1
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF. Advancements in modification of membrane materials over membrane separation for biomedical applications-Review. ENVIRONMENTAL RESEARCH 2022; 204:112045. [PMID: 34536369 DOI: 10.1016/j.envres.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
Collapse
Affiliation(s)
- Pooja Hariharan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Sujithra Sundarrajan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Sunanda Seshan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
3
|
A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers (Basel) 2021; 13:polym13091436. [PMID: 33946989 PMCID: PMC8125033 DOI: 10.3390/polym13091436] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/15/2023] Open
Abstract
Researchers and companies have increasingly been drawn to biodegradable polymers and composites because of their environmental resilience, eco-friendliness, and suitability for a range of applications. For various uses, biodegradable fabrics use biodegradable polymers or natural fibers as reinforcement. Many approaches have been taken to achieve better compatibility for tailored and improved material properties. In this article, PBS (polybutylene succinate) was chosen as the main topic due to its excellent properties and intensive interest among industrial and researchers. PBS is an environmentally safe biopolymer that has some special properties, such as good clarity and processability, a shiny look, and flexibility, but it also has some drawbacks, such as brittleness. PBS-based natural fiber composites are completely biodegradable and have strong physical properties. Several research studies on PBS-based composites have been published, including physical, mechanical, and thermal assessments of the properties and its ability to replace petroleum-based materials, but no systematic analysis of up-to-date research evidence is currently available in the literature. The aim of this analysis is to highlight recent developments in PBS research and production, as well as its natural fiber composites. The current research efforts focus on the synthesis, copolymers and biodegradability for its properties, trends, challenges and prospects in the field of PBS and its composites also reviewed in this paper.
Collapse
|
4
|
Turkoglu Sasmazel H, Alazzawi M, Kadim Abid Alsahib N. Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules 2021; 26:molecules26061665. [PMID: 33802663 PMCID: PMC8002466 DOI: 10.3390/molecules26061665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atmospheric plasma treatment is an effective and economical surface treatment technique. The main advantage of this technique is that the bulk properties of the material remain unchanged while the surface properties and biocompatibility are enhanced. Polymers are used in many biomedical applications; such as implants, because of their variable bulk properties. On the other hand, their surface properties are inadequate which demands certain surface treatments including atmospheric pressure plasma treatment. In biomedical applications, surface treatment is important to promote good cell adhesion, proliferation, and growth. This article aim is to give an overview of different atmospheric pressure plasma treatments of polymer surface, and their influence on cell-material interaction with different cell lines.
Collapse
Affiliation(s)
- Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06830 Ankara, Turkey
- Correspondence: ; Tel.: +90-(312)-586-8844
| | - Marwa Alazzawi
- Department of Biomedical Engineering, Al Nahrain University, Al Jadriya Bridge, Baghdad 64074, Iraq; (M.A.); (N.K.A.A.)
| | - Nabeel Kadim Abid Alsahib
- Department of Biomedical Engineering, Al Nahrain University, Al Jadriya Bridge, Baghdad 64074, Iraq; (M.A.); (N.K.A.A.)
| |
Collapse
|
5
|
Guidotti G, Soccio M, Gazzano M, Fusaro L, Boccafoschi F, Munari A, Lotti N. New thermoplastic elastomer triblock copolymer of PLLA for cardiovascular tissue engineering: Annealing as efficient tool to tailor the solid-state properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Guidotti G, Soccio M, Gazzano M, Bloise N, Bruni G, Aluigi A, Visai L, Munari A, Lotti N. Biocompatible PBS-based copolymer for soft tissue engineering: Introduction of disulfide bonds as winning tool to tune the final properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Guidotti G, Soccio M, Gazzano M, Salatelli E, Lotti N, Munari A. Micro/nanoparticles fabricated with triblock PLLA-based copolymers containing PEG-like subunit for controlled drug release: Effect of chemical structure and molecular architecture on drug release profile. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Quattrosoldi S, Soccio M, Gazzano M, Lotti N, Munari A. Fully biobased, elastomeric and compostable random copolyesters of poly(butylene succinate) containing Pripol 1009 moieties: Structure-property relationship. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Fabbri M, Guidotti G, Soccio M, Lotti N, Govoni M, Giordano E, Gazzano M, Gamberini R, Rimini B, Munari A. Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Tang L, Wei W, Wang X, Qian J, Li J, He A, Yang L, Jiang X, Li X, Wei J. LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds. RSC Adv 2018; 8:10794-10805. [PMID: 35541558 PMCID: PMC9078889 DOI: 10.1039/c7ra13452e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/10/2018] [Indexed: 01/03/2023] Open
Abstract
Novel bio-nanocomposite scaffolds for bone tissue engineering were prepared by incorporation of LAPONITE® (LAP) nanorods into poly(butylene succinate) (PBSu). The results showed that the scaffolds had well interconnected macroporous structures with macropore size in the range of 200–400 μm and porosity of around 70%. In addition, the water absorption, degradability and apatite mineralization ability of the scaffolds were clearly enhanced with the increase of LAP content. Moreover, the degradation of LAP produced alkaline products, which neutralized the acidic degradable products of PBSu, and formed a weak alkaline microenvironment similar to a biological environment. Furthermore, the adhesion, proliferation and differentiation of MC3T3-E1 cells onto the scaffolds were significantly promoted with the increase of LAP content, in which the scaffold with 30 wt% LAP (sPL30) exhibited the best stimulation effect on the cells responses. The results suggested that the promotion of cells responses could be ascribed to the improvements of surface characteristics (including roughness, hydrophilicity, ions release and apatite formation, etc.) of the scaffolds. The sPL30 scaffold with excellent biocompatibility, bioactivity and degradability had great potential for applications in bone tissue engineering. PBSu/LAP bio-nanocomposite scaffolds were prepared, and the sPL30 scaffolds significantly stimulated cell adhesion and proliferation.![]()
Collapse
Affiliation(s)
- Liangchen Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Wu Wei
- College of Materials Science & Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| | - Jianyou Li
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Axiang He
- Second Mil. Med. Univ
- Changzheng Hosp
- Dep. Orthopaed Surg
- Shanghai 200003
- China
| | - Lili Yang
- Second Mil. Med. Univ
- Changzheng Hosp
- Dep. Orthopaed Surg
- Shanghai 200003
- China
| | - Xuesheng Jiang
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Xiongfeng Li
- Huzhou Center Hospital
- Department Orthopedic
- Huzhou 313000
- China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 130 Meilong Road, Shanghai 200237
- China
| |
Collapse
|
11
|
Mahmoodi M, Zamanifard M, Safarzadeh M, Bonakdar S. In vitro evaluation of collagen immobilization on polytetrafluoroethylene through NH3 plasma treatment to enhance endothelial cell adhesion and growth. Biomed Mater Eng 2017; 28:489-501. [DOI: 10.3233/bme-171692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. E-mail:
| | - Mohammad Zamanifard
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. E-mail:
| | - Mina Safarzadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. E-mail:
| | | |
Collapse
|
12
|
Smirnov AV, Atkin VS, Gorbachev IA, Grebennikov AI, Sinev IV, Simakov VV. Surface Modification of Polystyrene Thin Films by RF Plasma Treatment. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0407-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|