1
|
Hisaoka-Nakashima K, Tokuda S, Goto T, Yoshii N, Nakamura Y, Ago Y, Morioka N. Hippocampal microglial activation induces cognitive impairment and allodynia through neuronal plasticity changes in male mice with neuropathic pain. Behav Brain Res 2025; 488:115590. [PMID: 40254263 DOI: 10.1016/j.bbr.2025.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying this comorbidity remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. A previous study showed that minocycline, an inhibitor of microglia, ameliorated allodynia and cognitive impairment in partial sciatic nerve ligation (PSNL) mice. Therefore, the current study examined a potential role of brain microglia in allodynia and cognitive impairment in male mice with neuropathic pain due to PSNL. Immunohistochemistry of the microglial markers ionized calcium-binding adapter molecule 1 (Iba1), transmembrane protein 119 (TMEM119), and purinergic receptor P2Y12 (P2RY12) was performed to examine microglial status. Two weeks after PSNL, significant microglial activation was observed in the hippocampus and amygdala, but not in the perirhinal cortex. Inhibition of brain-region-specific microglia with a local microinjection of clodronate liposomes was examined to elucidate the involvement of these microglia in PSNL-induced allodynia and cognitive impairment. Local clodronate liposome microinjection to the hippocampus, but not the amygdala, ameliorated allodynia and cognitive impairment. Other changes in the hippocampus of PSNL mice, e.g., decreased hippocampal dendrite length and intersections number, were prevented by microinjection of clodronate liposomes. The current findings suggest hippocampal microglia are related to cognitive impairment and allodynia through neuronal plasticity changes observed in PSNL mice. Blocking hippocampal microglia-mediated neuroinflammation may be a novel approach for reducing comorbidities such as cognitive impairment associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Shintarou Tokuda
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Tatsuki Goto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanako Yoshii
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
2
|
Zhao K, Xiang L, Yang S, Chen X, Yang X, Dong J, Wu S, Yang S, Zhang M, Hu W. 11,12-Diacetyl-Carnosol Ameliorates Depression-Like Behaviors and Memory Dysfunction in CUMS Mouse Model via Inhibiting HMGB1-Mediated Neuroinflammation. CNS Neurosci Ther 2025; 31:e70406. [PMID: 40406924 PMCID: PMC12099307 DOI: 10.1111/cns.70406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUNDS 11,12-Diacetyl-carnosol (DACA), a derivative of carnosol, exhibits significant anti-inflammatory and antioxidant properties. However, its antidepressant effects and underlying mechanisms remain unclear. High mobility group box 1 protein (HMGB1)-mediated inflammatory responses and associated neurofunctional impairments play a crucial role in the pathogenesis of depression. This study aimed to investigate whether DACA exerts anti-inflammatory and antidepressant effects and whether its mechanisms involve the HMGB1/NF-κB/NLRP3 signaling pathway. METHODS (1) A depression model was established in mice through 6 weeks of chronic unpredictable mild stress (CUMS). From the 4th week of stimulation, the treatment group received DACA for 3 weeks. (2) BV2 cells were stimulated with LPS+ATP, and the treatment group was cultured in DACA medium for 24 h. (3) Supernatants from BV2 cells were used to culture primary neurons. To confirm the critical role of HMGB1 in DACA's antidepressant effects, CUMS-stressed mice were treated with glycyrrhizin (GZA) or the DACA+GZA combination. Depressive-like behaviors were evaluated using the sucrose preference test (SPT), open field test (OFT), tail suspension test (TST), forced swim test (FST), and Morris water maze (MWM). Hippocampal microglial cell and primary neuron morphology were assessed by immunofluorescence, and dendritic spine density in hippocampal neurons was examined using Golgi staining. IL-6 and TNF-α concentrations in mouse serum and BV2 supernatant were measured by ELISA. Western blotting was used to detect protein expressions of HMGB1, NF-κB p65, p-NF-κB p65, NLRP3, and IL-1β in the hippocampus and BV2 cells. RESULTS CUMS-exposed mice showed decreased sucrose preference, increased immobility in TST and FST, prolonged escape latency in MWM, and reduced crossings. Microglial activation and upregulation of HMGB1, NF-κB p65, p-NF-κB p65, NLRP3, and IL-1β were observed in both CUMS-stressed mice and LPS+ATP-induced BV2 cells, with reduced dendritic spine density in the hippocampus. DACA significantly reversed these phenomena. The effects of DACA were comparable to those of GZA treatment, and no changes were observed with the DACA+GZA combination. CONCLUSION The HMGB1/NF-κB/NLRP3 signaling pathway is involved in DACA's therapeutic effects on depression.
Collapse
Affiliation(s)
- Kunying Zhao
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Lirong Xiang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Shuda Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Xinglong Chen
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine UtilizationYunnan University of Traditional Chinese MedicineKunmingChina
| | - Xiaomi Yang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine UtilizationYunnan University of Traditional Chinese MedicineKunmingChina
| | - Junfang Dong
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Si Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Min Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingPeople's Republic of China
- College of Modern Biomedical IndustryKunming Medical UniversityKunmingPeople's Republic of China
| |
Collapse
|
3
|
Shokr MM, Eladawy RM. HMGB1: Different secretion pathways with pivotal role in epilepsy and major depressive disorder. Neuroscience 2025; 570:55-67. [PMID: 39970982 DOI: 10.1016/j.neuroscience.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
High-mobility group box 1 (HMGB1) protein is a highly prevalent protein that, once it is translocated to an extracellular site, can contribute to the pathogenesis of autoimmune and inflammatory responses, including epilepsy and depression. The conditions needed for release are associated with the production of multiple isoforms, and this translocation may occur in response to both immune cell activation and cell death. HMGB1 has been shown to interact with different mediators, including exportin 1, notch receptors, mitogen-activated protein kinase, STAT, tumor protein 53, and inflammasomes. Furthermore, as a crucial inflammatory mediator, HMGB1 has demonstrated upregulated expression and a higher percentage of translocation from the nucleus to the cytoplasm, acting on downstream receptors such as toll-like receptor 4 and receptor for advanced glycation end products, thereby activating interleukin-1 beta and nuclear factor kappa-B, intensifying inflammatory responses. In this review, we aim to discuss the different molecular interactions for the secretion of HMGB1 along with its pivotal role in epilepsy and major depressive disorder.
Collapse
Affiliation(s)
- Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt.
| | - Reem M Eladawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt
| |
Collapse
|
4
|
Köse AE, Turan T, Kilic E. May high mobility group box protein-1 be a biomarker for major depressive disorder? J Neuroimmunol 2024; 396:578466. [PMID: 39426194 DOI: 10.1016/j.jneuroim.2024.578466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
High Mobility Group Box Protein-1 (HMGB1), which has proinflammatory properties, is known to be involved in psychiatric disorders as far as we know, there are only one clinical studies investigating the role of HMGB1 in major depressive disorder (MDD). In this study, we aimed to investigate the role of HMGB1 in the etiopathogenesis of MDD and whether HMGB1 can be used as a biomarker in MDD by measuring the serum HMGB1 levels of depressed patients in the episode and remission periods. This study included 30 patients diagnosed with MDD in episode, 30 patients in remission and 30 healthy controls. Each group comprised 20 female and 10 male participants. In this study, serum HMGB1 levels were found to be lower in the patient group in the episode compared to the patient group in the remission period and the healthy control group. There was no significant difference between the patient group in remission and the healthy control group in terms of serum HMGB1 levels. The fact that serum HMGB1 levels were lower in the patient group in the episode compared to the patient group in the remission period and the control group may be related to the neuroprotective effects of HMGB1. HMGB1 may be used as a biomarker for MDD.
Collapse
Affiliation(s)
- Ali Emre Köse
- Department of Psychiatry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Tayfun Turan
- Department of Psychiatry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Eser Kilic
- Department of Biochemistry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
5
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
6
|
Murck H, Karailiev P, Karailievova L, Puhova A, Jezova D. Treatment with Glycyrrhiza glabra Extract Induces Anxiolytic Effects Associated with Reduced Salt Preference and Changes in Barrier Protein Gene Expression. Nutrients 2024; 16:515. [PMID: 38398838 PMCID: PMC10893552 DOI: 10.3390/nu16040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
We have previously identified that low responsiveness to antidepressive therapy is associated with higher aldosterone/cortisol ratio, lower systolic blood pressure, and higher salt preference. Glycyrrhiza glabra (GG) contains glycyrrhizin, an inhibitor of 11β-hydroxysteroid-dehydrogenase type-2 and antagonist of toll-like receptor 4. The primary hypothesis of this study is that food enrichment with GG extract results in decreased anxiety behavior and reduced salt preference under stress and non-stress conditions. The secondary hypothesis is that the mentioned changes are associated with altered gene expression of barrier proteins in the prefrontal cortex. Male Sprague-Dawley rats were exposed to chronic mild stress for five weeks. Both stressed and unstressed rats were fed a diet with or without an extract of GG roots for the last two weeks. GG induced anxiolytic effects in animals independent of stress exposure, as measured in elevated plus maze test. Salt preference and intake were significantly reduced by GG under control, but not stress conditions. The gene expression of the barrier protein claudin-11 in the prefrontal cortex was increased in control rats exposed to GG, whereas stress-induced rise was prevented. Exposure to GG-enriched diet resulted in reduced ZO-1 expression irrespective of stress conditions. In conclusion, the observed effects of GG are in line with a reduction in the activity of central mineralocorticoid receptors. The treatment with GG extract or its active components may, therefore, be a useful adjunct therapy for patients with subtypes of depression and anxiety disorders with heightened renin-angiotensin-aldosterone system and/or inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039 Marburg, Germany
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Agnesa Puhova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| |
Collapse
|
7
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
8
|
Yoshimoto N, Nakamura Y, Hisaoka-Nakashima K, Morioka N. Mitochondrial dysfunction and type I interferon signaling induce anxiodepressive-like behaviors in mice with neuropathic pain. Exp Neurol 2023; 367:114470. [PMID: 37327964 DOI: 10.1016/j.expneurol.2023.114470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Clinical evidence indicates that major depression is a common comorbidity of chronic pain, including neuropathic pain; however, the cellular basis for chronic pain-mediated major depression remains unclear. Mitochondrial dysfunction induces neuroinflammation and has been implicated in various neurological diseases, including depression. Nevertheless, the relationship between mitochondrial dysfunction and anxiodepressive-like behaviors in the neuropathic pain state remains unclear. The current study examined whether hippocampal mitochondrial dysfunction and downstream neuroinflammation are involved in anxiodepressive-like behaviors in mice with neuropathic pain, which was induced by partial sciatic nerve ligation (PSNL). At 8 weeks after surgery, there was decreased levels of mitochondrial damage-associated molecular patterns, such as cytochrome c and mitochondrial transcription factor A, and increased level of cytosolic mitochondrial DNA in the contralateral hippocampus, suggesting the development of mitochondrial dysfunction. Type I interferon (IFN) mRNA expression in the hippocampus was also increased at 8 weeks after PSNL surgery. The restoration of mitochondrial function by curcumin blocked the increased cytosolic mitochondrial DNA and type I IFN expression in PSNL mice and improved anxiodepressive-like behaviors. Blockade of type I IFN signaling by anti-IFN alpha/beta receptor 1 antibody also improved anxiodepressive-like behaviors in PSNL mice. Together, these findings suggest that neuropathic pain induces hippocampal mitochondrial dysfunction followed by neuroinflammation, which may contribute to anxiodepressive-behaviors in the neuropathic pain state. Improving mitochondrial dysfunction and inhibiting type I IFN signaling in the hippocampus might be a novel approach to reducing comorbidities associated with neuropathic pain, such as depression and anxiety.
Collapse
Affiliation(s)
- Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
9
|
Abe H, Okada‐Tsuchioka M, Kajitani N, Omori W, Itagaki K, Shibasaki C, Boku S, Matsuhisa T, Takebayashi M. Serum levels of high mobility group box-1 protein (HMGB1) and soluble receptors of advanced glycation end-products (RAGE) in depressed patients treated with electroconvulsive therapy. Neuropsychopharmacol Rep 2023; 43:359-364. [PMID: 37337402 PMCID: PMC10496042 DOI: 10.1002/npr2.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
AIMS High mobility group box-1 (HMGB1) is one of the damage-associated molecular patterns produced by stress and induces inflammatory responses mediated by receptors of advanced glycation end-products (RAGE) on the cell surface. Meanwhile, soluble RAGE (sRAGE) exhibits an anti-inflammatory effect by capturing HMGB1. Animal models have shown upregulation of HMGB1 and RAGE in the brain or blood, suggesting the involvement of these proteins in depression pathophysiology. However, there have been no reports using blood from depressed patients, nor ones focusing on HMGB1 and sRAGE changes associated with treatment and their relationship to depressive symptoms. METHODS Serum HMGB1 and sRAGE concentrations were measured by enzyme-linked immunosorbent assay in a group of patients with severe major depressive disorder (MDD) (11 males and 14 females) who required treatment with electroconvulsive therapy (ECT), and also in a group of 25 age- and gender-matched healthy subjects. HMGB1 and sRAGE concentrations were also measured before and after a course of ECT. Depressive symptoms were assessed using the Hamilton Rating Scale for Depression (HAMD). RESULTS There was no significant difference in HMGB1 and sRAGE concentrations in the MDD group compared to healthy subjects. Although ECT significantly improved depressive symptoms, there was no significant change in HMGB1 and sRAGE concentrations before and after treatment. There was also no significant correlation between HMGB1 and sRAGE concentrations and the HAMD total score or subitem scores. CONCLUSION There were no changes in HMGB1 and sRAGE in the peripheral blood of severely depressed patients, and concentrations had no relationship with symptoms or ECT.
Collapse
Affiliation(s)
- Hiromi Abe
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
- Department of PharmacyNational Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Mami Okada‐Tsuchioka
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Naoto Kajitani
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
- Department of Neuropsychiatry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Wataru Omori
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Kei Itagaki
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Chiyo Shibasaki
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tetsuaki Matsuhisa
- Department of PharmacyNational Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Minoru Takebayashi
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
- Department of Neuropsychiatry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
10
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
12
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
13
|
Chen LQ, Lv XJ, Guo QH, Lv SS, Lv N, Xu WD, Yu J, Zhang YQ. Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents. Br J Pharmacol 2023; 180:1090-1113. [PMID: 36443951 DOI: 10.1111/bph.15994] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients suffering from trigeminal neuralgia are often accompanied by anxiety and depression. Microglia-mediated neuroinflammation is involved in the development of neuropathic pain and anxiodepression pathogenesis. Whether and how microglia are involved in trigeminal neuralgia-induced anxiodepression remains unclear. EXPERIMENTAL APPROACH Unilateral constriction of the infraorbital nerve (CION) was performed to establish trigeminal neuralgia in rat and mouse models. Mechanical allodynia and anxiodepressive-like behaviours were measured. Optogenetic and pharmacological manipulations were employed to investigate the role of hippocampal microglia in anxiety and depression caused by trigeminal neuralgia. KEY RESULTS Trigeminal neuralgia activated ipsilateral but not contralateral hippocampal microglia, up-regulated ipsilateral hippocampal ATP and interleukin-1β (IL-1β) levels, impaired ipsilateral hippocampal long-term potentiation (LTP) and induced anxiodepressive-like behaviours in a time-dependent manner in rodents. Pharmacological or optogenetic inhibition of ipsilateral hippocampal microglia completely blocked trigeminal neuralgia-induced anxiodepressive-like behaviours. Activation of unilateral hippocampal microglia directly elicited an anxiodepressive state and impaired hippocampal LTP. Knockdown of ipsilateral hippocampal P2X7 receptors prevented trigeminal neuralgia-induced microglial activation and anxiodepressive-like behaviours. Furthermore, we demonstrated that microglia-derived IL-1β mediated microglial activation-induced anxiodepressive-like behaviours and LTP impairment. CONCLUSION AND IMPLICATIONS These findings suggest that priming of microglia with ATP/P2X7 receptors in the ipsilateral hippocampus drives pain-related anxiodepressive-like behaviours via IL-1β. An asymmetric role of the bilateral hippocampus in trigeminal neuralgia-induced anxiety and depression was uncovered. The approaches targeting microglia and P2X7 signalling might offer novel therapies for trigeminal neuralgia-related anxiety and depressive disorder.
Collapse
Affiliation(s)
- Li-Qiang Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Jing Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qing-Huan Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ning Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Dong Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Min X, Wang G, Cui Y, Meng P, Hu X, Liu S, Wang Y. Association between inflammatory cytokines and symptoms of major depressive disorder in adults. Front Immunol 2023; 14:1110775. [PMID: 36860860 PMCID: PMC9968963 DOI: 10.3389/fimmu.2023.1110775] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Objective This study investigated the association between inflammatory cytokines and major depressive disorder. Methods Plasma biomarkers were measured by enzyme-linked immunosorbent assay (ELISA). Statistical analysis of baseline biomarkers in the major depression disorder (MDD) group and healthy controls (HC) group, and differences in biomarkers before and after treatment. Spearman analysis was performed to correlate baseline and after treatment MDD biomarkers with the 17-item Hamilton Depression Rating Scale (HAMD-17) total scores. Receiver operator characteristic (ROC) curves were analyzed for the effect of biomarkers on MDD and HC classification and diagnosis. Results Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were significantly higher in the MDD group than in the HC group, while high mobility group protein 1 (HMGB1) levels were significantly lower in the MDD group. The AUCs for HMGB1, TNF-α, and IL-6 were 0.375, 0.733, and 0.783, respectively, according to the ROC curves. MDD patients with brain-derived neurotrophic factor precursor (proBDNF) levels were positively correlated with total HAMD-17 scores. The levels of proBDNF levels were positively correlated with the total HAMD-17 score in male MDD patients, and brain-derived neurotrophic factor (BDNF) and interleukin 18 (IL-18) levels were negatively correlated with the total HAMD-17 score in female MDD patients. Conclusion Inflammatory cytokines are associated with the severity of MDD, and TNF-α and IL-6 have the potential as objective biomarkers to aid in the diagnosis of MDD.
Collapse
Affiliation(s)
- Xue Min
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Genwei Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yalian Cui
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Peipei Meng
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Hu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China,*Correspondence: Yanfang Wang,
| |
Collapse
|
15
|
Di Bartolomeo L, Custurone P, Irrera N, Borgia F, Vaccaro F, Squadrito F, Vaccaro M. Vitiligo and Mental Health: Natural Compounds' Usefulness. Antioxidants (Basel) 2023; 12:antiox12010176. [PMID: 36671038 PMCID: PMC9854903 DOI: 10.3390/antiox12010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Vitiligo is an autoimmune dermatosis frequently associated with other comorbidities, such as mental health disorders. It is unclear if vitiligo triggers mental disorders or if mental disorders trigger vitiligo, but each one affects and worsen the other, if present at the same time. Both mental health disorders and vitiligo present a multifactorial pathogenesis and often require prolonged periods of therapy, sometimes with poor results. Given the possible link of common pathogenetic factors and the need of integrated therapies, the aim of this review is to look at natural compounds as possible supplements for both conditions. The results yielded show a possible role of these supplements in ameliorating both conditions, thus helping these patients to achieve a better quality of life and reduce the need for prolonged therapies. The limitations regarding the relative lack of in vivo studies, and the increasing need to lighten the burden of these chronic diseases, suggests that it is mandatory to proceed with further trials.
Collapse
Affiliation(s)
- Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, 98125 Messina, Italy
| | - Paolo Custurone
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, 98125 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Pharmacology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Dermatology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
16
|
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol 2022; 13:1029891. [PMID: 36388178 PMCID: PMC9659947 DOI: 10.3389/fneur.2022.1029891] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein associated with early inflammatory changes upon extracellular secretion expressed in various cells, including neurons and microglia. With the progress of research, neuroinflammation is believed to be involved in the pathogenesis of neurological diseases such as Parkinson's, epilepsy, and autism. As a key promoter of neuroinflammation, HMGB1 is thought to be involved in the pathogenesis of Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis. However, in the clinic, HMGB1 has not been described as a biomarker for the above-mentioned diseases. However, the current preclinical research results show that HMGB1 antagonists have positive significance in the treatment of Parkinson's disease, stroke, traumatic brain injury, epilepsy, and other diseases. This review discusses the possible mechanisms by which HMGB1 mediates Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1 as a biomarker for these diseases. Future research needs to further explore the underlying molecular mechanisms and clinical translation.
Collapse
Affiliation(s)
- Di Mao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Han
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hongyang Zhao
| |
Collapse
|
17
|
Hisaoka-Nakashima K, Moriwaki K, Yoshimoto N, Yoshii T, Nakamura Y, Ago Y, Morioka N. Anti-interleukin-6 receptor antibody improves allodynia and cognitive impairment in mice with neuropathic pain following partial sciatic nerve ligation. Int Immunopharmacol 2022; 112:109219. [PMID: 36084541 DOI: 10.1016/j.intimp.2022.109219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Neuropathic pain caused by nerve injury presents with severe spontaneous pain and a range of comorbidities, including deficits in higher executive functioning, none of which are adequately treated with current analgesics. Interleukin-6 (IL-6), a proinflammatory cytokine, is critically involved in the development and maintenance of central sensitization. However, the roles of IL-6 in neuropathic pain and related comorbidities have yet to be fully clarified. The present study examined the effect of MR16-1, an anti-IL-6 receptor antibody and inhibits IL-6 activity, on allodynia and cognitive impairment in mice with neuropathic pain following partial sciatic nerve ligation (PSNL). Significant upregulation of IL-6 expression was observed in the hippocampus in PSNL mice. Intranasal administration of MR16-1 significantly improved cognitive impairment but not allodynia in PSNL mice. Intranasal MR16-1 blocked PSNL-induced degenerative effects on hippocampal neurons. Intraperitoneal administration of MR16-1 suppressed allodynia but not cognitive impairment of PSNL mice. The findings suggest that cognitive impairment associated with neuropathic pain is mediated through changes in hippocampus induced by IL-6. These data also suggest that IL-6 mediated peripheral inflammation underlies allodynia, and IL-6 mediated inflammation in the central nervous system underlies cognitive impairment associated with neuropathic pain, and further suggest the therapeutic potential of blocking IL-6 functioning by blocking its receptor.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kodai Moriwaki
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Toshiki Yoshii
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
18
|
Du Y, Xu CL, Yu J, Liu K, Lin SD, Hu TT, Qu FH, Guo F, Lou GD, Nishibori M, Hu WW, Chen Z, Zhang SH. HMGB1 in the mPFC governs comorbid anxiety in neuropathic pain. J Headache Pain 2022; 23:102. [PMID: 35974316 PMCID: PMC9382735 DOI: 10.1186/s10194-022-01475-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Background Whether neuroinflammation causes comorbid mood disorders in neuropathic pain remains elusive. Here we investigated the role of high mobility group box 1 protein (HMGB1), a proinflammatory cytokine, in the medial prefrontal cortex (mPFC) in anxiety comorbidity of neuropathic pain. Methods Neuropathic pain was induced by partial transection of the infraorbital nerve (p-IONX) or partial sciatic nerve ligation (PSL) in mice and evaluated by measuring nociceptive thresholds to mechanical and heat stimulation. Anxiety-like behaviors were assessed by elevated plus maze, light dark box and open field tests. Aversive or anti-aversive effect was detected by conditioned place preference test. Neuronal activity was evaluated by single-unit and patch clamp recordings. The contribution of mPFC pyramidal neurons to anxiety was further examined by selectively inhibiting them by optogenetics. HMGB1 expression was measured by immunohistochemistry and western blotting. Antagonism of HMGB1 was achieved by injecting anti-HMGB1 monoclonal antibody (mAb) intracerebrally or intraperitoneally. Results Anxiety-like behaviors were presented earlier after p-IONX than after PSL. HMGB1 expression was upregulated in the mPFC temporally in parallel to anxiety onset, rather than in other regions associated with anxiety. The upregulation of HMGB1 expression and its translocation from the nucleus to cytoplasm in the mPFC occurred predominantly in neurons and were accompanied with activation of microglia and astrocytes. Infusion of anti-HMGB1 mAb into the mPFC during the early and late phases after either p-IONX or PSL alleviated anxiety-like behaviors and aversion without changing pain sensitization, while local infusion of exogenous ds-HMGB1, the proinflammatory form of HMGB1, into the mPFC induced anxiety and aversion but not pain sensitization in naïve mice. In addition to reversing established pain sensitization and anxiety simultaneously, intraperitoneal injection of anti-HMGB1 mAb reduced HMGB1 upregulation and suppressed the hyperexcitability of layer 2/3 pyramidal neurons in the mPFC after p-IONX. Moreover, optogenetic inhibition of mPFC pyramidal neurons alleviated anxiety in p-IONX mice. Conclusion These results demonstrate that HMGB1 in the mPFC drives and maintains anxiety comorbidity in neuropathic pain by increasing the excitability of layer 2/3 pyramidal neurons, and justify antagonism of HMGB1, e.g., neutralization by mAb, as a promising therapeutic strategy for neuropathic pain with anxiety comorbidity. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01475-z.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keyue Liu
- Department of Pharmacology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Shi-Da Lin
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ting-Ting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guo-Dong Lou
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Hisaoka-Nakashima K, Ohata K, Yoshimoto N, Tokuda S, Yoshii N, Nakamura Y, Wang D, Liu K, Wake H, Yoshida T, Ago Y, Hashimoto K, Nishibori M, Morioka N. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp Neurol 2022; 355:114146. [PMID: 35738416 DOI: 10.1016/j.expneurol.2022.114146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying cognitive impairment remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. High-mobility group box 1 (HMGB1) is a proinflammatory molecule and could be involved in neuroinflammation-mediated cognitive impairment in the neuropathic pain state. Hippocampal microglial activation in mice has been associated with cognitive impairment. Thus, the current study examined a potential role of HMGB1 and microglial activation in cognitive impairment in mice with neuropathic pain due to a partial sciatic nerve ligation (PSNL). Mice developed cognitive impairment over two weeks, but not one week, after nerve injury. Nerve-injured mice demonstrated decreased nuclear fraction HMGB1, suggesting increased extracellular release of HMGB1. Furthermore, two weeks after PSNL, significant microglia activation was observed in hippocampus. Inhibition of microglial activation with minocycline, local hippocampal microglia depletion with clodronate liposome, or blockade of HMGB1 with either glycyrrhizic acid (GZA) or anti-HMGB1 antibody in PSNL mice reduced hippocampal microglia activation and ameliorated cognitive impairment. Other changes in the hippocampus of PSNL mice potentially related to cognitive impairment, including decreased hippocampal neuron dendrite length and spine densities and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor (AMPAR) subunits, were prevented with anti-HMGB1 antibody treatment. The current findings suggest that neuro-inflammation involves a number of cellular-level changes and microglial activation. Blocking neuro-inflammation, particularly through blocking HMGB1 could be a novel approach to reducing co-morbidities such as cognitive impairment associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazuto Ohata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Shintarou Tokuda
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanako Yoshii
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Drug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
20
|
Wang S, Guan YG, Zhu YH, Wang MZ. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective. World J Psychiatry 2022; 12:779-786. [PMID: 35978968 PMCID: PMC9258272 DOI: 10.5498/wjp.v12.i6.779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
As a common and serious psychiatric disorder, depression significantly affects psychosocial functioning and quality of life. However, the mechanism of depression is still enigmatic and perplexing, which limits its precise and effective therapeutic methods. Recent studies demonstrated that neuroinflammation activation plays an important role in the pathophysiology of depression. In this respect, high mobility group box 1 (HMGB1) may be a possible signaling inducer of neuroinflammation and can be a potential mechanistic and therapeutic target for depression. Herein, we review recent studies on the mechanistic and therapeutic targets of HMGB1 in depression and propose potential perspectives on this topic.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Key Laboratory of Epilepsy, Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100093, China
| | - Yan-Hua Zhu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Min-Zhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
21
|
Wang KL, Yu YC, Chen HY, Chiang YF, Ali M, Shieh TM, Hsia SM. Recent Advances in Glycyrrhiza glabra (Licorice)-Containing Herbs Alleviating Radiotherapy- and Chemotherapy-Induced Adverse Reactions in Cancer Treatment. Metabolites 2022; 12:metabo12060535. [PMID: 35736467 PMCID: PMC9227067 DOI: 10.3390/metabo12060535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers represent a significant cause of morbidity and mortality worldwide. They also impose a large economic burden on patients, their families, and health insurance systems. Notably, cancers and the adverse reactions to their therapeutic options, chemotherapy and radiotherapy, dramatically affect the quality of life of afflicted patients. Therefore, developing approaches to manage chemotherapy- and radiotherapy-induced adverse reactions gained greater attention in recent years. Glycyrrhiza glabra (licorice), a perennial plant that is one of the most frequently used herbs in traditional Chinese medicine, has been heavily investigated in relation to cancer therapy. Licorice/licorice-related regimes, used in combination with chemotherapy, may improve the adverse effects of chemotherapy. However, there is little awareness of licorice-containing herbs alleviating reactions to radiotherapy and chemotherapy, or to other induced adverse reactions in cancer treatment. We aimed to provide a descriptive review, and to emphasize the possibility that licorice-related medicines could be used as an adjuvant regimen with chemotherapy to improve quality of life (QoL) and to reduce side effects, thus, improving compliance with chemotherapy. The experimental method involved searching different databases, including PubMed, the Cochrane Library, and Wang Fang database, as of May 2022, to identify any relevant studies. Despite a lack of high-quality and large-scale randomized controlled trials, we still discovered the potential benefits of licorice-containing herbs from published clinical studies. These studies find that licorice-containing herbs, and their active ingredients, reduce the adverse reactions caused by chemotherapy and radiotherapy, and improve the QoL of patients. This comprehensive review will serve as a cornerstone to encourage more scientists to evaluate and develop effective Traditional Chinese medicine prescriptions to improve the side effects of chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Ying-Chun Yu
- Sex Hormonal Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40403, Taiwan;
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung 40403, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40403, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
22
|
Kochi T, Nakamura Y, Ma S, Uemoto S, Hisaoka-Nakashima K, Irifune M, Morioka N. Mirogabalin alleviates nociceptive hypersensitivity without causing sedation in a mouse model of post-traumatic trigeminal neuropathy. Behav Brain Res 2022; 425:113829. [DOI: 10.1016/j.bbr.2022.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
|
23
|
The Beneficial Effects of Heme Oxygenase 1 and Hydrogen Sulfide Activation in the Management of Neuropathic Pain, Anxiety- and Depressive-like Effects of Paclitaxel in Mice. Antioxidants (Basel) 2022; 11:antiox11010122. [PMID: 35052626 PMCID: PMC8773208 DOI: 10.3390/antiox11010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy constitutes an unresolved clinical problem that severely decreases the quality of the patient’s life. It is characterized by somatosensory alterations, including chronic pain, and a high risk of suffering mental disorders such as depression and anxiety. Unfortunately, an effective treatment for this neuropathology is yet to be found. We investigated the therapeutic potential of cobalt protoporphyrin IX (CoPP), a heme oxygenase 1 inducer, and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137), a slow hydrogen sulfide (H2S) donor, in a preclinical model of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) in mice. At three weeks after PTX injection, we evaluated the effects of the repetitive administration of 5 mg/kg of CoPP and 35 mg/kg of GYY4137 on PTX-induced nociceptive symptoms (mechanical and cold allodynia) and on the associated emotional disturbances (anxiety- and depressive-like behaviors). We also studied the mechanisms that could mediate their therapeutic properties by evaluating the expression of key proteins implicated in the development of nociception, oxidative stress, microglial activation, and apoptosis in prefrontal cortex (PFC) and dorsal root ganglia (DRG) of mice with PIPN. Results demonstrate that CoPP and GYY4137 treatments inhibited both the nociceptive symptomatology and the derived emotional alterations. These actions were mainly mediated through potentiation of antioxidant responses and inhibiting oxidative stress in the DRG and/or PFC of mice with PIPN. Both treatments normalized some plasticity changes and apoptotic reactions, and GYY4137 blocked microglial activation induced by PTX in PFC. In conclusion, this study proposes CoPP and GYY4137 as good candidates for treating neuropathic pain, anxiety- and depressive-like effects of PTX.
Collapse
|
24
|
Sato F, Nakamura Y, Ma S, Kochi T, Hisaoka-Nakashima K, Wang D, Liu K, Wake H, Nishibori M, Morioka N. Central high mobility group box-1 induces mechanical hypersensitivity with spinal microglial activation in a mouse model of hemi-Parkinson's disease. Biomed Pharmacother 2021; 145:112479. [PMID: 34915668 DOI: 10.1016/j.biopha.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often complain of pain, but this problem has been neglected and is poorly understood. High mobility group box-1 (HMGB1), an alarmin/damage-associated molecular patterns protein, is increased in the cerebrospinal fluid in PD patients. However, little is known of the relationship between HMGB1 and pain associated with PD. Here, we investigated the role of central HMGB1 in the regulation of nociceptive hypersensitivity in a mouse model of PD. Male ddY mice were microinjected unilaterally with 6-hydroxydopamine (6OHDA) into the striatum. These hemi-PD mice were treated with anti-HMGB1 neutralizing antibody (nAb; 10 µg in 10 µL) by intranasal (i.n.) administration. The mechanical hypersensitivity of the hind paws was evaluated with the von Frey test. Spinal microglial activity was analyzed by immunostaining for ionized calcium-binding adapter molecule 1. The 6OHDA-administered mice displayed unilateral loss of dopamine neurons in the substantia nigra and mechanical hypersensitivity in both hind paws. Moreover, spinal microglia were activated in these hemi-PD mice. Twenty-eight days after the 6OHDA injections, repeated i.n., but not systemic, treatment with anti-HMGB1 nAb inhibited the bilateral mechanical hypersensitivity and spinal microglial activation. However, the anti-HMGB1 nAb did not ameliorate the dopamine neuron loss. Moreover, intracerebroventricular injection with recombinant HMGB1 induced mechanical hypersensitivity. These findings indicate that HMGB1 is involved in the maintenance of nociceptive symptoms in hemi-PD mice via spinal microglial activation. Therefore, central HMGB1 may have potential as a therapeutic target for pain associated with PD.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Simeng Ma
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
25
|
Role of neuroglia in neuropathic pain and depression. Pharmacol Res 2021; 174:105957. [PMID: 34688904 DOI: 10.1016/j.phrs.2021.105957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Patients with neuropathic pain induced by nerve injury usually present with co-morbid affective changes, such as depression. Neuroglia was reported to play an important role in the development and maintenance of neuropathic pain both centrally and peripherally. Meanwhile, there have been studies showing that neuroglia participated in the development of depression. However, the specific role of neuroglia in neuropathic pain and depression has not been reviewed comprehensively. Therefore, we summarized the recent findings on the role of neuroglia in neuropathic pain and depression. Based on this review, we found a bridge-like role of neuroglia in neuropathic pain co-morbid with depression. This review may provide therapeutic implications in the treatment of neuropathic pain and offer potential help in the studies of mechanisms in the future.
Collapse
|
26
|
Zhang SH, Chen Z. Response to "The pattern of drug delivery really matters". Brain Behav Immun 2021; 96:305-306. [PMID: 33989744 DOI: 10.1016/j.bbi.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
27
|
Decreased connexin43 expression in the hippocampus is related to the antidepressant effect of amitriptyline in neuropathic pain mice. Biochem Biophys Res Commun 2021; 566:141-147. [PMID: 34126344 DOI: 10.1016/j.bbrc.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Downregulation of astrocytic connexin43 (Cx43) has been observed in several brain regions in rodents and patients with depression. However, its specific role in this effect remains unknown. Moreover, chronic pain can induce depressive disorders. Therefore, the current study examined the relationship between Cx43 expression and depressive-like behavior in a neuropathic pain model. Neuropathic pain was induced by spared nerve injury (SNI) in mice. Depressive-like behavior was evaluated using the forced swim test. Expression of Cx43 in the hippocampus was evaluated using Western blotting and real-time PCR. SNI downregulated Cx43 protein in the contralateral hippocampus of mice, whereas expression of hippocampal Cx43 mRNA was not altered following SNI. Although SNI mice showed longer immobility time compared with sham mice during the forced swim test, duration of depressive-like behavior was not correlated with the expression of Cx43 in the hippocampus of SNI mice. Repeated intraperitoneal administration of amitriptyline ameliorated SNI-induced depressive-like behavior. Furthermore, the antidepressant effect of amitriptyline was correlated with decreased hippocampal Cx43 expression in SNI mice. The current findings suggest that the alteration of Cx43 expression in the hippocampus may not be involved in the induction of depressive disorder but may influence the efficacy of antidepressants. Therefore, the level of Cx43 expression in the hippocampus could be a key parameter to evaluate individual differences in antidepressant effects in patients with depressive disorder.
Collapse
|
28
|
Takada N, Nakamura Y, Ikeda K, Takaoka N, Hisaoka-Nakashima K, Sanoh S, Kotake Y, Nakata Y, Morioka N. Treatment with Histone Deacetylase Inhibitor Attenuates Peripheral Inflammation-Induced Cognitive Dysfunction and Microglial Activation: The Effect of SAHA as a Peripheral HDAC Inhibitor. Neurochem Res 2021; 46:2285-2296. [PMID: 34081246 DOI: 10.1007/s11064-021-03367-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
It has been demonstrated that peripheral inflammation induces cognitive dysfunction. Several histone deacetylase (HDAC) inhibitors ameliorate cognitive dysfunction in animal models of not only peripheral inflammation but also Alzheimer's disease. However, it is not clear which HDAC expressed in the central nervous system or peripheral tissues is involved in the therapeutic effect of HDAC inhibition on cognitive dysfunction. Hence, the present study investigated the effect of peripheral HDAC inhibition on peripheral inflammation-induced cognitive dysfunction. Suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor that is mainly distributed in peripheral tissues after intraperitoneal administration, was found to prevent peripheral inflammation-induced cognitive dysfunction. Moreover, pretreatment with SAHA dramatically increased mRNA expression of interleukin-10, an anti-inflammatory cytokine, in peripheral and central tissues and attenuated peripheral inflammation-induced microglial activation in the CA3 region of the hippocampus. Minocycline, a macrophage/microglia inhibitor, also ameliorated cognitive dysfunction. Furthermore, as a result of treatment with liposomal clodronate, depletion of peripheral macrophages partially ameliorated the peripheral inflammation-evoked cognitive dysfunction. Taken together, these findings demonstrate that inhibition of peripheral HDAC plays a critical role in preventing cognitive dysfunction induced by peripheral inflammation via the regulation of anti-inflammatory cytokine production and the inhibition of microglial functions in the hippocampus. Thus, these findings could provide support for inhibition of peripheral HDAC as a novel therapeutic strategy for inflammation-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Naoki Takada
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| | - Keisuke Ikeda
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Naoki Takaoka
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Seigo Sanoh
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan
| | - Yaichiro Kotake
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
29
|
Perineural high-mobility group box 1 induces mechanical hypersensitivity through activation of spinal microglia: Involvement of glutamate-NMDA receptor dependent mechanism in spinal dorsal horn. Biochem Pharmacol 2021; 186:114496. [PMID: 33667472 DOI: 10.1016/j.bcp.2021.114496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/15/2023]
Abstract
High mobility box 1 (HMGB1), a damage-associated molecular pattern, has crucial roles in induction of neuropathic pain. Upregulation of HMGB1 around the injured sciatic nerve contributes to mechanical hypersensitivity following partial sciatic nerve ligation (PSNL) of mice. However, central mechanisms mediating perineural HMGB1-induced nociceptive hypersensitivity, especially within the spinal dorsal horn, have not been determined. The current study shows that perineural treatment of naïve mice with recombinant HMGB1, which mimics increased HMGB1 around the injured sciatic nerve of PSNL mice, significantly induced activation of microglia, but not astrocytes, in the spinal dorsal horn. Intraperitoneal injection of minocycline, a microglial inhibitor, ameliorated perineural rHMGB1-induced mechanical hypersensitivity. In addition, blockade of spinal N-methyl-D-aspartate (NMDA) receptors significantly prevented perineural rHMGB1-induced mechanical hypersensitivity and microglial activation. In contrast, non-NMDA receptors, neurokinin 1 receptor, colony-stimulating factor 1 receptor and P2Y12 receptor were not involved in perineural rHMGB1-induced mechanical hypersensitivity. Furthermore, repeated perineural treatment with an anti-HMGB1 antibody blocked activation of spinal microglia in PSNL mice. Collectively, the current findings demonstrate that increased HMGB1 around injured sciatic nerve might induce nociceptive hypersensitivity through activation of spinal microglia. Thus, HMGB1-dependent mechanisms between the injured sciatic nerve and spinal dorsal horn could be crucial in induction of neuropathic pain.
Collapse
|
30
|
Bell RF, Moreira VM, Kalso EA, Yli-Kauhaluoma J. Liquorice for pain? Ther Adv Psychopharmacol 2021; 11:20451253211024873. [PMID: 34349979 PMCID: PMC8287643 DOI: 10.1177/20451253211024873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Liquorice has a long history of use in traditional Chinese, Ayurvedic and herbal medicine. The liquorice plant contains numerous bioactive compounds, including triterpenes, flavonoids and secondary metabolites, with glycyrrhizin being the main active compound. Liquorice constituents have been found to have anti-inflammatory, antioxidant, antiviral, anticancer, hepatoprotective and neuroprotective properties. In addition, they appear to have antidepressant actions and effects on morphine tolerance. Glycyrrhizin, its metabolite glycyrrhetic (glycyrrhetinic) acid and other liquorice-derived compounds such as isoflavonoids and trans-chalcones, exert potent anti-inflammatory effects via a wide range of mechanisms including high mobility group box 1 protein (HMGB1) inhibition, gap junction blockade and α2A-adrenoceptor antagonism. These properties, together with an increasing body of preclinical studies and a long history of use in herbal medicine, suggest that liquorice constituents may be useful for pain management. Glycyrrhizin is used widely in the confectionary, food and tobacco industries, but has documented adverse effects that may limit clinical use. Whether liquorice plant-derived compounds represent a novel class of analgesics is yet to be established. Having a host of bioactive compounds with a broad range of mechanisms of effect, liquorice is a plant that, in the future, may give rise to new therapies for pain.
Collapse
Affiliation(s)
- Rae F Bell
- (Emerita) Regional Centre of Excellence in Palliative Care, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Vânia M Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Eija A Kalso
- Department of Pharmacology and SleepWell Research Programme, Faculty of Medicine, University of Helsinki and Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Nishibori M, Wang D, Ousaka D, Wake H. High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells 2020; 9:cells9122650. [PMID: 33321691 PMCID: PMC7764171 DOI: 10.3390/cells9122650] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption.
Collapse
|
32
|
Guo X, Rao Y, Mao R, Cui L, Fang Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 2020; 181:108336. [DOI: 10.1016/j.neuropharm.2020.108336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
|
33
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
34
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
35
|
Hisaoka-Nakashima K, Azuma H, Ishikawa F, Nakamura Y, Wang D, Liu K, Wake H, Nishibori M, Nakata Y, Morioka N. Corticosterone Induces HMGB1 Release in Primary Cultured Rat Cortical Astrocytes: Involvement of Pannexin-1 and P2X7 Receptor-Dependent Mechanisms. Cells 2020; 9:cells9051068. [PMID: 32344830 PMCID: PMC7290518 DOI: 10.3390/cells9051068] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
A major risk factor for major depressive disorder (MDD) is stress. Stress leads to the release of high-mobility group box-1 (HMGB1), which in turn leads to neuroinflammation, a potential pathophysiological basis of MDD. The mechanism underlying stress-induced HMGB1 release is not known, but stress-associated glucocorticoids could be involved. To test this, rat primary cultured cortical astrocytes, the most abundant cell type in the central nervous system (CNS), were treated with corticosterone and HMGB1 release was assessed by Western blotting and ELISA. Significant HMGB1 was released with treatment with either corticosterone or dexamethasone, a synthetic glucocorticoid. HMGB1 translocated from the nucleus to the cytoplasm following corticosterone treatment. HMGB1 release was significantly attenuated with glucocorticoid receptor blocking. In addition, inhibition of pannexin-1, and P2X7 receptors led to a significant decrease in corticosterone-induced HMGB1 release. Taken together, corticosterone stimulates astrocytic glucocorticoid receptors and triggers cytoplasmic translocation and extracellular release of nuclear HMGB1 through a mechanism involving pannexin-1 and P2X7 receptors. Thus, under conditions of stress, glucocorticoids induce astrocytic HMGB1 release, leading to a neuroinflammatory state that could mediate neurological disorders such as MDD.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Honami Azuma
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Fumina Ishikawa
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
- Correspondence: ; Tel.: +81-082-257-5310
| |
Collapse
|
36
|
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020; 11:484. [PMID: 32265930 PMCID: PMC7099994 DOI: 10.3389/fimmu.2020.00484] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.
Collapse
Affiliation(s)
- Huan Yang
- Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Haichao Wang
- Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
38
|
Su J, Pan YW, Wang SQ, Li XZ, Huang F, Ma SP. Saikosaponin-d attenuated lipopolysaccharide-induced depressive-like behaviors via inhibiting microglia activation and neuroinflammation. Int Immunopharmacol 2020; 80:106181. [PMID: 31926446 DOI: 10.1016/j.intimp.2019.106181] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
Saikosaponin-d (SSd), a triterpenoid saponins compound extracted from Radix Bupleuri, has been demonstrated to effectively alleviate chronic mild stress-induced depressive behaviors in rats, but the underlying molecular mechanisms are still uncertain. Increasing evidence indicated that microglia activation and inflammatory responses were involved in the pathogenesis of depression. Thus, we desired to induce inflammation-related depressive-like behaviors in mice by injecting lipopolysaccharide (LPS) to investigate whether the antidepressant effect of SSd is related to inhibiting inflammation. The results of behavioral tests showed that SSd administration ameliorated LPS-induced depressive-like behaviors, as shown by increased sucrose consumption in the sucrose preference test and decreased immobility time in the tail suspension test and forced swimming test. Furthermore, immunostaining results showed that SSd pretreatment inhibited LPS-induced microglia activation in the hippocampus of mice and primary microglia cells. Enzyme-linked immunosorbent assay (ELISA) results showed that SSd pretreatment suppressed LPS-induced overexpression of inflammatory factors such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α both in vivo and in vitro. Immunostaining and western blot analysis results demonstrated that SSd pretreatment also inhibited LPS-induced HMGB1 translocation from nuclear to extracellular and decreased the protein levels of TLR4, p-IκB-α, NF-κBp65. These results suggested that SSd effectively improved LPS-induced inflammation-related depressive-like behaviors by inhibiting LPS-induced microglia activation and neuroinflammation, and the possible mechanism might associate with the regulation of the HMGB1/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jing Su
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yi-Wei Pan
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Si-Qi Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xue-Zhen Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fang Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China; Qinba Traditional Chinese Medicine Resources Research and Development Center, AnKang University, AnKang 725000, PR China.
| |
Collapse
|
39
|
Nishibori M, Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci 2019; 140:94-101. [PMID: 31105025 DOI: 10.1016/j.jphs.2019.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023] Open
Abstract
High mobility group box-1 (HMGB1), a representative damage associated-molecular pattern (DAMP), has been reported to be involved in many inflammatory diseases. Several drugs are thought to have potential to control the translocation and secretion of HMGB1, or to neutralize extracellular HMGB1 by binding to it. One of these drugs, anti-HMGB1 monoclonal antibody (mAb), is highly specific for HMGB1 and has been shown to be effective for the treatment of a wide range of CNS diseases when modeled in animals, including stroke, traumatic brain injury, Parkinson's disease, epilepsy and Alzheimer's disease. Thus, anti-HMGB1 mAb not only is useful for target validation but also has extensive potential for the treatment of the above-mentioned diseases. In this review, we summarize existing knowledge on the effects of anti-HMGB1 mAb on CNS and PNS diseases, the common features of translocation and secretion of HMGB1 and the functional roles of HMGB1 in these diseases. The existing literature suggests that anti-HMGB1 mAb therapy would be effective for a wide range of CNS and PNS diseases.
Collapse
Affiliation(s)
- Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Hideo K Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|