1
|
Fang K, Li P, Huang X, Wang H, Li Y, Zhu D, Luo B. Recent advancements in magnetic starch-based composites for biomedical applications: A review. Carbohydr Polym 2025; 362:123689. [PMID: 40409811 DOI: 10.1016/j.carbpol.2025.123689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
The increasing demand for biomedical materials to address various diseases has highlighted the need for advanced biocompatible materials with improved biofunctionality for smart diagnostics and clinical therapies. Starch, a natural polymer, is an ideal starting material for the development of multifunctional biomedical materials due to its biocompatibility, low toxicity, and biodegradability. However, native starch lacks certain properties, particularly magnetic properties. By strategically modifying the structure of starch or its derivatives and incorporating different types of magnetic nanoparticles (MNPs), magnetic starch-based composites (MSBCs) can be developed. These composites take the advantages of both the magnetic materials and natural polysaccharides, enhancing the mechanical strength of starch and imparting additional properties, such as magneto-thermal effects, targeting ability, stimulus-responsive drug delivery, and easy separation. As a result, MSBCs have widespread applications in fields such as wound dressing and magneto-thermal therapy. This review highlights the types of MSBCs, their synthesis methods, and their current applications in biomedicine. Additionally, this review describes the major challenges faced by MSBCs in biomedical applications and provides an outlook on their potential for further development. This review aims to improve the understanding of magnetic starches and optimize their synthetic strategies, positioning MSBCs as promising platforms for biomedical applications.
Collapse
Affiliation(s)
- Kun Fang
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China.
| | - Pei Li
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China; Huaihe Campus Administrative Committee, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xiangrui Huang
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Hanbing Wang
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China
| | - Yihan Li
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China
| | - Dongyang Zhu
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China
| | - Bo Luo
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China.
| |
Collapse
|
2
|
Mukhopadhyay S, Youssef SH, Song Y, Nayak UY, Garg S. Harnessing the Power of Antimicrobial Peptides: From Mechanisms to Delivery Optimization for Topical Infections. Antibiotics (Basel) 2025; 14:379. [PMID: 40298559 PMCID: PMC12024199 DOI: 10.3390/antibiotics14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as promising agents for treating topical infections due to their enhanced biocompatibility and resistance to systemic degradation. AMPs possess host immunomodulatory effects and disintegrate bacterial cell membranes, a mechanism less prone to microbial resistance compared to conventional antibiotics, making AMPs potential candidates for antimicrobial delivery. The review discusses the challenges posed by antimicrobial resistance (AMR) and explores the mechanisms by which bacteria develop resistance to AMPs. The authors provide a detailed analysis of the mechanisms of action of AMPs, their limitations, and strategies to improve their efficacy. Conventional AMP delivery systems, including polymeric, synthetic, and lipid-based nanoparticles and cubosomes, face challenges of microbial resistance mechanisms via efflux pump systems, bacterial cell membrane modifications, and protease enzyme release. This review explores strategies to optimize these delivery systems. Furthermore, market statistics and the growing interest in peptide antibiotics have been explored in this review. The authors provide future research directions, such as exploring gene-targeting approaches to combat emerging bacterial resistance against AMPs, and emphasize considering the conformational stability of peptides, the skin microbiome's nature at the infection site, and proteolytic stability for developing efficient AMP delivery systems for topical infections.
Collapse
Affiliation(s)
- Songhita Mukhopadhyay
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Souha H. Youssef
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| |
Collapse
|
3
|
Zhang J, Liu Z, Sun J, Yao Z, Lu H. The formation and performance tuning mechanism of starch-based hydrogels. Carbohydr Polym 2025; 350:123048. [PMID: 39647951 DOI: 10.1016/j.carbpol.2024.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Starch-based hydrogels, characterized by their three-dimensional network structures, are increasingly explored for their biodegradability, low cost, and abundance of modifiable hydroxyl groups. However, a comprehensive understanding of the mechanisms behind the formation and property modulation of these hydrogels has not been systematically described. Drawing from literature of the past decade, this review provides insights into designing multifunctional starch-based hydrogels through various gelation mechanism, crosslinking strategies, and second-network structure. This comprehensive review aims to establish a theoretical framework for controlling the properties of starch-based hydrogels. A crucial aspect of starch hydrogel formation is the dense, cellular structure produced by swollen particles; when these particles fully disrupt, amylose recrystallization creates "junction zones" essential for network stability. In double-network hydrogels, materials such as polyvinyl alcohol (PVA), sodium alginate (SA), and polyacrylamide (PAM) form an effective secondary network, enhancing the mechanical strength and versatility of the hydrogel. The functionalization of starch-based hydrogels is primarily achieved through the introduction of functional group, secondary networks, and ionic liquids.
Collapse
Affiliation(s)
- Jin Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Zihan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingxuan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuojun Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Delgado-Pujol EJ, Martínez G, Casado-Jurado D, Vázquez J, León-Barberena J, Rodríguez-Lucena D, Torres Y, Alcudia A, Begines B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025; 17:215. [PMID: 40006582 PMCID: PMC11859140 DOI: 10.3390/pharmaceutics17020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Conventional drug delivery approaches, including tablets and capsules, often suffer from reduced therapeutic effectiveness, largely attributed to inadequate bioavailability and difficulties in ensuring patient adherence. These challenges have driven the development of advanced drug delivery systems (DDS), with hydrogels and especially nanogels emerging as promising materials to overcome these limitations. Hydrogels, with their biocompatibility, high water content, and stimuli-responsive properties, provide controlled and targeted drug release. This review explores the evolution, properties, and classifications of hydrogels versus nanogels and their applications in drug delivery, detailing synthesis methods, including chemical crosslinking, physical self-assembly, and advanced techniques such as microfluidics and 3D printing. It also examines drug-loading mechanisms (e.g., physical encapsulation and electrostatic interactions) and release strategies (e.g., diffusion, stimuli-responsive, and enzyme-triggered). These gels demonstrate significant advantages in addressing the limitations of traditional DDS, offering improved drug stability, sustained release, and high specificity. Their adaptability extends to various routes of administration, including topical, oral, and injectable forms, while emerging nanogels further enhance therapeutic targeting through nanoscale precision and stimuli responsiveness. Although hydrogels and nanogels have transformative potential in personalized medicine, challenges remain in scalable manufacturing, regulatory approval, and targeted delivery. Future strategies include integrating biosensors for real-time monitoring, developing dual-stimuli-responsive systems, and optimizing surface functionalization for specificity. These advancements aim to establish hydrogels and nanogels as cornerstones of next-generation therapeutic solutions, revolutionizing drug delivery, and paving the way for innovative, patient-centered treatments.
Collapse
Affiliation(s)
- Ernesto J. Delgado-Pujol
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - David Casado-Jurado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Jesús León-Barberena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - David Rodríguez-Lucena
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| |
Collapse
|
5
|
Abid Mustafa M, Rashid Hussain H, Akbar Khan J, Ahmad N, Bashir S, Asad M, Saeed Shah H, Ali Khan A, Malik A, Fatima S, Mehmood Yousaf A, Nazir I. Development and In Vitro Characterization of Azadirachta Indica Gum Grafted Polyacrylamide Based pH-Sensitive Hydrogels to Improve the Bioavailability of Lansoprazole. Chem Biodivers 2025; 22:e202401434. [PMID: 39404191 DOI: 10.1002/cbdv.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/14/2024]
Abstract
The present study intended to develop a pH-responsive hydrogel based on Neem gum (Ng) to improve Lansoprazole (LSP) oral bioavailability. Azadirachta Indica seed extract was used to obtain Ng. pH-responsive hydrogel formulations (F1-F9) were prepared using different Ng ratios, Acrylamide (AAm), and methylene-bis-acrylamide (MBA). The formulated hydrogels were characterized through FTIR, thermal analysis, swelling ratio, SEM, sol-gel ratios, In-Vitro drug release, and cytotoxicity analysis. Azadirachta Indica was extracted to produce a powder containing 21.5 % Ng. Prepared hydrogels showed maximum swelling at pH 7.4, whereas the swelling at an acidic pH was insignificant. LSP-loaded hydrogel demonstrated a regulated release of LSP for up to 24 h and indicated a Super Case II transport release mechanism. During the cytotoxic evaluation, the delivery system showed minimal cytotoxicity towards normal cells, while percent cytotoxicity was carried out for a longer duration (up to 96 h). The present study revealed Azadirachta indica gum-based pH-responsive hydrogel as a promising technique for precisely delivering LSP.
Collapse
Affiliation(s)
- Muhammad Abid Mustafa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, 54000, Pakistan
| | | | - Jawad Akbar Khan
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Wahringerstrasse 13a, A-1090, Vienna, Austria
| | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Sajid Bashir
- Lords College of Pharmacy, Lahore, 54000, Pakistan
| | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Sharma S, Bhende M, Mulwani P, Patil V, Verma HR, Kumar S. Mechanically improved chitosan/graphene oxide nanocomposite hydrogel for sustained release of levofloxacin. Int J Biol Macromol 2025; 289:139481. [PMID: 39756733 DOI: 10.1016/j.ijbiomac.2025.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
This study introduces a novel chitosan/graphene oxide (CS/GO) nanocomposite hydrogel designed for the sustained release of levofloxacin. The hydrogel was synthesized using electrostatic interactions and chemical cross-linking, resulting in significant mechanical reinforcement (G' = 0.94 MPa, G" = 0.088 MPa) and homogeneous distribution of GO. It exhibited excellent swelling properties (1380 % at 0.05 wt% GO, 1070 % at 0.2 wt% GO at pH 2). Levofloxacin release was faster (∼95 % in 5 h) at 0.05 wt% GO and more sustained (∼97 % over 24 h) at 0.2 wt% GO. This hydrogel demonstrates potential as a robust platform for controlled drug delivery.
Collapse
Affiliation(s)
- Swati Sharma
- Dr. D.Y. Patil School of Science &Technology, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India.
| | - Manisha Bhende
- Dr. D.Y. Patil School of Science &Technology, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Priyanshi Mulwani
- Dr. D.Y. Patil School of Science &Technology, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Vijay Patil
- Dr. D.Y. Patil School of Science &Technology, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Himanshu Ranjan Verma
- Department of Metallurgical Engineering, Indian Institute of Technology Banaras Hindu University, Varanasi 221005, India
| | - Santosh Kumar
- Dr. D.Y. Patil School of Science &Technology, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| |
Collapse
|
7
|
Nowak P, Ilnicka A, Ziegler-Borowska M. Hydrazidomethyl starch as a pH-sensitive coating for magnetic core in tailored magnetic nanoparticles with selective doxorubicin release. Int J Biol Macromol 2024; 283:137716. [PMID: 39579836 DOI: 10.1016/j.ijbiomac.2024.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The work aimed to use and modify starch as a biodegradable and biocompatible polysaccharide to create a modern pH-sensitive anticancer drug carrier based on a hydrazone bond. The multi-step reaction created a material that can bind to the carbonyl group of anticancer drugs. Additionally, polysaccharide was used to coat magnetic nanoparticles to increase the applicability of the carrier system. At each synthesis stage, the material was characterized in detail by performing FTIR-ATR spectra, thermal analysis, XRD, and SEM photos. In the next step, doxorubicin was loaded with a maximum of 19 % drug loading to the carrier via hydrazone bond. In the last research stage, the carrier-hydrazone bond-drug system was tested in solutions with different pH values, imitating the environments of a cancer cell, a healthy cell, and their subcellular elements regarding drug release from the carrier. The obtained release results indicate a >4-fold increase in the amount of drug released from the carrier in conditions of a slightly lower pH environment (70 %), compared to neutral pH (15 %). This represents a promising potential for using the material as an intelligent drug delivery system (DDS).
Collapse
Affiliation(s)
- Paweł Nowak
- Doctoral School of Exact and Natural Sciences "Academia Scientiarum Thoruniensis", Grudziadzka 5, 87-100 Torun, Poland; Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomedical Chemistry and Polymers, Medicinal Chemistry Research Group, Gagarina 7, 87-100 Torun, Poland
| | - Anna Ilnicka
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Chemistry of Materials, Adsorption and Catalysis, Gagarina 7, 87-100 Torun, Poland
| | - Marta Ziegler-Borowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomedical Chemistry and Polymers, Medicinal Chemistry Research Group, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
8
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
9
|
Javidan B, Gharbani P. Synthesis of copper hexaferrite magnetic nanoparticles based on carboxymethyl cellulose modified with polyacrylic acid (CMC/PAA/CuFe 12O 19) for loading and release of Levothyroxine. Int J Biol Macromol 2024; 282:137040. [PMID: 39476890 DOI: 10.1016/j.ijbiomac.2024.137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/27/2024] [Indexed: 11/12/2024]
Abstract
Hypothyroidism is a disease that is treated using levothyroxine sodium orally, and its oral use causes some problems in its absorption. A potential alternative to improve its administration is the use of drug delivery systems. This research aimed to prepare CMC/PAA/CuFe12O19 magnetic nano polymer and investigate its performance in the loading and release of Levothyroxine. The CuFe12O19 nanoparticles were synthesized by the co-precipitation method and then CMC/PAA/CuFe12O19 nanopolymer was fabricated to enhance properties. The structure, morphology, magnetic properties, and surface area of CMC/PAA/CuFe12O19 were characterized using different techniques such as XRD, FESEM, VSM, and BET. Levothyroxine was used as a model drug and loading and releasing of Levothyroxine onto CMC/PAA/CuFe12O19 nanopolymer were investigated at pH = 1.2 and pH 7.4. The release of DOX from the CMC/PAA/CuFe12O19 showed a pH-sensitive behavior and released 75 % of Levothyroxine during 3 days at pH = 7.4. The release kinetic analysis, encompassing of Zero order, the First order, the Higuchi, and the Korsmeyer-Peppas models, revealed significant fitting with the First order model at both pH 1.2 (R2 = 0.996) and pH 7.4 (R2 = 0.991) media. Therefore, CMC/PAA/CuFe12O19 nanopolymer could be used as a potential carrier for Levothyroxine delivery.
Collapse
Affiliation(s)
- Bita Javidan
- Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Parvin Gharbani
- Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran; Industrial Nanotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
10
|
Ma X, Sekhar KPC, Zhang P, Cui J. Advances in stimuli-responsive injectable hydrogels for biomedical applications. Biomater Sci 2024; 12:5468-5480. [PMID: 39373614 DOI: 10.1039/d4bm00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of in situ gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (e.g., temperature, pH, redox conditions, light, magnetic fields, etc.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.
Collapse
Affiliation(s)
- Xuebin Ma
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
11
|
Singh R, Yadav D, Ingole PG, Ahn YH. Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications. BIOMATERIALS ADVANCES 2024; 163:213948. [PMID: 38959651 DOI: 10.1016/j.bioadv.2024.213948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The use of nanoparticles has increased significantly over the past few years in a number of fields, including diagnostics, biomedicine, environmental remediation, and water treatment, generating public interest. Among various types of nanoparticles, magnetic nanoparticles (MNPs) have emerged as an essential tool for biomedical applications due to their distinct physicochemical properties compared to other nanoparticles. This review article focuses on the recent growth of MNPs and comprehensively reviews the advantages, multifunctional approaches, biomedical applications, and latest research on MNPs employed in various biomedical techniques. Biomedical applications of MNPs hold on to their ability to rapidly switch magnetic states under an external field at room temperature. Ideally, these MNPs should be highly susceptible to magnetization when the field is applied and then lose that magnetization just as quickly once the field is removed. This unique property allows MNPs to generate heat when exposed to high-frequency magnetic fields, making them valuable tools in developing treatments for hyperthermia and other heat-related illnesses. This review underscores the role of MNPs as tools that hold immense promise in transforming various aspects of healthcare, from diagnostics and imaging to therapeutic treatments, with discussion on a wide range of peer-reviewed articles published on the subject. At the conclusion of this work, challenges and potential future advances of MNPs in the biomedical field are highlighted.
Collapse
Affiliation(s)
- Randeep Singh
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Zeng X, Liu C, Wang X, Cao Y, He P, Li H, Wang L. Versatile Underwater Pressure Sensitive Adhesive: UV Curing Synthesis and Substrate-Independent Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049199 DOI: 10.1021/acsami.4c06163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The demand for underwater pressure sensitive adhesives (PSAs) is rapidly increasing in fields such as underwater engineering and biomedicine. However, the achievement of underwater adhesion of PSAs remains a challenge because of the hydration layer that hinders the interaction between the adhesive and the substrate. Herein, a new type of underwater PSA was synthesized by the copolymerization of hydrophobic unsaturated poly(1,2-butylene oxide) (UPBO) and hydrophilic itaconic acid monomers using solvent-free ultraviolet curing. The PSA has demonstrated substrate-independent underwater adhesion strengths ranging from 108 to 141 kPa on both hydrophilic (glass, wood, steel) and hydrophobic (PET, PMMA, PTFE) substrates. The underwater adhesion performance of PSA remains stable during 30 adhesion-detachment cycles and incubation in water for 20 days. Notably, PSA shows cytocompatibility, antimicrobial, and degradable properties and can be used for rapid hemostasis of skin wounds. Experimental characterizations confirm that the process of underwater adhesion is achieved by hydrophobic alkyl side chains of the PBO chain segments, which repel water at the adhesive-substrate interface. This study should provide both practical and facile design strategies for multifunctional underwater PSAs that can be used in a variety of applications.
Collapse
Affiliation(s)
- Xianqiang Zeng
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Chen Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cao
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng He
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int J Biol Macromol 2024; 270:132048. [PMID: 38704062 DOI: 10.1016/j.ijbiomac.2024.132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Muhammad Arshad
- Clean Technologies and Applied Research, Northern Alberta Institute of Technology, Edmonton, Alberta T5G 2R1, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
14
|
Shabeena M, Warale D, Prabhu A, Kouser S, Manasa DJ, Nagaraja GK. Pectin wrapped halloysite nanotube reinforced Polycaprolactone films for potential wound healing application. Int J Biol Macromol 2024; 262:130140. [PMID: 38365152 DOI: 10.1016/j.ijbiomac.2024.130140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The current research work focuses on preparing the polycaprolactone (PCL) based nanocomposite films embedded with surface modified Halloysite Nanotube (HNT). The avenue of the study is to unravel the applicability of polymer nanocomposites for wound healing. The flexible property of HNT was taken as the major force to accomplish the addition of biopolymer pectin onto its surface. Functionalization of HNT with pectin has certainly enhanced its binding nature with the polymer. The PCL nanocomposite films were characterized by several promising techniques such as FTIR, XRD, DSC-TGA, FESEM, TEM, AFM, and mechanical properties were too examined along. When compared to the plane PCL film, the nanocomposite films manifested favorable results in terms of mechanical and chemical properties. Additionally, biometric studies such as in-vitro swelling, enzymatic degradation, and hemolysis performed on the films gave extremely good results. The haemolytic percentage recorded for the films exhibited a steady decrease with increasing amount of nanofillers. The MTT assay showed cell proliferation and its increase as the embedded HNT is more in the matrix. Wound closure study performed on NIH3T3 cell line with 1, 3 and 5wt% of films has given a strong proof for the involvement of polymer and HNT in the healing procedure.
Collapse
Affiliation(s)
- M Shabeena
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India
| | - Deepali Warale
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Sabia Kouser
- Department of P.G.Studies in chemistry, Karnataka Science College, Dharwad 577007, Karnataka, India
| | - D J Manasa
- Department of Botany, Davangere university, Davangere 577007, Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India.
| |
Collapse
|
15
|
Wang M, Li T, Tian J, Zhang L, Wang Y, Li S, Lei B, Xu P. Engineering Single-Component Antibacterial Anti-inflammatory Polyitaconate-Based Hydrogel for Promoting Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing and Skin Regeneration. ACS NANO 2024; 18:395-409. [PMID: 38150353 DOI: 10.1021/acsnano.3c07638] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Hydrogel wound dressings play a crucial role in promoting the healing of drug-resistant bacterially infected wounds. However, their clinical application often faces challenges such as the use of numerous components, a complicated preparation process, and insufficient biological activity. Itaconic acid, known for its excellent biological and reaction activities, has not been extensively studied for the preparation of itaconic acid-based hydrogels and their application in infected wound healing. Therefore, there is a need to develop a multifunctional single-component itaconic acid-based hydrogel that is easy to synthesize and holds promising prospects for clinical use in promoting the healing of infected wounds. In this study, we present a single-component polyitaconate-based hydrogel (PICGI) with antibacterial, anti-inflammatory, and biological activity. The PICGI hydrogel demonstrates great potential in promoting healing of infected wounds and skin regeneration. It exhibits desirable thermosensitive, injectable, and adhesive properties, as well as broad-spectrum antibacterial activity and anti-inflammatory effects. Furthermore, the PICGI hydrogel is biocompatible and significantly enhances the migration and tube formation of endothelial cells. In the case of drug-resistant bacterially infected wounds, the PICGI hydrogel effectively inhibits bacterial infection and inflammation, promotes angiogenesis, and facilitates collagen deposition, thereby accelerating the healing and regeneration of the skin. This study highlights the promising application of the PICGI hydrogel as a single-component hydrogel in tissue repair associated with bacterial infection and inflammation. Moreover, the simplicity of its components, convenient preparation process, and sufficient biological activity make the PICGI hydrogel highly suitable for promotion and clinical application.
Collapse
Affiliation(s)
- Min Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
16
|
Lee CS, Hwang HS. Starch-Based Hydrogels as a Drug Delivery System in Biomedical Applications. Gels 2023; 9:951. [PMID: 38131937 PMCID: PMC10743264 DOI: 10.3390/gels9120951] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Starch-based hydrogels have gained significant attention in biomedical applications as a type of drug delivery system due to their biocompatibility, biodegradability, and ability to absorb and release drugs. Starch-based hydrogels can serve as effective carriers for pharmaceutical compounds such as drugs and proteins to develop drug-loaded hydrogel systems, providing controlled release over an extended period. The porous structure of a hydrogel allows for the diffusion of drugs, ensuring sustained and localized delivery to the target site. Moreover, starch-based hydrogels have been used as a powerful option in various biomedical fields, including cancer and infectious disease treatment. In addition, starch-based hydrogels have shown promise in tissue engineering applications since hydrogels can be used as scaffolds or matrices to support cell growth and tissue regeneration. Depending on techniques such as chemical crosslinking or physical gelation, it can create a three-dimensional network structure that tunes its mechanical properties and mimics the extracellular matrix. Starch-based hydrogels can also provide a supportive environment for cell attachment, proliferation, and differentiation to promote specific cellular responses and tissue regeneration processes with the loading of growth factors, cytokines, or other bioactive molecules. In this review, starch-based hydrogels as a versatile platform for various biomedical applications are discussed.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
17
|
Lee H, Jung Y, Lee N, Lee I, Lee JH. Nature-Derived Polysaccharide-Based Composite Hydrogels for Promoting Wound Healing. Int J Mol Sci 2023; 24:16714. [PMID: 38069035 PMCID: PMC10706343 DOI: 10.3390/ijms242316714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Numerous innovative advancements in dressing technology for wound healing have emerged. Among the various types of wound dressings available, hydrogel dressings, structured with a three-dimensional network and composed of predominantly hydrophilic components, are widely used for wound care due to their remarkable capacity to absorb abundant wound exudate, maintain a moisture environment, provide soothing and cooling effects, and mimic the extracellular matrix. Composite hydrogel dressings, one of the evolved dressings, address the limitations of traditional hydrogel dressings by incorporating additional components, including particles, fibers, fabrics, or foams, within the hydrogels, effectively promoting wound treatment and healing. The added elements enhance the features or add specific functionalities of the dressings, such as sensitivity to external factors, adhesiveness, mechanical strength, control over the release of therapeutic agents, antioxidant and antimicrobial properties, and tissue regeneration behavior. They can be categorized as natural or synthetic based on the origin of the main components of the hydrogel network. This review focuses on recent research on developing natural polysaccharide-based composite hydrogel wound dressings. It explores their preparation and composition, the reinforcement materials integrated into hydrogels, and therapeutic agents. Furthermore, it discusses their features and the specific types of wounds where applied.
Collapse
Affiliation(s)
| | | | | | | | - Jin Hyun Lee
- School of Bio-Convergence Science, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
18
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, La Pietra M, Vacacela Gomez C, Stegarescu A, Soran ML. Enhanced Stability of Dopamine Delivery via Hydrogel with Integrated Graphene. J Funct Biomater 2023; 14:558. [PMID: 38132812 PMCID: PMC10744308 DOI: 10.3390/jfb14120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The synthesis of graphene-based materials for drug delivery represents an area of active research, and the use of graphene in drug delivery systems is promising due to its unique properties. Thus, in the present work, we discuss the potential of few-layer graphene in a hydrogel system for dopamine release. The hydrogels are frequently used for these systems for their special physico-chemical properties, which can ensure that the drug is effectively released in time. However, the release from such structures is mostly determined by diffusion alone, and to overcome this restriction, the hydrogel can be "improved" with nanoscale fillers like graphene. The release kinetics of the composite obtained were analyzed to better understand how the use of graphene, instead of the more common graphene oxide (GO) and reduced graphene oxide (rGO), affects the characteristics of the system. Thus, the systems developed in this study consist of three main components: biopolymer, graphene, and dopamine. The hydrogels with graphene were prepared by combining two different solutions, one with polyacrylic acid and agarose and one with graphene prepared by the exfoliation method with microwave irradiation. The drug delivery systems were developed by adding dopamine to the obtained hydrogels. After 24 h of release, the presence of dopamine was observed, demonstrating that the system developed can slow down the drug's degradation because of the interactions with the graphene nanoplates and the polymer matrix.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
- Faculty of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Stefano Bellucci
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Matteo La Pietra
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Cristian Vacacela Gomez
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| |
Collapse
|
19
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
20
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
21
|
Ma J, Li T, Luo M, Lei B. Single-Component Self-Healing Antibacterial Anti-Inflammatory Intracellular-Antioxidative Poly(itaconic acid-pluronic) Hydrogel for Rapid Repair of MRSA-Impaired Wound. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33413-33424. [PMID: 37394732 DOI: 10.1021/acsami.3c05383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The rapid healing and repair of multidrug-resistant bacteria infected wound is still a challenge in the field of wound surgery. It is an effective strategy to develop multifunctional bioactive biomaterials with anti-infection therapy and promoting tissue regeneration. However, most of conventional multifunctional wound healing biomaterials possess the complicated composition and fabrication procedure, which may limit their clinical transformation. Herein, we report a single-component multifunctional bioactive self-healing scaffold (itaconic acid-pluronic-itaconic acid) (FIA) with robust antibacterial antioxidant anti-inflammatory bioactivity for treating methicillin-resistant Staphylococcus aureus (MRSA) impaired wound. FIA scaffolds exhibited the temperature-responsive sol-gel behavior, good injectability, and broad-spectrum antibacterial activity (100% inhibition rate against S. aureus, E. coli, and MRSA). FIA possessed favorable hemocompatibility and cell compatibility and even stimulated the cellular proliferation. FIA could efficiently scavenge the intracellular reactive oxygen species (ROS), decrease the inflammation factors expression, promote endotheliocyte migration and blood tube formation, and reduce the M1 phenotype of macrophages in vitro. FIA could significantly clear the MRSA infection, speed up the MRSA-infected wound healing and rapid formation of the normal epithelial layer and skin appendages. This work may provide a simple and efficient multifunctional bioactive biomaterial strategy for overcoming the challenge of the MRSA-impaired wound.
Collapse
Affiliation(s)
- Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Meng Luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
22
|
Parvaneh S, Pourmadadi M, Abdous M, Pourmousavi SA, Yazdian F, Rahdar A, Diez-Pascual AM. Carboxymethyl cellulose/starch/reduced graphene oxide composite as a pH-sensitive nanocarrier for curcumin drug delivery. Int J Biol Macromol 2023; 241:124566. [PMID: 37100314 DOI: 10.1016/j.ijbiomac.2023.124566] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Nanocomposites are promising drug carriers to treat terminal cancers with few adverse effects. Herein, nanocomposite hydrogels composed of carboxymethyl cellulose (CMC)/starch/reduced graphene oxide (RGO) were synthesized via a green chemistry approach and then encapsulated in double nanoemulsions to act as pH-responsive delivery systems for curcumin, a potential antitumor drug. A water/oil/water nanoemulsion containing bitter almond oil served as a membrane surrounding the nanocarrier to control drug release. DLS and zeta potential measurements were used to estimate the size and confirm the stability of curcumin-loaded nanocarriers. The intermolecular interactions, crystalline structure and morphology of the nanocarriers were analyzed through FTIR spectroscopy, XRD and FESEM, respectively. The drug loading and entrapment efficiencies were significantly improved compared to previously reported curcumin delivery systems. In vitro release experiments demonstrated the pH-responsiveness of the nanocarriers and the faster curcumin release at a lower pH. The MTT assay revealed the increased toxicity of the nanocomposites against MCF-7 cancer cells compared to CMC, CMC/RGO or free curcumin. Apoptosis was detected in MCF-7 cells via flow cytometry tests. The results obtained herein support that the developed nanocarriers are stable, uniform and effective delivery systems for a sustained and pH-sensitive curcumin release.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdous
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
23
|
A pH-sensitive hydrogel based on carboxymethylated konjac glucomannan crosslinked by sodium trimetaphosphate: Synthesis, characterization, swelling behavior and controlled drug release. Int J Biol Macromol 2023; 232:123392. [PMID: 36702219 DOI: 10.1016/j.ijbiomac.2023.123392] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The pH-sensitive hydrogel consisting of carboxymethylated konjac glucomannan (CMKGM) and sodium trimetaphosphate (STMP) was prepared for a potential intestinal targeted delivery system. Both the CMKGM and the CMKGM hydrogel were characterized by FT-IR spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The Congo red and atomic force microscope (AFM) results showed a coil-to-helix transition of CMKGM in alkaline conditions with the degree of substitution (DS) increased from 0.20 to 0.49. Rheological measurements indicated that the DS and the STMP content collectively influence the mechanical stiffness and swelling properties of the obtained hydrogels. In addition, the swelling behavior of the hydrogels revealed that they were sensitive to pH value changes and were following a Korsmeyer-Peppas gastrointestinal release behavior, indicating that the release was controlled by non-Fickian diffusion. Furthermore, all the results suggested that the prepared pH-sensitive hydrogel may serve as a potential biomaterial for the intestine-targeted delivery system.
Collapse
|
24
|
Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S. pH and its applications in targeted drug delivery. Drug Discov Today 2023; 28:103414. [PMID: 36273779 DOI: 10.1016/j.drudis.2022.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Zambia St, Addis Ababa, Ethiopia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Constance Malinga
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
25
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
26
|
Introducing a new pharmaceutical agent: facile synthesis of CuFe12O19@HAp-APTES magnetic nanocomposites and its cytotoxic effect on HEK-293 cell as an efficient in vitro drug delivery system for atenolol. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
28
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
29
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
30
|
Ghobashy MM, Elbarbary AM, Hegazy DE, Maziad NA. Radiation synthesis of pH-sensitive 2-(dimethylamino)ethyl methacrylate/ polyethylene oxide/ZnS nanocomposite hydrogel membrane for wound dressing application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Liu R, Zhang Y, Deng P, Huang W, Yin R, Yu L, Li Y, Zhang S, Ni Y, Ling C, Zhu Z, Wu S, Li S. Construction of targeted delivery system for curcumin loaded on magnetic α-Fe 2O 3/Fe 3O 4 heterogeneous nanotubes and its apoptosis mechanism on MCF-7 cell. BIOMATERIALS ADVANCES 2022; 136:212783. [PMID: 35929317 DOI: 10.1016/j.bioadv.2022.212783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, the magnetic α-Fe2O3/Fe3O4 heterogeneous nanotubes were successfully prepared by solvent hydrothermal-controlled calcination method. The effects of additive concentration, hydrothermal temperature and time on morphology of products were investigated. The α-Fe2O3/Fe3O4 nanotubes with a saturation magnetization of 50 emu/g were prepared calcinated at 600 °C for 4 h using 0.8 g of glucose. Their average length, the outer and inner diameters were around 240 nm, 178 nm and 145 nm, respectively. The α-Fe2O3/Fe3O4 heterogeneous nanotubes coated with water-soluble liposome were applied for targeted delivery of curcumin. The release of curcumin inside the hollow structure of the nanocomposites could be triggered and effectively sustained represented a process of slow release. The encapsulation efficiency of curcumin in the α-Fe2O3/Fe3O4-CUR@LIP nanocomposites reached 82.1 ± 0.9%. MTT assays demonstrated that blank carriers had excellent biocompatibility and application of magnetic field significantly elevated the cytotoxicity of α-Fe2O3/Fe3O4-CUR@LIP nanocomposites on MCF-7 cell. Electrochemical experiment and Prussian blue staining indicated that the α-Fe2O3/Fe3O4@LIP nanocomposites could aggregate in cells to promote the internalization of curcumin. Magnetic α-Fe2O3/Fe3O4-CUR@LIP nanocomposites and curcumin enhanced the expression of reactive oxygen species in MCF-7 cells and induced apoptosis by fluorescence detection. Flow cytometry and western blot verified that the α-Fe2O3/Fe3O4@LIP nanocomposites under magnetic field enhanced cells late-apoptosis by adjusting the expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanling Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Deng
- The People's Hospital of Danyang, Zhenjiang 212300, PR China
| | - Wei Huang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruitong Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lulu Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - You Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shaoshuai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen Ling
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ziye Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shaobo Wu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212013, PR China.
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| |
Collapse
|
32
|
de Freitas ADSM, da Silva APB, Montagna LS, Nogueira IA, Carvalho NK, de Faria VS, Dos Santos NB, Lemes AP. Thermoplastic starch nanocomposites: sources, production and applications - a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:900-945. [PMID: 34962857 DOI: 10.1080/09205063.2021.2021351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of materials based on thermoplastic starch (TPS) is an excellent alternative to replace or reduce the use of petroleum-derived polymers. The abundance, renewable origin, biodegradability, biocompatibility, and low cost of starch are among the advantages related to the application of TPS compared to other thermoplastic biopolymers. However, through the literature review, it was possible to observe the need to improve some properties, to allow TPS to replace commonly used polyolefins. The studies reviewed achieved these modifications were achieved by using plasticizers, adjusting processing conditions, and incorporating fillers. In this sense, the addition of nanofillers proved to be the main modification strategy due to the large number of available nanofillers and the low charge concentration required for such improvement. The improvement can be seen in thermal, mechanical, electrical, optical, magnetic, antimicrobial, barrier, biocompatibility, cytotoxicity, solubility, and swelling properties. These modification strategies, the reviewed studies described the development of a wide range of materials. These are products with great potential for targeting different applications. Thus, this review addresses a wide range of essential aspects in developing of this type of nanocomposite. Covering from starch sources, processing routes, characterization methods, the properties of the obtained nanocomposites, to the various applications. Therefore, this review will provide an overview for everyone interested in working with TPS nanocomposites. Through a comprehensive review of the subject, which in most studies is done in a way directed to a specific area of study.
Collapse
Affiliation(s)
| | - Ana Paula Bernardo da Silva
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Larissa Stieven Montagna
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Iury Araújo Nogueira
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nathan Kevin Carvalho
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Vitor Siqueira de Faria
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Natali Bomfim Dos Santos
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Ana Paula Lemes
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
33
|
Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021; 146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.
Collapse
Affiliation(s)
- V Gopinath
- University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - S Manjunath Kamath
- Department of Translational Medicine and Research, SRM Medical College Hospital and Research, SRMIST, Kattankulathur 603203, India.
| | - S Priyadarshini
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdurahman H Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Cui C, Ji N, Wang Y, Xiong L, Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Głąb M, Drabczyk A, Kudłacik-Kramarczyk S, Duarte Guigou M, Makara A, Gajda P, Jampilek J, Tyliszczak B. Starch Solutions Prepared under Different Conditions as Modifiers of Chitosan/Poly(aspartic acid)-Based Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4443. [PMID: 34442967 PMCID: PMC8399717 DOI: 10.3390/ma14164443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
Recently, there has been great interest in the application of polysaccharides in the preparation of diverse biomaterials which result from their biocompatibility, biodegradability and biological activity. In this work, the investigations on chitosan/poly(aspartic acid)-based hydrogels modified with starch were described. Firstly, a series of hydrogel matrices was prepared and investigated to characterize their swelling properties, structure via FT-IR spectroscopy, elasticity and tensile strength using the Brookfield texture analyzer as well as their impact on simulated physiological liquids. Hydrogels consisting of chitosan and poly(aspartic acid) in a 2:1 volume ratio were elastic (9% elongation), did not degrade after 30-day incubation in simulated physiological liquids, exhibited a relative biocompatibility towards these liquids and similar swelling in each absorbed medium. This hydrogel matrix was modified with starch wherein two of its form were applied-a solution obtained at an elevated temperature and a suspension obtained at room temperature. Hydrogels modified with hot starch solution showed higher sorption that unmodified materials. This was probably due to the higher starch inclusion (i.e., a larger number of hydrophilic groups able to interact with the adsorbed liquid) when this polysaccharide was given in the form of a hot solution. Hydrogels modified with a cold starch suspension had visible heterogeneous inequalities on their surfaces and this modification led to the obtainment materials with unrepeatable structures which made the analysis of their properties difficult and may have led to misleading conclusions.
Collapse
Affiliation(s)
- Magdalena Głąb
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| | - Anna Drabczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| | - Martin Duarte Guigou
- Department of Engineering and Technology, Catholic University of Uruguay, Av. 8 de Octubre 2738, Montevideo 11600, Uruguay;
| | - Agnieszka Makara
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| | - Paweł Gajda
- Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 84510 Bratislava, Slovakia
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| |
Collapse
|
36
|
Li Z, Li Y, Chen C, Cheng Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J Control Release 2021; 335:541-556. [PMID: 34097923 DOI: 10.1016/j.jconrel.2021.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Smart hydrogels which can respond to external stimuli have been widely focused with increasing interest. Thereinto, magnetic-responsive hydrogels that are prepared by embedding magnetic nanomaterials into hydrogel networks are more advantageous in biomedical applications due to their rapid magnetic response, precisely temporal and spatial control and non-invasively remote actuation. Upon the application of an external magnetic field, magnetic hydrogels can be actuated to perform multiple response modes such as locomotion, deformation and thermogenesis for therapeutic purposes without the limit of tissue penetration depth. This review summarizes the latest advances of magnetic-responsive hydrogels with focus on biomedical applications. The synthetic methods of magnetic hydrogels are firstly introduced. Then, the roles of different response modes of magnetic hydrogels played in different biomedical applications are emphatically discussed in detail. In the end, the current limitations and future perspectives for magnetic hydrogels are given.
Collapse
Affiliation(s)
- Zhenguang Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingze Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yu Cheng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
37
|
Zhu C, Tang N, Gan J, Zhang X, Li Y, Jia X, Cheng Y. A pH-sensitive semi-interpenetrating polymer network hydrogels constructed by konjac glucomannan and poly (γ-glutamic acid): Synthesis, characterization and swelling behavior. Int J Biol Macromol 2021; 185:229-239. [PMID: 34119552 DOI: 10.1016/j.ijbiomac.2021.06.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022]
Abstract
A novel pH-sensitive semi-interpenetrating polymer network (semi-IPN) hydrogel was prepared by using konjac glucomannan (KGM) and poly (γ-glutamic acid) (γ-PGA) with sodium trimetaphosphate (STMP) as the crosslinking agent. The structure of the semi-IPN hydrogels was characterized by FTIR spectra, thermogravimetric analysis (TGA), X-ray diffraction (XRD), rheological measurements, and scanning electron microscopy (SEM). The pH-sensitive effects were investigated by calculating the equilibrium swelling ratio (ESR) in buffer solutions (pH 2, 4, 6, and 8, respectively) at 37 °C. These results showed that the content of cross-linker and γ-PGA has a significant influence on the hydrogels' structure and swelling behavior. In vitro drug release behavior of semi-IPN hydrogels was investigated under simulated gastric and intestinal fluids using model drug Nicotinamide (NTM), and various models were applied to describe the drug release behaviors. The obtained results indicated that our synthesized semi-IPN hydrogel had the potential to be used as a suitable biomaterial carrier for functional components or drug delivery in the intestine.
Collapse
Affiliation(s)
- Chongyang Zhu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong 264000, PR China
| | - Xiaojun Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yang Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Jia
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
38
|
Chegeni M, Mehri M, Dehdashtian S, Hosseini M. Preparation and Characterization of Perlite/Starch/SWCNT‐Glucose Bionanocomposite for Pathogen Detection**. ChemistrySelect 2021. [DOI: 10.1002/slct.202004625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdieh Chegeni
- Department of Chemistry Faculty of Basic Science Ayatollah Boroujerdi University Boroujerd Iran
| | - Mozhgan Mehri
- Department of Chemistry Faculty of Basic Science Ayatollah Boroujerdi University Boroujerd Iran
| | - Sara Dehdashtian
- Department of Mechanical Engineering Shohadaye Hoveizeh University of Technology Susangerd Iran
| | - Mehdi Hosseini
- Department of Chemistry Faculty of Basic Science Ayatollah Boroujerdi University Boroujerd Iran
| |
Collapse
|
39
|
Phan VHG, Le TMD, Janarthanan G, Ngo PKT, Lee DS, Thambi T. Development of bioresorbable smart injectable hydrogels based on thermo-responsive copolymer integrated bovine serum albumin bioconjugates for accelerated healing of excisional wounds. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Sanaei Moghaddam Sabzevar Z, Mehrshad M, Naimipour M. A biological magnetic nano-hydrogel based on basil seed mucilage: study of swelling ratio and drug delivery. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00905-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|