1
|
Duan N, Zhang Y, Wang S, Guan J, Ji Y, Huang W, Qian R, Zheng H, Bai T, Tian Y. Evaluating the efficacy and acceptability of non-invasive brain stimulation for generalized anxiety disorder: a systematic review and network meta-analysis. Psychiatry Res Neuroimaging 2025; 349:111989. [PMID: 40203547 DOI: 10.1016/j.pscychresns.2025.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Non-invasive brain stimulation (NIBS) has the potential to treat generalized anxiety disorder (GAD). To assess the efficacy (response/remission/post-treatment continuous anxiety severity scores) and acceptability (failure to complete treatment for any reason) of NIBS, we searched PubMed, Web of Science, and the Cochrane Library (as of April 2024) for articles on NIBS for GAD and conducted a network meta-analysis of eight randomized trials (20 treatment arms, 405 participants). Data were pooled using standardized mean difference (SMD) and odds ratio (OR) with 95 % confidence interval (CI). Repetitive transcranial magnetic stimulation (rTMS) was the most widely studied treatment for GAD. The right dorsolateral prefrontal cortex (DLPFC) was the most common treatment target for GAD. High-frequency rTMS showed higher response rates (OR 291.40, 95 % CI 13.08 to 6490.21) and remission rates (OR 182.14, 95 % CI 8.72 to 3805.76) compared with other active therapies. Continuous theta burst stimulation (cTBS) greatly improved continuous post-treatment anxiety severity scores (SMD -2.56, 95 % CI -3.16 to -1.96). No significant differences in acceptability were found between the treatment strategies and the sham stimulation group. These findings provide evidence to consider NIBS techniques as alternative or adjunctive treatments for GAD.
Collapse
Affiliation(s)
- Nanxue Duan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yulin Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shaoyang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian Guan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yang Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wanling Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui Qian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hao Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
| |
Collapse
|
2
|
Gao B, Zhang J, Zhang J, Pei G, Liu T, Wang L, Funahashi S, Wu J, Zhang Z, Zhang J. Gamma Transcranial Alternating Current Stimulation Enhances Working Memory Ability in Healthy People: An EEG Microstate Study. Brain Sci 2025; 15:381. [PMID: 40309851 PMCID: PMC12025431 DOI: 10.3390/brainsci15040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Working memory (WM) is a core cognitive function closely linked to various cognitive processes including language, decision making, and reasoning. Transcranial alternating current stimulation (tACS), a non-invasive brain stimulation technique, has been shown to modulate cognitive abilities and treat psychiatric disorders. Although gamma tACS (γ-tACS) has demonstrated positive effects on WM, its underlying neural mechanisms remain unclear. METHODS In this study, we employed electroencephalogram (EEG) microstate analysis to investigate the spatiotemporal dynamics of γ-tACS effects on WM performance. Healthy participants (N = 104) participated in two-back and three-back WM tasks before and after two types (sine and triangular) of γ-tACS, with sham stimulation as a control. RESULTS Our results revealed that γ-tACS improved performance in both the two-back and three-back tasks, with triangular γ-tACS showing greater accuracy improvement in the three-back task than the sham group. Furthermore, γ-tACS significantly modulated EEG microstate dynamics, specifically downregulating microstate Class C and upregulating microstate Classes D and B. These changes were positively correlated with reduced reaction times in the three-back task. CONCLUSIONS Our findings establish microstate analysis as an effective approach for evaluating γ-tACS-induced changes in global brain activity and advance the understanding of how γ-tACS influences WM.
Collapse
Affiliation(s)
- Binbin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinyan Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Jianxu Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| |
Collapse
|
3
|
Ramadan B, Van Waes V. Evaluating the efficacy of transcranial direct current stimulation (tDCS) in managing neuropathic pain-induced emotional consequences: Insights from animal models. Neurophysiol Clin 2025; 55:103055. [PMID: 39884008 DOI: 10.1016/j.neucli.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management. While pharmacotherapy remains the first-line treatment, limitations in its efficacy and the prevalence of side effects often leave patients with insufficient pain relief. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has recently emerged as a promising alternative for chronic pain management. This review provides an overview of preclinical studies examining the effects of tDCS in rodent models of neuropathic pain. It specifically highlights the potential of tDCS to modulate the emotional-affective component of pain, with a focus on identifying optimal cortical targets for stimulation to enhance the translational application of tDCS in managing pain-related emotional disorders.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| | - Vincent Van Waes
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| |
Collapse
|
4
|
Bas-Hoogendam JM. Genetic Vulnerability to Social Anxiety Disorder. Curr Top Behav Neurosci 2024. [PMID: 39543021 DOI: 10.1007/7854_2024_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Most anxiety disorders 'run within families': people suffering from an anxiety disorder often have family members who are highly anxious as well. In this chapter, we explore recent work devoted to unraveling the complex interplay between genes and environment in the development of anxiety. We review studies focusing on the genetic vulnerability to develop social anxiety disorder (SAD), as SAD is one of the most prevalent anxiety disorders, with an early onset, a chronic course, and associated with significant life-long impairments. More insight into the development of SAD is thus of uttermost importance.First, we will discuss family studies, twin studies, and large-sized population-based registry studies and explain what these studies can reveal about the genetic vulnerability to develop anxiety. Next, we describe the endophenotype approach; in this context, we will summarize results from the Leiden Family Lab study on Social Anxiety Disorder. Subsequently, we review the relationship between the heritable trait 'behavioral inhibition' and the development of SAD, and highlight the relevance of this work for the development and improvement of preventative and therapeutic interventions for socially anxious youth.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Leiden University, Leiden, The Netherlands.
- Leiden University Medical Center, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
5
|
Qi L, Wang S, Li X, Yu Y, Wang W, Li Q, Tian Y, Bai T, Wang K. Non-invasive brain stimulation in the treatment of generalized anxiety disorder: A systematic review and meta-analysis. J Psychiatr Res 2024; 178:378-387. [PMID: 39208534 DOI: 10.1016/j.jpsychires.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), and transcranial direct current stimulation (tDCS), is an emerging intervention that has been used to treat various mental illnesses. However, previous studies have not comprehensively compared the efficacies of various NIBS modalities in alleviating anxiety symptoms among patients with generalized anxiety disorder (GAD). Therefore, this study conducted a systematic review and meta-analysis to assess the efficacy of NIBS for patients with GAD. METHODS A systematic search of four major bibliographic databases (Embase, PubMed, Web of Science and The Cochrane Library) was conducted from inception dates to November 26, 2023 to identify eligible studies. The data were analyzed using a random-effects model. RESULTS Seven randomized controlled trials (RCTs) were included in the meta-analysis. Significant differences were found in changes in Hamilton anxiety rating scale (HARS) scores, study-defined response, and remission between the intervention and control groups. Moreover, the intervention groups experienced a significantly higher frequency of headaches. CONCLUSION The results revealed that interventions improved GAD compared to control groups. cTBS and rTMS exhibited better treatment efficacy than tDCS, which did not appear to have a significant therapeutic effect. Longer follow-up periods and larger sample sizes are required in future RCTs. TRIAL REGISTRATION This meta-analysis was conducted in accordance with PRISMA guidelines and registered at PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, CRD42023466285).
Collapse
Affiliation(s)
- Li Qi
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shaoyang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoming Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yue Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenjia Wang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
| |
Collapse
|
6
|
Couto TA, Gao F, Lak DC, Yuan Z. Combined EEG-tDCS approach in resting state to reduce comorbid anxiety and depressive symptoms in affective disorders: A sham-controlled pilot study. IBRO Neurosci Rep 2024; 16:571-581. [PMID: 38764542 PMCID: PMC11101867 DOI: 10.1016/j.ibneur.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024] Open
Abstract
Continuous challenges have been imposed on mental health science by Anxiety and Depression disorders as the most prevalent and debilitating psychiatric conditions worldwide. Pharmacologic and cognitive behavioral therapies, either alone or in combination, have been considered as the first-line therapies, however, resistant symptomatology is prevalent in comorbid conditions with symptoms remaining after interventions. The demand for new therapeutic solutions has given space to the development of non-invasive brain stimulation techniques (NIBS), and the transmagnetic direct current stimulation (tDCS) has been reported as a safe and well-tolerated technique for the treatment of several mental health conditions, including Anxiety and Depression disorders. Relying on quantitative electroencephalography(qEEG)- tDCS approach, the current study aims to inspect the effect of tDCS intervention on patients who suffer from anxiety-depression comorbidity, in particular, the impact of tDCS intervention on qEEG spectral power activity and resting-state connectivity organization during eyes closed and eyes open protocols. QEEG data were acquired from eight patients suffering from moderate to severe anxiety-depression comorbid symptoms along with poor coping skills to manage stress and negative affect. Twelve control subjects allocated in the control group exhibiting low to moderate symptoms in both anxiety and depression conditions went also through the qEEG data acquisition. In addition, a sham-controlled study was conducted, and the patient group went through resting-state qEEG-tDCS neuromodulation once a week for ten weeks. Various-stage qEEG recordings were performed to inspect the efficacy of tDCS treatment during the modulation of brain regions involved in the regulation of affective responses. Our results demonstrated that after tDCS neuromodulation, the patients' groups exhibited decreased absolute power abnormalities over the left anterior cingulate cortex and reduced abnormal activity in the alpha band over posterior regions; improved functional connectivity indexes; decreased anxiety and depressive scores while positive affect score was improved. Besides the promising improvements, our study did not find a significant tDCS effect on perceived stress and negative affect scores. Consistently, significant differences in absolute spectral power over the left anterior cingulate cortex were detected among the patient group, as compared to the controls, as expected. Therefore, our study offers preliminary data to understand the neuroplasticity changes that potentially result from the manipulation of cortical excitability during affective regulation protocols followed by the consequent decrease of comorbid anxiety and depressive symptomatology. The pilot study was followed by prospective registration with ChiCTR2200062142.
Collapse
Affiliation(s)
- Tania A. Couto
- Faculty of Health Sciences. Centre for Cognitive and Brain Sciences. University of Macau, Taipa 999078, Macau, Special Administrative region of China
- Brain, Language and Computation Laboratory. University Research Facility in Behavioural and Systems Neuroscience. The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Fei Gao
- Faculty of Health Sciences. Centre for Cognitive and Brain Sciences. University of Macau, Taipa 999078, Macau, Special Administrative region of China
- Fudan University, Shanghai, China
| | - Davis C. Lak
- Alpha Positive Limited, Central, 999077, Hong Kong Special Administrative Region of China
- Department of Psychology. The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhen Yuan
- Faculty of Health Sciences. Centre for Cognitive and Brain Sciences. University of Macau, Taipa 999078, Macau, Special Administrative region of China
| |
Collapse
|
7
|
Nishimoto H, Kodera S, Otsuru N, Hirata A. Individual and group-level optimization of electric field in deep brain region during multichannel transcranial electrical stimulation. Front Neurosci 2024; 18:1332135. [PMID: 38529268 PMCID: PMC10961445 DOI: 10.3389/fnins.2024.1332135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Electrode montage optimization for transcranial electric stimulation (tES) is a challenging topic for targeting a specific brain region. Targeting the deep brain region is difficult due to tissue inhomogeneity, resulting in complex current flow. In this study, a simplified protocol for montage optimization is proposed for multichannel tES (mc-tES). The purpose of this study was to reduce the computational cost for mc-tES optimization and to evaluate the mc-tES for deep brain regions. Optimization was performed using a simplified protocol for montages under safety constraints with 20 anatomical head models. The optimization procedure is simplified using the surface EF of the deep brain target region, considering its small volume and non-concentric distribution of the electrodes. Our proposal demonstrated that the computational cost was reduced by >90%. A total of six-ten electrodes were necessary for robust EF in the target region. The optimization with surface EF is comparable to or marginally better than using conventional volumetric EF for deep brain tissues. An electrode montage with a mean injection current amplitude derived from individual analysis was demonstrated to be useful for targeting the deep region at the group level. The optimized montage and injection current were derived at the group level. Our proposal at individual and group levels showed great potential for clinical application.
Collapse
Affiliation(s)
- Hidetaka Nishimoto
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
8
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
9
|
Wang H, Song P, Hou Y, Liu J, Hao W, Hu S, Dai X, Zhan S, Li N, Peng M, Wang H, Lin H, Wang Y. 820-nm Transcranial Near-infrared Stimulation on the Left DLPFC Relieved Anxiety: A Randomized, Double-blind, Sham-controlled Study. Brain Res Bull 2023:110682. [PMID: 37301483 DOI: 10.1016/j.brainresbull.2023.110682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Generalized anxiety disorder (GAD) is a chronic mood disease associated with abnormal brain network connections, including decreased activity in the left dorsolateral prefrontal cortex (DLPFC). Cortical excitability can be increased with 820-nm transcranial near-infrared stimulation (tNIRS), while transcranial magnetic stimulation with electroencephalography (TMS-EEG) can help evaluate time-varying brain network connectivity. A randomized, double-blind, sham-controlled trial was conducted to assess the efficacy of tNIRS on the left DLPFC and the impact on time-varying brain network connections in GAD patients. METHODS A total of 36 GAD patients were randomized to receive active or sham tNIRS for 2 weeks. Clinical psychological scales were assessed before, after, and at the 2-, 4-, and 8-week follow-ups. TMS-EEG was performed for 20minutes before and immediately after tNIRS treatment. The healthy controls did not receive tNIRS and only had TMS-EEG data collected once in the resting state. RESULTS The Hamilton Anxiety Scale (HAMA) scores of the active stimulation group decreased post-treatment compared with the sham group (P=0.021). The HAMA scores of the active stimulation group at the 2-, 4-, and 8-week follow-up assessments were lower than those before treatment (P<0.05). The time-varying EEG network pattern showed an information outflow from the left DLPFC and the left posterior temporal region after active treatment. CONCLUSION Herein, 820-nm tNIRS targeting the left DLPFC had significant positive effects on therapy for GAD that lasted at least 2 months. tNIRS may reverse the abnormality of time-varying brain network connections in GAD.
Collapse
Affiliation(s)
- Huicong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Yue Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China; Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang, 050000 China; Neuromedical Technology Innovation Center of Hebei Province, 050000 China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Wensi Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaona Dai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuqin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Ning Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Mao Peng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China; Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang, 050000 China; Neuromedical Technology Innovation Center of Hebei Province, 050000 China.
| |
Collapse
|
10
|
Opposing and emotion-specific associations between frontal activation with depression and anxiety symptoms during facial emotion processing in generalized anxiety and depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110716. [PMID: 36623581 DOI: 10.1016/j.pnpbp.2023.110716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Major depression (MDD) and generalized anxiety disorder (GAD) have become one of the leading global causes of disability and both are characterized by marked interpersonal and social impairments. However, despite high comorbidity and overlapping social-emotional deficits, it remains unclear whether MDD and GAD share a common neural basis during interpersonal processing. In the present study, we combined an emotional face processing paradigm with fMRI and dimensional and categorical analyses in a sample of unmedicated MDD and GAD patients (N = 72) as well as healthy controls (N = 35). No group differences were found in categorical analyses. However, the dimensional analyses revealed that dorsolateral prefrontal cortex (dlPFC) reactivity to sad facial expressions was positively associated with depression symptom load, yet negatively associated with anxiety symptom load in the entire sample. On the network level depression symptom load was positively associated with functional connectivity between the bilateral amygdala and a widespread network including the anterior cingulate and insular cortex. Together, these findings suggest that the dlPFC - engaged in cognitive and emotional processing - exhibits symptom- and emotion-specific alteration during interpersonal processing. Dysregulated communication between the amygdala and core regions of the salience network may represent depression-specific neural dysregulations.
Collapse
|
11
|
Camacho‐Conde JA, del Rosario Gonzalez‐Bermudez M, Carretero‐Rey M, Khan ZU. Therapeutic potential of brain stimulation techniques in the treatment of mental, psychiatric, and cognitive disorders. CNS Neurosci Ther 2022; 29:8-23. [PMID: 36229994 PMCID: PMC9804057 DOI: 10.1111/cns.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | - Zafar U. Khan
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain,CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
12
|
Liu X, Klugah-Brown B, Zhang R, Chen H, Zhang J, Becker B. Pathological fear, anxiety and negative affect exhibit distinct neurostructural signatures: evidence from psychiatric neuroimaging meta-analysis. Transl Psychiatry 2022; 12:405. [PMID: 36151073 PMCID: PMC9508096 DOI: 10.1038/s41398-022-02157-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Internalizing disorders encompass anxiety, fear and depressive disorders, which exhibit overlap at both conceptual and symptom levels. Given that a neurobiological evaluation is lacking, we conducted a Seed-based D-Mapping comparative meta-analysis including coordinates as well as original statistical maps to determine common and disorder-specific gray matter volume alterations in generalized anxiety disorder (GAD), fear-related anxiety disorders (FAD, i.e., social anxiety disorder, specific phobias, panic disorder) and major depressive disorder (MDD). Results showed that GAD exhibited disorder-specific altered volumes relative to FAD including decreased volumes in left insula and lateral/medial prefrontal cortex as well as increased right putamen volume. Both GAD and MDD showed decreased prefrontal volumes compared to controls and FAD. While FAD showed less robust alterations in lingual gyrus compared to controls, this group presented intact frontal integrity. No shared structural abnormalities were found. Our study is the first to provide meta-analytic evidence for distinct neuroanatomical abnormalities underlying the pathophysiology of anxiety-, fear-related and depressive disorders. These findings may have implications for determining promising target regions for disorder-specific neuromodulation interventions (e.g. transcranial magnetic stimulation or neurofeedback).
Collapse
Affiliation(s)
- Xiqin Liu
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Benjamin Klugah-Brown
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Ran Zhang
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Huafu Chen
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Jie Zhang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, 200433 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, 200433 Shanghai, P. R. China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| |
Collapse
|
13
|
Lantrip C, Szabo YZ, Kozel FA, Holtzheimer P. Neuromodulation as an Augmenting Strategy for Behavioral Therapies for Anxiety and PTSD: a Narrative Review. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2022; 9:406-418. [PMID: 36714210 PMCID: PMC9881183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PURPOSE OF REVIEW Post-traumatic stress disorder (PTSD) is a prevalent problem. Despite current treatments, symptoms may persist, and neuromodulation therapies show great potential. A growing body of research suggests that transcranial magnetic stimulation (TMS) is effective as a standalone treatment for PTSD, with recent research demonstrating promising use when combined synergistically with behavioral treatments. In this review, we survey this literature including data suggesting mechanisms involved in anxiety and PTSD that may be targeted by neurostimulation. RECENT FINDINGS Evidence suggests the mechanism of action for TMS that contributes to behavioral change may be enhanced neural plasticity via increased functionality of prefrontal and subcortical/limbic structures and associated networks. Some research has demonstrated a behavioral change in PTSD and anxiety due to enhanced extinction learning or improved ability to think flexibly and reduce ruminative tendencies. Growing evidence suggests TMS may be best used as a therapeutic adjunct, at least acutely, for extinction-based exposure therapies in patients by accelerating therapy response. SUMMARY While TMS has shown promise as a standalone intervention, augmentation with psychotherapy is one avenue of interest. Non-responders to current EBPs might particularly benefit from this sort of targeted approach, and it may shorten treatment length, which would help the successful completion of a course of therapy.
Collapse
Affiliation(s)
- Crystal Lantrip
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research On Returning War Veterans, Waco, TX 76711, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Yvette Z. Szabo
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research On Returning War Veterans, Waco, TX 76711, USA
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - F. Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Paul Holtzheimer
- Department of Veterans Affairs, National Center for PTSD, White River Junction, VT, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
14
|
Zhou J, Fan L, Hu H, Shen K, Wu L, Lin X, Gao H. The Efficacy of Integrated Rehabilitation for Post-Stroke Anxiety: Study Protocol for a Prospective, Multicenter, Randomized Controlled Trial. Int J Gen Med 2022; 15:7101-7111. [PMID: 36097565 PMCID: PMC9464039 DOI: 10.2147/ijgm.s381434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Post-stroke anxiety (PSA) remains a challenging medical problem. Integrated rehabilitation involves a combination of traditional Chinese medicine (TCM) and Western conventional rehabilitation techniques. Theoretically, integrated rehabilitation is likely to have significant advantages in treating PSA. Nevertheless, the therapeutic effect of integrated rehabilitation needs to be verified based on large-scale trials with sound methodology. Thus, the aim of this trial is to assess the efficacy and safety of integrated rehabilitation on PSA. METHODS The study is a prospective, multicenter, randomized, controlled trial involving 188 PSA patients from four clinical centers in China. Eligible participants will be randomly divided into the integrated rehabilitation group or the standard care group. Participants in the integrated rehabilitation group will receive a combination of TCM and Western conventional rehabilitation methods, including acupuncture, repeated transcranial magnetic stimulation, traditional Chinese herbal medicine, and standard care. The primary outcome will be the Hamilton Anxiety Rating Scale (HAM-A). The secondary outcomes will include the Self-Rating Anxiety Scale (SAS), the Activities of Daily Living (ADL) scale, the Montreal Cognitive Assessment (MoCA) scale, the simplified Fugl-Meyer Assessment of motor function (FMA) scale, and the Pittsburgh Sleep Quality Index (PSQI). Outcome measurements will be performed at baseline, at the end of the 4-week treatment and the 8-week follow-up. CONCLUSION Results of this trial will ascertain the efficacy and safety of integrated rehabilitation on PSA, thereby providing evidence regarding integrated rehabilitation strategies for treating PSA. It will also promote up-to-date evidence for patients, clinicians, and policy-makers. TRIAL REGISTRATION ClinicalTrials.gov NCT05147077.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lijuan Fan
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hantong Hu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ke Shen
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Liya Wu
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaoqi Lin
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hong Gao
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
15
|
Cheng Y, Wang Y, Zhang W, Yin J, Dong J, Liu J. Relationship between intestinal flora, inflammation, BDNF gene polymorphism and generalized anxiety disorder: A clinical investigation. Medicine (Baltimore) 2022; 101:e28910. [PMID: 35866837 PMCID: PMC9302347 DOI: 10.1097/md.0000000000028910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Understanding factors related to generalized anxiety disorder pathogenesis is critical for elucidating the mechanism and preventing its establishment. Intestinal flora and hereditary factors such as brain-derived neurotrophic factor (BDNF) gene polymorphism may have a role in the development of generalized anxiety disorder. This work explored the relationship between intestinal flora, inflammatory changes and BDNF gene polymorphisms and the occurrence of generalized anxiety disorder. METHODS Forty-eight patients with generalized anxiety disorder and 57 healthy people were included in the study. As the disease group and control group, the polymorphisms of rs10767664 and rs7124442 of the BDNF gene, differences in the distribution of intestinal flora, and changes in inflammatory and immune indicators were analyzed. RESULTS The distribution of BDNF gene alleles, genotypes and haplotypes in the disease group were different from those in the control group. The levels of TNF-α (P = .000), interleukin-4 (P = .000), interleukin-10 (P = .043) and IgG (P = .008) in patients with generalized anxiety disorder in the disease group were different from those in the control group. The distribution of gut microbes in patients with generalized anxiety disorder in the disease group was different from that in the control group. CONCLUSION The onset of generalized anxiety disorder is related to BDNF gene polymorphism, and is accompanied by changes in intestinal flora and inflammatory immune status in the body.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Shandong Mental Health Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qingdao Mental Health Center, Qingdao University, Qingdao, Shandong, China
| | - Yue Wang
- Hiser Medicine Center of Qingdao, Qingdao, Shandong, China
| | - Wen Zhang
- Binzhou People's Hospital, Binzhou, Shandong, China
| | - Junbo Yin
- Qingdao Mental Health Center, Qingdao University, Qingdao, Shandong, China
| | - Jicheng Dong
- Qingdao Mental Health Center, Qingdao University, Qingdao, Shandong, China
| | - Jintong Liu
- Shandong Mental Health Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Psychiatry and Mental Health, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Jintong Liu, Shangdong Mental Health Center, Cheeloo College of Medicine, Shandong University, 49 Wenhua East Road, Jinan, Shandong 250014, China (e-mail: )
| |
Collapse
|
16
|
Gay F, Singier A, Aouizerate B, Salvo F, Bienvenu TCM. Neuromodulation Treatments of Pathological Anxiety in Anxiety Disorders, Stressor-Related Disorders, and Major Depressive Disorder: A Dimensional Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:910897. [PMID: 35845453 PMCID: PMC9283719 DOI: 10.3389/fpsyt.2022.910897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pathological anxiety is responsible for major functional impairments and resistance to conventional treatments in anxiety disorders (ADs), posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Focal neuromodulation therapies such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS) are being developed to treat those disorders. Methods We performed a dimensional systematic review and meta-analysis to assess the evidence of the efficacy of TMS, tDCS and DBS in reducing anxiety symptoms across ADs, PTSD and MDD. Reports were identified through systematic searches in PubMed/Medline, Scopus and Cochrane library (inception to November 2020), followed by review according to the PRISMA guidelines. Controlled clinical trials examining the effectiveness of brain stimulation techniques on generic anxiety symptoms in patients with ADs, PTSD or MDD were selected. Results Nineteen studies (RCTs) met inclusion criteria, which included 589 participants. Overall, focal brain activity modulation interventions were associated with greater reduction of anxiety levels than controls [SMD: -0.56 (95% CI, -0.93 to-0.20, I 2 = 77%]. Subgroup analyses revealed positive effects for TMS across disorders, and of focal neuromodulation in generalized anxiety disorder and PTSD. Rates of clinical responses and remission were higher in the active conditions. However, the risk of bias was high in most studies. Conclusions There is moderate quality evidence for the efficacy of neuromodulation in treating pathological anxiety. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=233084, identifier: PROSPERO CRD42021233084. It was submitted on January 29th, 2021, and registered on March 1st, 2021. No amendment was made to the recorded protocol. A change was applied for the subgroup analyses based on target brain regions, we added the putative nature (excitatory/inhibitory) of brain activity modulation.
Collapse
Affiliation(s)
- Florian Gay
- Université de Bordeaux, Bordeaux, France
- Centre de Référence Régional des Pathologies Anxieuses et de la Dépression, Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Allison Singier
- Université de Bordeaux, Bordeaux, France
- Bordeaux Population Health, Inserm U1219, Bordeaux, France
| | - Bruno Aouizerate
- Université de Bordeaux, Bordeaux, France
- Centre de Référence Régional des Pathologies Anxieuses et de la Dépression, Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
- NutriNeuro, UMR 1286, INRAE, Bordeaux INP, Bordeaux, France
| | - Francesco Salvo
- Université de Bordeaux, Bordeaux, France
- Bordeaux Population Health, Inserm U1219, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Thomas C. M. Bienvenu
- Université de Bordeaux, Bordeaux, France
- Centre de Référence Régional des Pathologies Anxieuses et de la Dépression, Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
- Neurocentre Magendie, Inserm U1215, Bordeaux, France
| |
Collapse
|
17
|
Pros and cons in tinnitus brain: Enhancement of global connectivity for alpha and delta waves. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110497. [PMID: 34922998 DOI: 10.1016/j.pnpbp.2021.110497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Interactions among cortical areas of tinnitus brain remained unclear. Weaker alpha and stronger delta activities in tinnitus have been noted over auditory cortices. However, the interplay between a single substrate with whole brain within alpha/delta band remained unknown. Thirty-one patients with chronic tinnitus were recruited. Thirty-four healthy volunteers served as controls. Magnetoencephalographic measurements of spontaneous activities were performed. The strength of alpha/delta activities was analyzed. By dividing cortices into 38 regions of interest (ROIs), measurements of connectivity were performed using amplitude envelope correlation (AEC). Global connectivity was calculated by adding and averaging connectivity of single ROI with every other region. There were no significant differences in mean power of alpha and delta band between groups, despite the trend of stronger alpha and weaker delta band in controls. The global connectivity of alpha wave was significantly stronger in tinnitus for left frontal pole, and of delta wave for bilateral pars orbitalis, bilateral superior temporal, bilateral middle temporal, right pars triangularis, right transverse temporal, right inferior temporal, and right supra-marginal. The global connectivity of alpha/delta waves was enhanced for tinnitus in designated ROIs of frontal/temporal/parietal lobes. The underlying mechanism(s) might be associated with augmentation/modulation of tinnitus perception. Our results corroborated the evolving consensus about neural correlates inside frontal/temporal/parietal lobes as essential elements of hubs for central processing of tinnitus. Further study to explore the resolution of effective connectivity between those ROIs and respective substrates by using AEC will be necessary for the evaluation of pathogenetic scenario for tinnitus.
Collapse
|
18
|
Teferi M, Makhoul W, Deng ZD, Oathes DJ, Sheline Y, Balderston NL. Continuous Theta Burst Stimulation to the Right Dorsolateral Prefrontal Cortex may increase Potentiated Startle in healthy individuals. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519467 PMCID: PMC10382694 DOI: 10.1016/j.bpsgos.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Convergent neuroimaging and neuromodulation studies implicate the right dorsolateral prefrontal cortex (dlPFC) as a key region involved in anxiety-cognition interactions. However, neuroimaging data are correlational, and neuromodulation studies often lack appropriate methodological controls. Accordingly, this work was designed to explore the role of right prefrontal cognitive control mechanisms in the expression/regulation of anxiety using continuous theta-burst transcranial magnetic stimulation (cTBS) and threat of unpredictable shock. Based on prior neuromodulation studies, we hypothesized that the right dlPFC contributed to anxiety expression, and that cTBS should downregulate this expression. Methods We measured potentiated startle and performance on the Sternberg working memory paradigm in 28 healthy participants before and after 4 sessions (600 pulses/session) of active or sham cTBS. Stimulation was individualized to the right dlPFC site of maximal working memory-related activity and optimized using electric-field modeling. Results Compared with sham cTBS, active cTBS, which is thought to induce long-term depression-like synaptic changes, increased startle during threat of shock, but the effect was similar for predictable and unpredictable threat. As a measure of target (dis)engagement, we also showed that active but not sham cTBS decreased accuracy on the Sternberg task. Conclusions Counter to our initial hypothesis, cTBS to the right dlPFC made individuals more anxious, rather than less anxious. Although preliminary, these results are unlikely to be due to transient effects of the stimulation, because anxiety was measured 24 hours after cTBS. In addition, these results are unlikely to be due to off-target effects, because target disengagement was evident from the Sternberg performance data.
Collapse
|
19
|
Khan A, Yuan K, Bao SC, Ti CHE, Tariq A, Anjum N, Tong RKY. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795737. [PMID: 36188889 PMCID: PMC9397778 DOI: 10.3389/fresc.2022.795737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Background Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.
Collapse
Affiliation(s)
- Ahsan Khan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Chun Hang Eden Ti
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Abdullah Tariq
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Nimra Anjum
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China,Hong Kong Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China,*Correspondence: Raymond Kai-Yu Tong
| |
Collapse
|
20
|
Powell K, White TG, Nash C, Rebeiz T, Woo HH, Narayan RK, Li C. The Potential Role of Neuromodulation in Subarachnoid Hemorrhage. Neuromodulation 2022; 25:1215-1226. [PMID: 35088724 DOI: 10.1016/j.neurom.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. MATERIALS AND METHODS We conducted a comprehensive review of preclinical and clinical studies demonstrating the use of neuromodulation for SAH. The literature search was performed using PubMed, Embase, and ClinicalTrials.gov. A total of 21 articles published from 1992 to 2021 and eight clinical trials were chosen. RESULTS The studies reviewed provide a compelling demonstration that neuromodulation is a potentially useful strategy to target multiple mechanisms of DCI and thus to potentially improve functional outcomes from SAH. There are several types of neuromodulation that have been tested to treat CV and DCI, including the trigeminal/vagus/facial nerve stimulation, sphenopalatine ganglion and spinal cord stimulation, transcranial direct electrical stimulation, transcutaneous electrical neurostimulation, and electroacupuncture. Most of them are in the preclinical or early phases of clinical application; however, they show promising results. CONCLUSIONS DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tania Rebeiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
21
|
Zhao Q, Han Y, Hu XY, Zhang S, Zhang L, Wang J, Zhang QQ, Tao MS, Fang JX, Yang J, Liu RG, Sun X, Zhou J, Li X, Mannan-Abdul, Zhang H, Liu H, Cao JL. Transcranial Electrical Stimulation for Relief of Peripartum Mental Health Disorders in Women Undergoing Cesarean Section With Combined Spinal-Epidural Anesthesia: A Pilot Randomized Clinical Trial. Front Psychiatry 2022; 13:837774. [PMID: 35444569 PMCID: PMC9013841 DOI: 10.3389/fpsyt.2022.837774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to explore transcranial electrical stimulation (tES) to relieve peripartum anxiety and depressive symptoms in women undergoing cesarean section with combined spinal-epidural anesthesia. METHODS This double-blind, randomized, sham-controlled trial was conducted in the Affiliated Hospital of Xuzhou Medical University from March 2021 and May 2021. One hundred and forty-eight full-term parturients giving birth by elective cesarean section were selected, and 126 were included in the intent-to-treat analysis. Parturients were provided standardized anesthesia and randomized to the active-tES (a-tES) group and sham-tES group. Parturients and outcome assessors were blinded to treatment allocation. The primary outcome was the changes in peripartum mental health disorders, including anxiety, assessed by the Pregnancy-Related Anxiety Questionnaire-Revised 2 (PRAQ-R2). Secondary outcomes included peripartum depressive symptoms, assessed by the Edinburgh Postnatal Depression Scale (EPDS), maternal satisfaction, fatigue level, sleep quality index, and pain score during and after operation. Data were collected before entering the operating room (T0), between post-anesthesia and pre-surgery (T1), before leaving the operating room (T2), and at 24 h post-surgery (T3). RESULTS One hundred and twenty-six eligible parturients were enrolled in the two groups: a-tES group (N = 62) and sham-tES group (N = 64). Treatment with tES resulted in significantly lower scores of anxiety compared with sham-tES (T2: P < 0.001; T3: P = 0.001). Moreover, the a-tES groups showed a significant reduction in depression scores (T2: P = 0.003; T3: P = 0.032). CONCLUSION In this randomized pilot study, tES treatment is efficacious in alleviating peripartum anxiety and depressive symptoms in women undergoing cesarean section and has been demonstrated to be a novel strategy for improving peripartum mental health disorders. CLINICAL TRIAL REGISTRATION [www.chictr.org.cn], identifier [ChiCTR2000040963].
Collapse
Affiliation(s)
- Qiu Zhao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xiao-Yi Hu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Long Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jun Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qian-Qian Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ming-Shu Tao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jia-Xing Fang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Rong-Guang Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xun Sun
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jian Zhou
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiang Li
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Mannan-Abdul
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - He Liu
- Department of Anesthesiology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou Central Hospital, Huzhou, China
| | - Jun-Li Cao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesiology and NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Leuchter MK, Rosenberg BM, Schapira G, Wong NR, Leuchter AF, McGlade AL, Krantz DE, Ginder ND, Lee JC, Wilke SA, Tadayonnejad R, Levitt J, Marder KG, Craske MG, Iacoboni M. Treatment of Spider Phobia Using Repeated Exposures and Adjunctive Repetitive Transcranial Magnetic Stimulation: A Proof-of-Concept Study. Front Psychiatry 2022; 13:823158. [PMID: 35370840 PMCID: PMC8965447 DOI: 10.3389/fpsyt.2022.823158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Specific phobias represent the largest category of anxiety disorders. Previous work demonstrated that stimulating the ventromedial prefrontal cortex (vmPFC) with repetitive Transcranial Magnetic Stimulation (rTMS) may improve response to exposure therapy for acrophobia. OBJECTIVE To examine feasibility of accelerating extinction learning in subjects with spider phobia using intermittent Theta Burst Stimulation (iTBS) rTMS of vmPFC. METHODS In total, 17 subjects with spider phobia determined by spider phobia questionnaires [Spider Phobia Questionnaire (SPQ) and Fear of Spiders questionnaire (FSQ)] underwent ratings of fear of spiders as well as behavioral and skin conductance data during a behavioral avoidance test (BAT). Subjects then received a sequential protocol of in vivo spider exposure followed by iTBS for three sessions administered to either active or control treatment sites (vmPFC [n = 8] or vertex [n = 9], respectively), followed 1 week later by repetition of questionnaires and BAT. RESULTS All subjects improved significantly regardless of group across both questionnaires (FSQ η2 = 0.43, p = 0.004; SPQ η2 = 0.39, p = 0.008) and skin conductance levels during BAT (Wald χ2 = 30.9, p < 0.001). Subjects in the vmPFC group tolerated lower treatment intensity than in the control group, and there was a significant correlation between treatment intensity, BAT subjective distress improvement, and physiologic measures (all ρ > 0.5). CONCLUSION This proof-of-concept study provides preliminary evidence that a sequential exposure and iTBS over vmPFC is feasible and may have rTMS intensity-dependent effects on treatment outcomes, providing evidence for future areas of study in the use of rTMS for phobias.
Collapse
Affiliation(s)
- Michael K Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Giuditta Schapira
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nicole R Wong
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anastasia L McGlade
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David E Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nathaniel D Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jonathan C Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Scott A Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Katharine G Marder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
24
|
Vergallito A, Gallucci A, Pisoni A, Punzi M, Caselli G, Ruggiero GM, Sassaroli S, Romero Lauro LJ. Effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders: a meta-analysis of sham or behaviour-controlled studies. J Psychiatry Neurosci 2021; 46:E592-E614. [PMID: 34753789 PMCID: PMC8580831 DOI: 10.1503/jpn.210050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The possibility of using noninvasive brain stimulation to treat mental disorders has received considerable attention recently. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are considered to be effective treatments for depressive symptoms. However, no treatment recommendation is currently available for anxiety disorders, suggesting that evidence is still limited. We conducted a systematic review of the literature and a quantitative analysis of the effectiveness of rTMS and tDCS in the treatment of anxiety disorders. METHODS Following PRISMA guidelines, we screened 3 electronic databases up to the end of February 2020 for English-language, peer-reviewed articles that included the following: a clinical sample of patients with an anxiety disorder, the use of a noninvasive brain stimulation technique, the inclusion of a control condition, and pre/post scores on a validated questionnaire that measured symptoms of anxiety. RESULTS Eleven papers met the inclusion criteria, comprising 154 participants assigned to a stimulation condition and 164 to a sham or control group. We calculated Hedge's g for scores on disorder-specific and general anxiety questionnaires before and after treatment to determine effect size, and we conducted 2 independent random-effects meta-analyses. Considering the well-known comorbidity between anxiety and depression, we ran a third meta-analysis analyzing outcomes for depression scores. Results showed a significant effect of noninvasive brain stimulation in reducing scores on disorder-specific and general anxiety questionnaires, as well as depressive symptoms, in the real stimulation compared to the control condition. LIMITATIONS Few studies met the inclusion criteria; more evidence is needed to strengthen conclusions about the effectiveness of noninvasive brain stimulation in the treatment of anxiety disorders. CONCLUSION Our findings showed that noninvasive brain stimulation reduced anxiety and depression scores compared to control conditions, suggesting that it can alleviate clinical symptoms in patients with anxiety disorders.
Collapse
Affiliation(s)
| | | | - Alberto Pisoni
- From the Department of Psychology, University of Milano Bicocca, Milan, Italy (Vergallito, Pisoni, Punzi, Romero Lauro); the Neuromi, Milan, Italy (Vergallito, Gallucci, Pisoni, Romero Lauro); the Department of Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (Gallucci); the Studi Cognitivi, Milan, Italy (Caselli, Ruggiero, Sassaroli); and the Faculty of Psychology, Sigmund Freud University, Milan, Italy (Caseli, Ruggiero, Sassaroli)
| | | | | | | | | | | |
Collapse
|
25
|
Xu X, Dai J, Chen Y, Liu C, Xin F, Zhou X, Zhou F, Stamatakis EA, Yao S, Luo L, Huang Y, Wang J, Zou Z, Vatansever D, Kendrick KM, Zhou B, Becker B. Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder. Neuropsychopharmacology 2021; 46:791-798. [PMID: 32961541 PMCID: PMC8027677 DOI: 10.1038/s41386-020-00868-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are highly prevalent and debilitating disorders. The high overlap on the symptomatic and neurobiological level led to ongoing debates about their diagnostic and neurobiological uniqueness. The present study aims to identify common and disorder-specific neuropathological mechanisms and treatment targets in MDD and GAD. To this end we combined categorical and dimensional disorder models with a fully data-driven intrinsic network-level analysis (intrinsic connectivity contrast, ICC) to resting-state fMRI data acquired in 108 individuals (n = 35 and n = 38 unmedicated patients with first-episode GAD, MDD, respectively, and n = 35 healthy controls). Convergent evidence from categorical and dimensional analyses revealed MDD-specific decreased whole-brain connectivity profiles of the medial prefrontal and dorsolateral prefrontal cortex while GAD was specifically characterized by decreased whole-brain connectivity profiles of the putamen and decreased communication of this region with the amygdala. Together, findings from the present data-driven analysis suggest that intrinsic communication of frontal regions engaged in executive functions and emotion regulation represent depression-specific neurofunctional markers and treatment targets whereas dysregulated intrinsic communication of the striato-amygdala system engaged in reinforcement-based and emotional learning processes represent GAD-specific markers.
Collapse
Affiliation(s)
- Xiaolei Xu
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Jing Dai
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China ,Chengdu Mental Health Center, Chengdu, 610036 Sichuan China
| | - Yuanshu Chen
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Congcong Liu
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Fei Xin
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Xinqi Zhou
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Feng Zhou
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Emmanuel A. Stamatakis
- grid.5335.00000000121885934Division of Anaesthesia, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0SP UK ,grid.5335.00000000121885934Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0SP UK
| | - Shuxia Yao
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Lizhu Luo
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China ,Chengdu Mental Health Center, Chengdu, 610036 Sichuan China
| | - Yulan Huang
- grid.410646.10000 0004 1808 0950Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| | - Jinyu Wang
- grid.410646.10000 0004 1808 0950Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| | - Zhili Zou
- grid.410646.10000 0004 1808 0950Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| | - Deniz Vatansever
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433 Shanghai, China
| | - Keith M. Kendrick
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Bo Zhou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
26
|
Preti A, Demontis R, Cossu G, Kalcev G, Cabras F, Moro MF, Romano F, Balestrieri M, Caraci F, Dell'Osso L, Di Sciascio G, Drago F, Hardoy MC, Roncone R, Faravelli C, Gonzalez CIA, Angermayer M, Carta MG. The lifetime prevalence and impact of generalized anxiety disorders in an epidemiologic Italian National Survey carried out by clinicians by means of semi-structured interviews. BMC Psychiatry 2021; 21:48. [PMID: 33472585 PMCID: PMC7816458 DOI: 10.1186/s12888-021-03042-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is one of the most reported diagnoses in psychiatry, but there is some discrepancy between the cases identified in community studies and those identified in tertiary care. This study set out to evaluate whether the use of clinicians as interviewers may provide estimates in a community survey close to those observed in primary or specialized care. METHODS This is a community survey on a randomly selected sample of 2338 adult subjects. The Advanced Neuropsychiatric Tools and Assessment Schedule (ANTAS) was administered by clinicians, providing lifetime diagnosis based on the DSM-IV-TR. Health-related quality of life (HR-QoL) was measured with the Short-Form Health Survey (SF-12). RESULTS Overall, 55 (2.3%) subjects met the criteria for GAD, with greater prevalence in women (3.6%) than in men (0.9%): OR = 4.02; 95%CI: 1.96-8.26. Up to 40% of those with GAD had at least another diagnosis of mood, anxiety, or eating disorders. The mean score of SF-12 in people with GAD was 32.33 ± 6.8, with a higher attributable burden than in other conditions except for major depressive disorder. CONCLUSIONS We found a relatively lower lifetime prevalence of GAD than in community surveys based on lay interviewers and a structured interview. The identified cases of GAD showed a strong impact on the quality of life regardless of co-morbidity and high risk in women, suggesting a profile similar to the one identified from studies in primary and specialized care.
Collapse
Affiliation(s)
- Antonio Preti
- University of Cagliari, Cagliari, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, 10126, Turin, Italy.
| | | | | | - Goce Kalcev
- Department of Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | | | | | | | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | - Filippo Drago
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Rodrigues PA, Zaninotto AL, Ventresca HM, Neville IS, Hayashi CY, Brunoni AR, de Paula Guirado VM, Teixeira MJ, Paiva WS. The Effects of Repetitive Transcranial Magnetic Stimulation on Anxiety in Patients With Moderate to Severe Traumatic Brain Injury: A Post-hoc Analysis of a Randomized Clinical Trial. Front Neurol 2020; 11:564940. [PMID: 33343483 PMCID: PMC7746857 DOI: 10.3389/fneur.2020.564940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Traumatic brain injury (TBI) is one of the leading causes of neuropsychiatric disorders in young adults. Repetitive Transcranial Magnetic Stimulation (rTMS) has been shown to improve psychiatric symptoms in other neurologic disorders, such as focal epilepsy, Parkinson's disease, and fibromyalgia. However, the efficacy of rTMS as a treatment for anxiety in persons with TBI has never been investigated. This exploratory post-hoc analyzes the effects of rTMS on anxiety, depression and executive function in participants with moderate to severe chronic TBI. Methods: Thirty-six participants with moderate to severe TBI and anxiety symptoms were randomly assigned to an active or sham rTMS condition in a 1:1 ratio. A 10-session protocol was used with 10-Hz rTMS stimulation over the left dorsolateral prefrontal cortex (DLPFC) for 20 min each session, a total of 2,000 pulses were applied at each daily session (40 stimuli/train, 50 trains). Anxiety symptoms; depression and executive function were analyzed at baseline, after the last rTMS session, and 90 days post intervention. Results: Twenty-seven participants completed the entire protocol and were included in the post-hoc analysis. Statistical analysis showed no interaction of group and time (p > 0.05) on anxiety scores. Both groups improved depressive and executive functions over time, without time and group interaction (p s < 0.05). No adverse effects were reported in either intervention group. Conclusion: rTMS did not improve anxiety symptoms following high frequency rTMS in persons with moderate to severe TBI. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02167971.
Collapse
Affiliation(s)
| | - Ana Luiza Zaninotto
- Department of Neurology, University of São Paulo, São Paulo, Brazil.,Speech and Feeding Disorders Lab, Massachusetts General Hospital Institute of Health Professions (MGHIHP), Boston, MA, United States
| | - Hayden M Ventresca
- Speech and Feeding Disorders Lab, Massachusetts General Hospital Institute of Health Professions (MGHIHP), Boston, MA, United States
| | | | | | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Univerdade de São Paulo, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
28
|
Pilloni G, Bikson M, Badran BW, George MS, Kautz SA, Okano AH, Baptista AF, Charvet LE. Update on the Use of Transcranial Electrical Brain Stimulation to Manage Acute and Chronic COVID-19 Symptoms. Front Hum Neurosci 2020; 14:595567. [PMID: 33281589 PMCID: PMC7689057 DOI: 10.3389/fnhum.2020.595567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to develop and deploy treatment approaches that can minimize mortality and morbidity. As infection, resulting illness, and the often prolonged recovery period continue to be characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged as promising non-pharmacological interventions. tES techniques have established therapeutic potential for managing a range of conditions relevant to COVID-19 illness and recovery, and may further be relevant for the general management of increased mental health problems during this time. Furthermore, these tES techniques can be inexpensive, portable, and allow for trained self-administration. Here, we summarize the rationale for using tES techniques, specifically transcranial Direct Current Stimulation (tDCS), across the COVID-19 clinical course, and index ongoing efforts to evaluate the inclusion of tES optimal clinical care.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, NYU Langone Health, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Mark S. George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| | - Steven A. Kautz
- Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, United States
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, United States
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
- Brazilian Institute of Neuroscience and Neurothechnology 52 (BRAINN/CEPID53 FAPESP), University of Campinas, Campinas, Brazil
| | - Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
- Brazilian Institute of Neuroscience and Neurothechnology 52 (BRAINN/CEPID53 FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigation 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Leigh E. Charvet
- Department of Neurology, NYU Langone Health, New York, NY, United States
| |
Collapse
|
29
|
A direct comparison of the electrophysiological effects of transcranial direct and alternating current stimulation in healthy subjects. Brain Res 2020; 1747:147065. [DOI: 10.1016/j.brainres.2020.147065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
|
30
|
Martin V, Mathieu L, Diaz J, Salman H, Alterio J, Chevarin C, Lanfumey L, Hamon M, Austin MC, Darmon M, Stockmeier CA, Masson J. Key role of the 5-HT1A receptor addressing protein Yif1B in serotonin neurotransmission and SSRI treatment. J Psychiatry Neurosci 2020; 45:344-355. [PMID: 32459080 PMCID: PMC7850149 DOI: 10.1503/jpn.190134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Altered function of serotonin receptor 1A (5-HT1AR) has been consistently implicated in anxiety, major depressive disorder and resistance to antidepressants. Mechanisms by which the function of 5-HT1AR (expressed as an autoreceptor in serotonergic raphe neurons and as a heteroreceptor in serotonin [5-HT] projection areas) is altered include regulation of its expression, but 5-HT1AR trafficking may also be involved. METHODS We investigated the consequences of the lack of Yif1B (the 5-HT1AR trafficking protein) on 5-HT neurotransmission in mice, and whether Yif1B expression might be affected under conditions known to alter 5-HT neurotransmission, such as anxious or depressive states or following treatment with fluoxetine (a selective serotonin reuptake inhibitor) in humans, monkeys and mice. RESULTS Compared with wild-type mice, Yif1B-knockout mice showed a significant decrease in the forebrain density of 5-HT projection fibres and a hypofunctionality of 5-HT1A autoreceptors expressed on raphe 5-HT neurons. In addition, social interaction was less in Yif1B-knockout mice, which did not respond to the antidepressant-like effect of acute fluoxetine injection. In wild-type mice, social defeat was associated with downregulated Yif1B mRNA in the prefrontal cortex, and chronic fluoxetine treatment increased Yif1B expression. The expression of Yif1B was also downregulated in the postmortem prefrontal cortex of people with major depressive disorder and upregulated after chronic treatment with a selective serotonin reuptake inhibitor in monkeys. LIMITATIONS We found sex differences in Yif1B expression in humans and monkeys, but not in mice under the tested conditions. CONCLUSION These data support the concept that Yif1B plays a critical role in 5-HT1AR functioning and brain 5-HT homeostasis. The opposite changes in its expression observed in anxious or depressive states and after therapeutic fluoxetine treatment suggest that Yif1B might be involved in vulnerability to anxiety and depression, and fluoxetine efficacy.
Collapse
Affiliation(s)
- Vincent Martin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Lionel Mathieu
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jorge Diaz
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Haysam Salman
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jeanine Alterio
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Caroline Chevarin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Laurence Lanfumey
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michel Hamon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Mark C Austin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michèle Darmon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Craig A Stockmeier
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Justine Masson
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| |
Collapse
|
31
|
Holla B, Biswal J, Ramesh V, Shivakumar V, Bharath RD, Benegal V, Venkatasubramanian G, Chand PK, Murthy P. Effect of prefrontal tDCS on resting brain fMRI graph measures in Alcohol Use Disorders: A randomized, double-blind, sham-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109950. [PMID: 32339664 DOI: 10.1016/j.pnpbp.2020.109950] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Transcranial Direct Current Stimulation (tDCS) is a promising new adjuvant approach in the treatment of Alcohol Use Disorders (AUDs) that has the potential to ameliorate the aberrations secondary to chronic alcohol use. In this study, using a randomized, double-blind, sham-controlled, parallel-arm design, we examined the effects of prefrontal tDCS on resting-state functional magnetic resonance imaging (rsfMRI) and its correlates with impulsivity and time to first lapse in subjects with AUDs. METHODS Patients with AUD as per DSM-5 criteria were randomly allocated to receive a five-day course of either verum-tDCS (n = 12) or sham-tDCS (n = 12). Of them, 21 patients (verum/sham = 11/10) participated in both baseline and post-intervention 10-min rsfMRI sessions. Outside the scanner, subjects also performed the Stop-Signal Task at two time-points (baseline and post-intervention), which provided a measure of changes in impulsivity following tDCS. After completion of the post-intervention scan, all subjects were discharged and were followed-up for 90 days post-discharge or until lapse to first alcohol use. RESULTS Graph theoretical analysis of rsfMRI data revealed that verum-tDCS (but not sham) resulted in a significant increase in the global efficiency of brain networks with a concurrent significant reduction in global clustering; network-based statistical analysis identified a significant increase in the functional connectivity of a specific sub-network involving prefrontal regions. Furthermore, increased global efficiency of brain networks following verum tDCS predicted a significantly reduced likelihood of relapse. In addition, a reduction in the global clustering had a significant positive correlation with a reduction in the measure of impulsivity. CONCLUSIONS The present study adds further support to the increasing evidence base for the clinical utility of tDCS in AUDs. Importantly, we observed improvement in both whole-brain network efficiency as well as inter-regional connectivity within a specific local prefrontal sub-network that is relevant to the neurobiology of AUDs. Replication and extension of these promising leads from the present study can facilitate clinical translation of tDCS, given its advantages (i.e. safety, cost-effectiveness, administration ease with potential for remotely-supervised / home-based application) for treating patients with AUDs.
Collapse
Affiliation(s)
- Bharath Holla
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Jitendriya Biswal
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Vinutha Ramesh
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Venkataram Shivakumar
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Vivek Benegal
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Ganesan Venkatasubramanian
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India.
| | - Prabhat Kumar Chand
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Pratima Murthy
- Departments of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
32
|
Shinjo SK, Brunoni AR, Okano AH, Tanaka C, Baptista AF. Transcranial direct current stimulation relieves the severe anxiety of a patient with COVID-19. Brain Stimul 2020; 13:1352-1353. [PMID: 32682750 PMCID: PMC7366123 DOI: 10.1016/j.brs.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Andre Russowsky Brunoni
- Department of Internal Medicine and Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa Em Neuromodulação (NAPeN), Brazil; Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Hospital Das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil; Laboratório de Investigação Médica (LIM)-54, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
33
|
Bikson M, Hanlon CA, Woods AJ, Gillick BT, Charvet L, Lamm C, Madeo G, Holczer A, Almeida J, Antal A, Ay MR, Baeken C, Blumberger DM, Campanella S, Camprodon JA, Christiansen L, Loo C, Crinion JT, Fitzgerald P, Gallimberti L, Ghobadi-Azbari P, Ghodratitoostani I, Grabner RH, Hartwigsen G, Hirata A, Kirton A, Knotkova H, Krupitsky E, Marangolo P, Nakamura-Palacios EM, Potok W, Praharaj SK, Ruff CC, Schlaug G, Siebner HR, Stagg CJ, Thielscher A, Wenderoth N, Yuan TF, Zhang X, Ekhtiari H. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul 2020; 13:1124-1149. [PMID: 32413554 PMCID: PMC7217075 DOI: 10.1016/j.brs.2020.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has broadly disrupted biomedical treatment and research including non-invasive brain stimulation (NIBS). Moreover, the rapid onset of societal disruption and evolving regulatory restrictions may not have allowed for systematic planning of how clinical and research work may continue throughout the pandemic or be restarted as restrictions are abated. The urgency to provide and develop NIBS as an intervention for diverse neurological and mental health indications, and as a catalyst of fundamental brain research, is not dampened by the parallel efforts to address the most life-threatening aspects of COVID-19; rather in many cases the need for NIBS is heightened including the potential to mitigate mental health consequences related to COVID-19. OBJECTIVE To facilitate the re-establishment of access to NIBS clinical services and research operations during the current COVID-19 pandemic and possible future outbreaks, we develop and discuss a framework for balancing the importance of NIBS operations with safety considerations, while addressing the needs of all stakeholders. We focus on Transcranial Magnetic Stimulation (TMS) and low intensity transcranial Electrical Stimulation (tES) - including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS). METHODS The present consensus paper provides guidelines and good practices for managing and reopening NIBS clinics and laboratories through the immediate and ongoing stages of COVID-19. The document reflects the analysis of experts with domain-relevant expertise spanning NIBS technology, clinical services, and basic and clinical research - with an international perspective. We outline regulatory aspects, human resources, NIBS optimization, as well as accommodations for specific demographics. RESULTS A model based on three phases (early COVID-19 impact, current practices, and future preparation) with an 11-step checklist (spanning removing or streamlining in-person protocols, incorporating telemedicine, and addressing COVID-19-associated adverse events) is proposed. Recommendations on implementing social distancing and sterilization of NIBS related equipment, specific considerations of COVID-19 positive populations including mental health comorbidities, as well as considerations regarding regulatory and human resource in the era of COVID-19 are outlined. We discuss COVID-19 considerations specifically for clinical (sub-)populations including pediatric, stroke, addiction, and the elderly. Numerous case-examples across the world are described. CONCLUSION There is an evident, and in cases urgent, need to maintain NIBS operations through the COVID-19 pandemic, including anticipating future pandemic waves and addressing effects of COVID-19 on brain and mind. The proposed robust and structured strategy aims to address the current and anticipated future challenges while maintaining scientific rigor and managing risk.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | | | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Hungary
| | - Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Institute of Medical Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Salvatore Campanella
- Laboratoire de Psychologie Médicale et D'Addiction, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Place Vangehuchten, B-1020, Brussels, Belgium
| | - Joan A Camprodon
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Paul Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | | | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran, Iran
| | - Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory (NEL), Center for Mathematical Sciences Applied to Industry, Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Austria
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Evgeny Krupitsky
- First Pavlov State Medical University, V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Naples, Italy; Aphasia Research Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Weronika Potok
- Neural Control of Movement Lab, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Samir K Praharaj
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Gottfried Schlaug
- Neuroimaging-Neuromodulation and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Baystate Medical Center, UMass Medical School, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Institute of Clinical Medicine, Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging and MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaochu Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | | |
Collapse
|
34
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
35
|
Feng XJ, Huang YT, Huang YZ, Kuo CW, Peng CW, Rotenberg A, Juan CH, Pei YC, Chen YH, Chen KY, Chiang YH, Liu HH, Wu JX, Hsieh TH. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul 2020; 13:655-663. [PMID: 32289694 DOI: 10.1016/j.brs.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been proven to be able to modulate motor cortical plasticity might have potential as an alternative, adjunctive therapy for Parkinson's disease (PD). However, the efficacy of tDCS in PD is still uncertain. A disease animal model may be useful to clarify the existence of a treatment effect and to explore an effective therapeutic strategy using tDCS protocols. OBJECTIVE The current study was designed to identify the comprehensive therapeutic effects of tDCS in 6-hydroxydopamine (6-OHDA)-lesioned PD rats. METHODS Following early and long-term tDCS application (starting 24 h after PD lesion, 300 μA anodal tDCS, 20 min/day, 5 days/week) in awake PD animals for a total of 4 weeks, the effects of tDCS on motor and non-motor behaviors as well as dopaminergic neuron degeneration levels, were identified. RESULTS We found that the 4-week tDCS intervention significantly alleviated 6-OHDA-induced motor deficits in locomotor activity, akinesia, gait pattern and anxiety-like behavior, but not in apomorphine-induced rotations, recognition memory and depression-like behavior. Immunohistochemically, tyrosine hydroxylase (TH)-positive neurons in the substantia nigra were significantly preserved in the tDCS intervention group. CONCLUSIONS These results suggest that early and long-term tDCS could exert neuroprotective effects and reduce the aggravation of motor dysfunctions in a 6-OHDA-induced PD rat model. Furthermore, this preclinical model may enhance the promising possibility of the potential use of tDCS and serve as a translational platform to further identify the therapeutic mechanism of tDCS for PD or other neurological disorders.
Collapse
Affiliation(s)
- Xiao-Jun Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University and The Second Clinical Institute of Anhui Medical University, Hefei, China
| | - Yu-Ting Huang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan; Brain Research Center, National Central University, Taoyuan, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian-Xian Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University and The Second Clinical Institute of Anhui Medical University, Hefei, China.
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
36
|
tDCS increases anxiety reactivity to intentional worry. J Psychiatr Res 2020; 120:34-39. [PMID: 31629997 DOI: 10.1016/j.jpsychires.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
While considerable experimental research has examined the impact of transcranial direct current stimulation (tDCS) on a range of cognitive processes associated with emotional pathology, the impact of tDCS on worry has been comparatively neglected. Given that anxiety pathology is characterised by motivated engagement in worry, and that frontal tDCS has the capacity to enhance goal-oriented cognition, it is important to examine whether tDCS would increase or ameliorate the cognitive and emotional effects of worry. In the current study we examined how tDCS influenced the anxiety response to worry, and the frequency of negative intrusive thoughts. We additionally examined whether stimulation delivered in isolation, or in combination with a mindful-focus task would augment the effects of tDCS. Ninety-seven (75 female) healthy participants received either active or sham anodal tDCS to the left dorsolateral prefrontal cortex, delivered either in isolation or concurrently with a mindful task (four conditions). The frequency of negative thought intrusions was assessed before and after a period of instructed worry, and state anxiety was assessed across the study. Active tDCS was associated with significantly greater elevation in anxiety in response to the worry induction. No effects were observed on the frequency of negative thought intrusions, and the combined delivery of tDCS with the concurrent mindful task did not alter the pattern of observed effects. While inviting replication in a high anxious sample, the present results highlight the possibility that tDCS may interact with motivated engagement in negative patterns of cognition, such as worry, to produce greater emotional reactivity.
Collapse
|