the activation of MC4R with the decrease of both neuroinflammation and voluntary alcohol consumption has not been elucidated. Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol drinking motivation, dependence and withdrawal, and its levels are reduced in alcoholics. Deficiencies in BDNF levels increased ethanol self-administration in rats. Further, BDNF triggers important anti-inflammatory effects in the brain, and this could be one of the mechanisms by which BDNF reduces chronic alcohol intake. Interestingly, MC4R signaling induces BDNF expression through the activation of the cAMP-responsive element-binding protein (CREB). We hypothesize that ethanol exposure during adolescence decreases the expression of α-MSH and hence MC4R signaling in the hippocampus, leading to a lower BDNF activity that causes dramatic changes in the brain (e.g., neuroinflammation and decreased neurogenesis) that predispose to maintain alcohol abuse until adulthood. The activation of MC4R either by α-MSH or by synthetic agonist peptides can induce the expression of BDNF, which would trigger several processes that lead to lower alcohol consumption.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| | - Alfredo Adriasola-Carrasco
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
26
|
Genders SG, Scheller KJ, Jaehne EJ, Turner BJ, Lawrence AJ, Brunner SM, Kofler B, van den Buuse M, Djouma E. GAL 3 receptor knockout mice exhibit an alcohol-preferring phenotype. Addict Biol 2019; 24:886-897. [PMID: 29984872 DOI: 10.1111/adb.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Galanin is a neuropeptide which mediates its effects via three G-protein coupled receptors (GAL1-3 ). Administration of a GAL3 antagonist reduces alcohol self-administration in animal models while allelic variation in the GAL3 gene has been associated with an increased risk of alcohol use disorders in diverse human populations. Based on the association of GAL3 with alcoholism, we sought to characterize drug-seeking behavior in GAL3 -deficient mice for the first time. In the two-bottle free choice paradigm, GAL3 -KO mice consistently showed a significantly increased preference for ethanol over water when compared to wildtype littermates. Furthermore, male GAL3 -KO mice displayed significantly increased responding for ethanol under operant conditions. These differences in alcohol seeking behavior in GAL3 -KO mice did not result from altered ethanol metabolism. In contrast to ethanol, GAL3 -KO mice exhibited similar preference for saccharin and sucrose over water, and a similar preference for a high fat diet over a low fat diet as wildtype littermates. No differences in cognitive and locomotor behaviors were observed in GAL3 -KO mice to account for increased alcohol seeking behavior. Overall, these findings suggest genetic ablation of GAL3 in mice increases alcohol consumption.
Collapse
Affiliation(s)
- Shannyn G. Genders
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| | - Karlene J. Scheller
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| | - Emily J. Jaehne
- School of Psychology and Public Health, Department of Psychology; La Trobe University; Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Susanne M. Brunner
- Laura Bassi Centre of Expertise-Therapeutic Application of Neuropeptides (THERAPEP), Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics; Paracelsus Medical University; Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-Therapeutic Application of Neuropeptides (THERAPEP), Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics; Paracelsus Medical University; Austria
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology; La Trobe University; Australia
- Department of Pharmacology; University of Melbourne; Australia
- The College of Public health, Medical and Veterinary Sciences; James Cook University; Australia
| | - Elvan Djouma
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| |
Collapse
|
27
|
Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019; 13:88. [PMID: 30814925 PMCID: PMC6381036 DOI: 10.3389/fnins.2019.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Excessive, binge alcohol drinking is a potent and pernicious obstacle to treating alcohol use disorder (AUD), and heavy-drinking humans are responsible for much of the substantial costs and harms of AUD. Thus, identifying key mechanisms that drive intake in higher-drinking individuals may provide important, translationally useful therapeutic interventions. Orexin-1-receptors (Ox1Rs) promote states of high motivation, and studies with systemic Ox1R inhibition suggest a particular role in individuals with higher intake levels. However, little has been known about circuits where Ox1Rs promote pathological intake, especially excessive alcohol consumption. We previously discovered that binge alcohol drinking requires Ox1Rs in medial nucleus accumbens shell (Shell), using two-bottle-choice Drinking-in-the-Dark (2bc-DID) in adult, male C57BL/6 mice. Here, we show that Shell Ox1Rs promoted intake during intermittent-access alcohol drinking as well as 2bc-DID, and that Shell inhibition with muscimol/baclofen also suppressed 2bc-DID intake. Importantly, with this large data set, we were able to demonstrate that Shell Ox1Rs and overall activity were particularly important for driving alcohol consumption in higher-drinking individuals, with little overall impact in moderate drinkers. Shell inhibition results were compared with control data combined from drug treatments that did not reduce intake, including NMDAR or PKC inhibition in Shell, Ox1R inhibition in accumbens core, and systemic inhibition of dopamine-1 receptors; these were used to understand whether more specific Shell Ox1R contributions in higher drinkers might simply result from intrinsic variability in mouse drinking. Ineffectiveness of Shell inhibition in moderate-drinkers was not due to a floor effect, since systemic baclofen reduced alcohol drinking regardless of basal intake levels, without altering concurrent water intake or saccharin consumption. Finally, alcohol intake in the first exposure predicted consumption levels weeks later, suggesting that intake level may be a stable trait in each individual. Together, our studies indicate that Shell Ox1Rs are critical mediators of binge alcohol intake in higher-drinking individuals, with little net contribution to alcohol drinking in more moderate bingers, and that targeting Ox1Rs may substantially reduce AUD-related harms.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Claudina Kwok
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - David Darevsky
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - JiHwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lisa Nakayama
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Vincent Pedrozo
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lexy Anderson
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Shahbaj Ghotra
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Fouad
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? PATHOPHYSIOLOGY 2018; 25:263-276. [DOI: 10.1016/j.pathophys.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023] Open
|
29
|
Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1663-1680. [PMID: 29508004 PMCID: PMC5949267 DOI: 10.1007/s00213-018-4871-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 528 Tobin Hall, 135 Hicks Way, Amherst, MA, 01003, USA.
| |
Collapse
|
30
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
31
|
Vazey EM, den Hartog CR, Moorman DE. Central Noradrenergic Interactions with Alcohol and Regulation of Alcohol-Related Behaviors. Handb Exp Pharmacol 2018; 248:239-260. [PMID: 29687164 DOI: 10.1007/164_2018_108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) results from disruption of a number of neural systems underlying motivation, emotion, and cognition. Patients with AUD exhibit not only elevated motivation for alcohol but heightened stress and anxiety, and disruptions in cognitive domains such as decision-making. One system at the intersection of these functions is the central norepinephrine (NE) system. This catecholaminergic neuromodulator, produced by several brainstem nuclei, plays profound roles in a wide range of behaviors and functions, including arousal, attention, and other aspects of cognition, motivation, emotional regulation, and control over basic physiological processes. It has been known for some time that NE has an impact on alcohol seeking and use, but the mechanisms of its influence are still being revealed. This chapter will discuss the influence of NE neuron activation and NE release at alcohol-relevant targets on behaviors and disruptions underlying alcohol motivation and AUD. Potential NE-based pharmacotherapies for AUD treatment will also be discussed. Given the basic properties of NE function, the strong relationship between NE and alcohol use, and the effectiveness of current NE-related treatments, the studies presented here indicate an encouraging direction for the development of precise and efficacious future therapies for AUD.
Collapse
Affiliation(s)
- Elena M Vazey
- Department of Biology & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Carolina R den Hartog
- Department of Biology & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
32
|
Abstract
Addiction is a chronic relapsing disorder characterized by compulsive drug seeking and drug taking despite negative consequences. Alcohol abuse and addiction have major social and economic consequences and cause significant morbidity and mortality worldwide. Currently available therapeutics are inadequate, outlining the need for alternative treatments. Detailed knowledge of the neurocircuitry and brain chemistry responsible for aberrant behavior patterns should enable the development of novel pharmacotherapies to treat addiction. Therefore it is important to expand our knowledge and understanding of the neural pathways and mechanisms involved in alcohol seeking and abuse. The orexin (hypocretin) neuropeptide system is an attractive target, given the recent FDA and PMDA approval of suvorexant for the treatment of insomnia. Orexin is synthesized exclusively in neurons located in the lateral (LH), perifornical (PEF), and dorsal medial (DMH) hypothalamus. These neurons project widely throughout the neuraxis with regulatory roles in a wide range of behavioral and physiological responses, including sleep-wake cycle neuroendocrine regulation, anxiety, feeding behavior, and reward seeking. Here we summarize the literature to date, which have evaluated the interplay between alcohol and the orexin system.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
33
|
Blanco-Gandía MC, Ledesma JC, Aracil-Fernández A, Navarrete F, Montagud-Romero S, Aguilar MA, Manzanares J, Miñarro J, Rodríguez-Arias M. The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology 2017; 121:219-230. [PMID: 28457972 DOI: 10.1016/j.neuropharm.2017.04.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Binge-eating is considered a specific form of overeating characterized by intermittent and high caloric food intake in a short period of time. Epidemiologic studies support a positive relation between the ingestion of fat and ethanol (EtOH), specifically among adolescent subjects. The aim of this work was to clarify the role of the compulsive, limited and intermittent intake of a high-fat food during adolescence on the rewarding effects of EtOH. After binge-eating for 2 h, three days a week from postnatal day (PND) 29, the reinforcing effects of EtOH were tested with EtOH self-administration (SA), conditioned place preference (CPP) and ethanol locomotor sensitization procedures in young adult mice. Animals in the high fat binge (HFB) group that underwent the EtOH SA procedure presented greater EtOH consumption and a higher motivation to obtain the drug. HFB mice also developed preference for the paired compartment in the CPP with a subthreshold dose of EtOH. Independently of the diet, mice developed EtOH-induced locomotor sensitization. After the SA procedure, HFB mice exhibited reduced levels of the mu opioid receptor (MOr) and increased cannabinoid 1 receptor (CB1r) gene expression in the nucleus accumbens (N Acc), and decreased of tyrosine hydroxylase (TH) gene expression in the ventral tegmental area (VTA). Taken together the results suggest that bingeing on fat may represent a vulnerability factor to an escalation of EtOH consumption.
Collapse
Affiliation(s)
- M Carmen Blanco-Gandía
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Juan Carlos Ledesma
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | | | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sandra Montagud-Romero
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Maria A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain.
| |
Collapse
|
34
|
Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017; 11:90. [PMID: 28424592 PMCID: PMC5380733 DOI: 10.3389/fncel.2017.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Alcohol dependence causes physical, social, and moral harms and currently represents an important public health concern. According to the World Health Organization (WHO), alcoholism is the third leading cause of death worldwide, after tobacco consumption and hypertension. Recent epidemiologic studies have shown a growing trend in alcohol abuse among adolescents, characterized by the consumption of large doses of alcohol over a short time period. Since brain development is an ongoing process during adolescence, short- and long-term brain damage associated with drinking behavior could lead to serious consequences for health and wellbeing. Accumulating evidence indicates that alcohol impairs the function of different components of the melanocortin system, a major player involved in the consolidation of addictive behaviors during adolescence and adulthood. Here, we hypothesize the possible implications of melanocortins and glial cells in the onset and progression of alcohol addiction. In particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a cascade of glial inflammatory pathways that culminate in altered gliotransmission in the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol dependence and addiction in the adolescence and adulthood.
Collapse
Affiliation(s)
- Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Maria F Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - José M Lerma-Cabrera
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Eduardo Karahanian
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Cesar Osorio-Fuentealba
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Facultad de Kinesiología, Artes y Educación Física, Universidad Metropolitana de Ciencias de la EducaciónSantiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
35
|
Giardino WJ, Rodriguez ED, Smith ML, Ford MM, Galili D, Mitchell SH, Chen A, Ryabinin AE. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl Psychiatry 2017; 7:e1021. [PMID: 28140406 PMCID: PMC5299395 DOI: 10.1038/tp.2016.293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake.
Collapse
Affiliation(s)
- W J Giardino
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D Galili
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - S H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. E-mail:
| |
Collapse
|
36
|
Sirohi S, Van Cleef A, Davis JF. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats. Pharmacol Biochem Behav 2016; 153:105-115. [PMID: 27998722 DOI: 10.1016/j.pbb.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Binge eating disorder and alcohol use disorder (AUD) frequently co-occur in the presence of other psychiatric conditions. Data suggest that binge eating engages similar behavioral and neurochemical processes common to AUD, which might contribute to the etiology or maintenance of alcoholism. However, it is unclear how binge feeding behavior and alcohol intake interact to promote initiation or maintenance of AUD. We investigated the impact of binge-like feeding on alcohol intake and anxiety-like behavior in male Long Evans rats. Rats received chow (controls) or extended intermittent access (24h twice a week; Int-HFD) to a nutritionally complete high-fat diet for six weeks. Standard rodent chow was available ad-libitum to all groups and food intake was measured. Following HFD exposure, 20.0% ethanol, 2.0% sucrose intake and endocrine peptide levels were evaluated. Anxiety-like behavior was measured using a light-dark (LD) box apparatus. Rats in the Int-HFD group displayed a binge-like pattern of feeding (alternations between caloric overconsumption and voluntary caloric restriction). Surprisingly, alcohol intake was significantly attenuated in the Int-HFD group whereas sugar consumption was unaffected. Plasma acyl-ghrelin levels were significantly elevated in the Int-HFD group, whereas glucagon-like peptide-1 levels did not change. Moreover, rats in the Int-HFD group spent more time in the light side of the LD box compared to controls, indicating that binge-like feeding induced anxiolytic effects. Collectively, these data suggest that intermittent access to HFD attenuates alcohol intake through reducing anxiety-like behavior, a process potentially controlled by elevated plasma ghrelin levels.
Collapse
Affiliation(s)
- Sunil Sirohi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States; Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States.
| | - Arriel Van Cleef
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| |
Collapse
|
37
|
Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016; 10:400. [PMID: 27625592 PMCID: PMC5004043 DOI: 10.3389/fnins.2016.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs) promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc) and anterior insular cortex (aINS) in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh) significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results suggest that OX1Rs within the mNAsh and mPFC, but not the aINS, play a central role in driving excessive alcohol drinking.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Ji Hwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Arisa Mototake
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Bing Hu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
39
|
Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016; 110:431-437. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023]
Abstract
Addiction is promoted by pathological motivation for addictive substances, and, despite extensive efforts, alcohol use disorders (AUDs) continue to extract a very high social, physical, and economic toll. Compulsive drinking of alcohol, where consumption persists even when alcohol is paired with negative consequences, is considered a particular obstacle for treating AUDs. Aversion-resistant alcohol intake in rodents, e.g. where rodents drink even when alcohol is paired with the bitter tastant quinine, has been considered to model some compulsive aspects of human alcohol consumption. However, the critical mechanisms that drive compulsive-like drinking are only beginning to be identified. The neuropeptide orexin has been linked to high motivation for cocaine, preferred foods, and alcohol. Thus, we investigated the role of orexin receptors in compulsive-like alcohol drinking, where C57BL/6 mice had 2-hr daily access to 15% alcohol with or without quinine (100 μM). We found that systemic administration of the widely used selective orexin-1 receptor (OX1R) blocker, SB-334867 (SB), significantly reduced compulsive-like consumption at doses lower than those reported to reduce quinine-free alcohol intake. The dose of 3-mg/kg SB, in particular, suppressed only compulsive-like drinking. Furthermore, SB did not reduce concurrent water intake during the alcohol drinking sessions, and did not alter saccharin + quinine consumption. In addition, the OX2R antagonist TCS-OX2-29 (3 or 10 mg/kg) did not alter intake of alcohol with or without quinine. Together, our results suggest that OX1R signaling is particularly important for promoting compulsive-like alcohol drinking, and that OX1Rs might represent a novel therapy to counteract compulsive aspects of human AUDs.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ji-Hwan Yu
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - F Woodward Hopf
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
41
|
Budzyński J, Ziółkowski M, Kłopocka M, Czarnecki D. Blood glucose and lipid concentrations after overload are not associated with the risk of alcohol relapse. Drug Alcohol Depend 2016; 161:356-62. [PMID: 26948546 DOI: 10.1016/j.drugalcdep.2016.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
AIMS There is evidence for the functioning of feedback between alcohol consumption and fat (positive) and carbohydrate (negative) intake. We tried to verify the hypothesis that blood glucose and lipid concentration in a fasting state and after loading may affect the risk of relapse in alcohol-dependent male patients during withdrawal therapy. METHODS Blood glucose, total cholesterol (TC) and triglycerides (TG) were determined at the beginning of the study, and again after 4 weeks and 6 months of observation in 54 alcohol-dependent male patients treated against drinking relapse. Glucose concentration was checked after fasting and 2h after loading with a 75 g water solution of glucose, and blood lipids were determined on an empty stomach and 5h after butter loading (0.5 g of butter per kilogram of body mass). RESULTS Patients who relapsed compared to subjects who remained abstinent during the 6-month observation did not differ significantly in relation to blood glucose, TC or TG blood concentrations, either in a fasting state or after loading. Patients with an initial above-median increase in TG blood concentration after butter loading (>38%) before the beginning of the study, and who smoked cigarettes with a greater content of nicotine and tar, preferred vodka and had lower values of aminotransferases. CONCLUSION Fasting and postprandial blood glucose, TC and TG concentrations had no relationship with the outcome of anti-relapse treatment. However, they presented some associations with the pathomechanism of addiction to nicotine.
Collapse
Affiliation(s)
- Jacek Budzyński
- Department of Vascular and Internal Medicine, Faculty of Health Sciences, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus Universisty, Toruń, Poland; Clinic of Vascular and Internal Diseases, Jan Biziel University Hospital No. 2, Bydgoszcz, Poland.
| | - Marcin Ziółkowski
- Department of Psychiatric Nursing, Faculty of Health Sciences, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Maria Kłopocka
- Department of Vascular and Internal Medicine, Faculty of Health Sciences, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus Universisty, Toruń, Poland
| | - Damian Czarnecki
- Department of Psychiatric Nursing, Faculty of Health Sciences, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
42
|
Lee JE. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides. Genomics Inform 2016; 14:12-9. [PMID: 27103886 PMCID: PMC4838524 DOI: 10.5808/gi.2016.14.1.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides.
Collapse
Affiliation(s)
- Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
43
|
Budzyński J, Ziółkowski M, Kłopocka M, Czarnecki D. Oxidoreductive homeostasis in alcohol-dependent male patients and the risk of alcohol drinking relapse in a 6-month follow-up. Alcohol 2016; 50:57-64. [PMID: 26792629 DOI: 10.1016/j.alcohol.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/05/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022]
Abstract
Disturbances in the central signaling of reactive oxygen species (ROS) in response to energy intake are recognized as taking part in appetitive and consummative phases of eating disorders. This study aimed to verify the hypothesis that blood oxidoreductive balance can also affect demand for energy substances, such as alcoholic beverages in alcohol-dependent individuals, as well as the severity of their alcohol dependence and risk of drinking relapse. The following values were determined in the blood of 54 alcohol-dependent male patients after alcohol withdrawal, again after 4 weeks and after 6 months: the aldehyde products of lipid peroxidation (malonyl dialdehyde [MDA] and 4-hydroxynonenal [4-HNE]), nitric oxide (NO) metabolites, total antioxidant status (TAS), the blood activities of glutathione peroxidase (GSHpx), superoxide dismutase (SOD), glutathione reductase (GSHred), blood glucose, and lipids. Alcoholics who relapsed during 6 months of observation (n = 31, 57%) compared with patients who maintained alcohol abstinence for 6 months (n = 23, 43%) differed only in relation to initial and final NO metabolite serum concentrations. The risk of alcohol drinking relapse was lower in patients with an above-median initial blood concentration of NO metabolites and TAS. The oxidative stress parameters correlated with alcohol-dependence severity markers. No significant correlations between the studied antioxidant balance parameters and markers of nutritional status, including blood glucose and lipids, were found. Although the results of our study have some limitations and require further investigation, they suggest the role of oxidoreductive balance in the pathomechanisms of alcohol dependence and drinking relapse. In addition, due to a lack of association found between blood oxidative stress parameters and BMI, blood glucose, and lipid concentrations, they show the presence of disturbances in systemic ROS signaling in response to energy availability in alcoholics after alcohol withdrawal.
Collapse
|
44
|
Lerma-Cabrera JM, Carvajal F, Lopez-Legarrea P. Food addiction as a new piece of the obesity framework. Nutr J 2016; 15:5. [PMID: 26758504 PMCID: PMC4711027 DOI: 10.1186/s12937-016-0124-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/09/2016] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jose Manuel Lerma-Cabrera
- Centro de Investigacion Biomedica, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Santiago, Chile.
| | - Francisca Carvajal
- Centro de Investigacion Biomedica, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Santiago, Chile. .,Depto de Psicología y Sociología. Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, España.
| | - Patricia Lopez-Legarrea
- Centro de Investigacion Biomedica, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Santiago, Chile.
| |
Collapse
|
45
|
Ziółkowski M, Czarnecki D, Budzyński J, Rosińska Z, Żekanowska E, Góralczyk B. Orexin in Patients with Alcohol Dependence Treated for Relapse Prevention: A Pilot Study. Alcohol Alcohol 2015; 51:416-21. [PMID: 26597795 DOI: 10.1093/alcalc/agv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/26/2015] [Indexed: 11/14/2022] Open
Abstract
AIM The aim of the study was to assess the blood concentration of orexin and its association with other clinical factors in patients with alcohol dependence. METHODS Thirty-two males hospitalized on an addiction treatment ward due to alcohol dependence and 23 healthy men as a control group were enrolled in the study. The measurement of orexin in the blood was made at the beginning of the treatment (after withdrawal symptoms had stopped) and again after 4 weeks of observation. RESULTS At the beginning of the observation, the alcohol-dependent patients had significantly greater orexin blood concentration than the control group. After 4 weeks of treatment for relapse prevention, the blood orexin level decreased significantly to a value similar to that in the control group. At the beginning of the study, more severely alcohol-dependent patients (Short Alcohol Dependence Data [SADD] score range: 20-45) had significantly greater orexin blood concentration than individuals with moderate addiction severity (SADD score range: 10-19). However, after 4 weeks of abstinence, the peptide blood concentration was similar in both groups of alcoholic patients. CONCLUSIONS Orexin or its receptor is a potential target for relapse prevention treatment, but further study with long-term observation is needed to verify the usefulness of blood orexin determination as a marker of alcohol relapse risk.
Collapse
Affiliation(s)
- M Ziółkowski
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - D Czarnecki
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - J Budzyński
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Z Rosińska
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - E Żekanowska
- Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - B Góralczyk
- Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|