1
|
Xia Y, Yang Q, Zhang L, Chen K, Yu X, Li Y, Ge J, Xie C, Shen Y, Tong J. Blue light induced ferroptosis in retinal damage via iron overload-associated oxidative stress. J Environ Sci (China) 2025; 155:221-234. [PMID: 40246460 DOI: 10.1016/j.jes.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2025]
Abstract
The issue of light pollution has garnered increased attention recently, largely due to the widespread use of electronic devices. Blue light (BL) holds the highest energy level among visible light and has been extensively researched for its potential to cause damage to the retina. Ferroptosis, a recently identified form of programmed cell death form, has been linked to retinal diseases. However, the connection between BL-induced retinal damage and ferroptosis remains elusive. This study aims to investigate the involvement of ferroptosis in retinal damage under BL exposure and its underlying mechanism. In this study, a mouse retinal damage model and cultured ARPE-19 cells exposed to BL were employed. Various techniques including Haematoxylin-eosin staining, fundus photography, immunostaining, and transmission electron microscopy were employed to examine retinal structure and morphology changes resulting from BL exposure. To identify ferroptosis levels in vitro, we employed DCFH-DA, C11-BODIPY 581/591, and FeRhoNox™-1 probes. Additionally, real-time PCR and western blotting techniques were used to uncover potential targets in BL-induced ferroptosis. Our study showed that BL exposure can result in iron overload, oxidative stress, evidenced by increased markers TFR1, ACSL4, HO-1 and decreased expression level of SOD2, CAT and ferroptosis-associated gene of GPX4. Interestingly, we found that Deferoxamine mesylate, a compound capable of chelating excess Fe2+ caused by BL, effectively mitigated lipid peroxidation, and alleviated retinal damage both in vivo and in vitro. The discoveries will advance our knowledge of BL-induced retinal damage.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan 250299, China; School of Ophthalmology, Shandong First Medical University, Jinan 250118, China
| | - Xin Yu
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Yanqing Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Jiayun Ge
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
2
|
Lin R, Xiao K, Wen B, Ma H, Hu Y, Huang Y. Spectral and color temperature dependence of LED exposure on retinal damage and the protective effects of neohesperidin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 266:113148. [PMID: 40073747 DOI: 10.1016/j.jphotobiol.2025.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE To investigate the effects of LEDs with different spectra and correlated color temperatures on the retina, as well as the protective role of neohesperidin(NHP). METHODS Sprague-Dawley (SD) rats and 661W cells were divided into four groups: 2700K conventional LED group (CL-2700K), 5000K conventional LED group (CL-5000K), 2700K full-spectrum LED group (FL-2700K) and 5000K full-spectrum LED group (FL-5000K). Retinal damage was detected using Hematoxylin and Eosin (HE) staining, while the expression of mitochondria-related autophagy proteins in retinas was determined through immunofluorescence. The CCK-8 assay, ROS detection, mitochondrial membrane potential assessment and Annexin V-FITC/PI staining were used to assess damage in 661W cell. RT-qPCR and Western blotting were employed to detect the expression of related genes and proteins. RESULTS After LED exposure, retinal tissue damage was observed in the rats. 661W cells exhibited upregulated levels of ROS, JC-1 monomer aggregation, and cell apoptosis. Notably, the FL-2700K exhibited the least severe damage. Intervention experiments revealed that 25 μM NHP reduced ROS levels and JC-1 aggregation,as well asmitigated apoptosis levels. Further studies indicated that NHP maintained mitochondrial autophagy at normal levels in 661W cells across all groups and reduced the mRNA expression of Crx and Arrestin-1. CONCLUSIONS 2700K full-spectrum LEDs can mitigate photochemical damage in vivo and in vitro. NHP is a promising drug for treating photochemical damage.
Collapse
Affiliation(s)
- Rong Lin
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China; Department of Ophthalmology, West China Xiamen Hospital of Sichuan University(Research Institute), Xiamen, China
| | - Kunhong Xiao
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Boyuan Wen
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Huazhi Ma
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Yuting Hu
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Yan Huang
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Yeh WJ, Yan C, Wu CH. Photoprotective Effects of Phytochemicals on Blue Light-Induced Retinal Damage: Current Evidence and Future Perspectives. Nutrients 2025; 17:331. [PMID: 39861461 PMCID: PMC11768023 DOI: 10.3390/nu17020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The widespread use of light-emitting diodes (LEDs) has increased blue light (BL) exposure, raising concerns about its potential adverse effects on ocular health. Prolonged exposure to BL has been implicated in the pathogenesis of various retinal disorders, including age-related macular degeneration (AMD), primarily through mechanisms involving oxidative stress and inflammation mediated by the overproduction of reactive oxygen species (ROS). This review synthesizes current evidence on the photoprotective properties of dietary bioactive compounds, (e.g., anthocyanins, curcumin, quercetin, myricetin, and resveratrol), with a focus on their potential to mitigate BL-induced retinal damage. Accumulating research suggests that dietary antioxidants, particularly polyphenols, may offer photoprotective benefits. These phytochemicals act by neutralizing ROS and enhancing the retina's endogenous antioxidant capacity. Based on these findings, this review advocates for a food-first approach in future investigations, emphasizing the development of evidence-based dietary recommendations to bolster retinal health and mitigate the risk of BL-related ocular diseases. Considering the current lack of empirical clinical studies examining the impact of BL on human ocular health, future research in the field of BL hazard should prioritize two key approaches: conducting large-scale epidemiological dietary surveys and implementing clinical trials on functional ingredients that have demonstrated beneficial effects against photodamage in preclinical animal studies.
Collapse
Affiliation(s)
| | | | - Chi-Hao Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-J.Y.); (C.Y.)
| |
Collapse
|
4
|
Yang Q, Chen K, Chen S, Wang Y, Xia Y, Chen J, Shen Y. Blue light promotes conjunctival epithelial-mesenchymal transition and collagen deposition through ITGB4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117584. [PMID: 39732060 DOI: 10.1016/j.ecoenv.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
The increasing prevalence of LED technology heightened blue light (BL) exposure, raising concerns about its long-term effects on ocular health. This study investigated the transcriptomic response of conjunctiva to BL exposure, highlighting potential biomarkers for conjunctival injury. We exposed human conjunctival epithelial cells and C57BL/6 mice to BL to establish in vitro and in vivo models and identified the responsive genes in mice's conjunctiva to BL exposure by RNA sequencing transcriptome analysis. Western blotting, wound healing assays, transwell assay, and phalloidin staining assessed phenotypes of epithelial-mesenchymal transition (EMT). BL disrupted cell conjunction and regulated EMT-related proteins. RNA sequencing analysis revealed upregulation of ITGB4 and enrichment of cell migration and adhesion pathways. Reactive oxygen species-mediated damage caused by BL upregulated ITGB4 expression, promoting cell migration and EMT through the extracellular signal-regulated kinase /Snail pathway.
Collapse
Affiliation(s)
- Qianjie Yang
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Yinhao Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinbo Chen
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Benedetto MM, Malcolm M, Bruera MG, Penazzi LG, Guido ME, Contín MA, Garbarino-Pico E. Stress Granule Induction in Rat Retinas Damaged by Constant LED Light. Invest Ophthalmol Vis Sci 2025; 66:38. [PMID: 39813056 PMCID: PMC11741064 DOI: 10.1167/iovs.66.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model. Methods Rat retinas were immunohistochemically analyzed for SG markers G3BP1 and eIF3, and SGs were also visualized by RNA fluorescence in situ hybridization. Additionally, SGs were induced in primary retinal cell and eyeball cultures using sodium arsenite. Light exposure experiments used LED lamps with a color temperature of 5500 K and 200 lux intensity for short-term or two- to eight-day exposures. Results SGs were predominantly detected in retinal ganglion cells (RGCs) and inner nuclear layer (INL) cells, with arsenite-induction verified in RGCs. SG abundance was higher in animals exposed to light for 2-8 days compared to light/dark cycle controls. RGCs consistently exhibited more SGs than INL cells, and INL cells more than outer nuclear layer (ONL) cells (Scheirer-Ray-Hare test: H = 13.2, P = 0.0103 for light condition, and H = 278.2, P < 0.00001 for retinal layer). These observations were consistent across four independent experiments, each with three animals per light condition. Conclusions This study characterizes SGs in the mammalian retina for the first time, with increased prevalence after excessive LED light exposure. RGCs and INL cells showed heightened SG formation, suggesting a potential protective mechanism against photodamage. Further investigations are warranted to elucidate the role of SGs in shielding against light stress and their implications in retinopathies.
Collapse
Affiliation(s)
- María M. Benedetto
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Melisa Malcolm
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Manuel G. Bruera
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura G. Penazzi
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mario E. Guido
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A. Contín
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
6
|
Chakravarthy H, Georgyev V, Wagen C, Hosseini A, Matsubara J. Blue light-induced phototoxicity in retinal cells: implications in age-related macular degeneration. Front Aging Neurosci 2024; 16:1509434. [PMID: 39741521 PMCID: PMC11685196 DOI: 10.3389/fnagi.2024.1509434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sunlight exposure is recognized as a risk factor for the development of age-related macular degeneration (AMD), a common neurodegenerative retinal disease in the elderly. Specifically, the blue light wavelengths within sunlight can negatively impact the physiology of light-sensitive retinal cells, including retinal pigmented epithelium (RPE) and photoreceptors. This review explores blue light-induced retinal degeneration, emphasizing the structural and functional impairments in RPE. The initial section provides a brief overview of blue light's effects on photoreceptors, followed by a comprehensive analysis of its detrimental impact on RPE. In vitro studies reveal that blue light exposure induces morphological alterations and functional impairments in RPE, including reduced phagocytic activity, disrupted secretion of neurotrophic factors, and compromised barrier function. Mechanisms of retinal damage, including oxidative stress, inflammation, lipofuscin accumulation, mitochondrial dysfunction and ER stress in RPE, are also explored. The strengths and limitations of in vitro, animal and ex vivo models for studying blue light exposure are discussed, with recommendations for improving reproducibility in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Zhang C, Jiao Q, Zhao J, Zhang S, Li D, Gao W, Zhang H, Zheng Y. High correlated color temperature white light-emitting diodes disrupt refractive development in guinea pigs. Heliyon 2024; 10:e38853. [PMID: 39743993 PMCID: PMC11693432 DOI: 10.1016/j.heliyon.2024.e38853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 01/04/2025] Open
Abstract
Ubiquitous white light-emitting diodes (LEDs) possess optical properties that differ from those of natural light. This difference can impact visual perception and biological functions, thus potentially affecting eye health. Myopia, which leads to visual impairments and potentially irreversible vision loss or blindness, is the most prevalent refractive error worldwide. Ambient light has been found to be a significant factor in refractive development. The overlap between the commonly utilized of white LEDs and the rapid increase in the prevalence of myopia raises suspicions that white LEDs may represent hidden visual cues. To clarify the potential effects of white LEDs on refractive development, we exposed guinea pigs to different forms of artificial lighting over a period of eight weeks. We found that exposure to white LEDs with a high correlated color temperature (CCT) of approximately 5000 K can induce significant myopic shifts in guinea pigs, along with a decrease in collagen accumulation in the sclera. Additionally, this exposure was found to significantly reduce choroidal tissue thickness in guinea pigs. Our study findings indicate that high CCT white LEDs disrupt refractive development in guinea pigs. These results suggest that high CCT white LEDs might similarly affect refractive development in humans, highlighting the need for further clinical investigation.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Su Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Da Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenbo Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Jin L, Yang Q, Li J, Li X, Xia Y, Chen Z, Wen Y, Wang L, Wang X, Tong J, Shen Y, Chen K. The ROS/AKT/S6K axis induces corneal epithelial dysfunctions under LED blue light exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117345. [PMID: 39541698 DOI: 10.1016/j.ecoenv.2024.117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
In recent years, concerns have escalated regarding eye health problems arising from Light-emitting diode (LED), which emits high-energy blue light (BL), potentially causing corneal epithelial dysfunctions (CEpD). Nevertheless, the mechanisms underlying this damage remain poorly comprehended. This study endeavors to explore the specific mechanisms through which BL exposure induces CEpD. The study carried out diverse assays and treatments to investigate the toxicological effects of BL exposure. 48 hours (h) of 440 nm of BL exposure decreased the migration of human corneal epithelial cells (hCEpCs) while augmenting reactive oxygen species (ROS) production and apoptosis. RNA-Sequencing and bioinformatic analysis indicated that cellular oxidation and reduction equilibrium, wound healing, the positive regulation of the apoptotic process, and the Phosphoinositide 3-kinase (PI3K)/AKT pathway were significantly influenced by BL exposure. Treatment with N-acetylcysteine (NAC), a ROS scavenger, restored cell viability and AKT/S6 kinase (S6K) activation, suggesting the involvement of ROS in BL-induced damage. NAC also reversed BL-induced apoptosis and migration. Blocking AKT/S6K replicated detrimental effects, while pre-treatment with SC79 (SC), an AKT activator, alleviated the changes caused by BL exposure in hCEpCs. Furthermore, in mice, the combination of AKT inhibition and BL exposure led to CEpD. However, treatment with SC and NAC restored CEpD caused by BL exposure. These results imply that the regulation of the ROS/PI3K/AKT/S6K axis is implicated in BL-induced CEpD. Collectively, this study offers insights into the molecular mechanisms of BL-induced CEpD and proposes targeting the ROS/PI3K/AKT/S6K cascade as a potential therapeutic approach. The findings contribute to ocular health knowledge and establish the basis for developing interventions to safeguard the cornea from the detrimental effects of excessive BL exposure.
Collapse
Affiliation(s)
- Le Jin
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiafeng Li
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingying Wen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Achiron A, Trivizki O, Knyazer B, Elbaz U, Hecht I, Jeon S, Kanclerz P, Tuuminen R. The Effect of Blue-light Filtering Intraocular Lenses on the Development and Progression of Macular Atrophy in Eyes With Neovascular Age-related Macular Degeneration. Am J Ophthalmol 2024; 266:135-143. [PMID: 38692502 DOI: 10.1016/j.ajo.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE To assess the effect of blue-light filtering (BLF) intraocular lenses (IOLs) on the development and progression of macular atrophy (MA) in eyes with neovascular age-related macular degeneration (nAMD). DESIGN Retrospective, clinical cohort study. METHODS The study included patients with nAMD with anti-vascular endothelial growth factor (VEGF) injections who underwent uneventful cataract surgery between 2007 and 2018 with follow-up until June 2023. Subsequent MA rates were compared between subjects who received a BLF IOL or a non-BLF IOL. All optical coherence tomography scans were manually reviewed in a masked manner regarding patient baseline variables and IOL status by an experienced research technician. By using Heidelberg software, the area of MA was manually evaluated and calculated (mm2) by the program. The overall risk of developing new-onset MA and the effect of IOL type on disease progression were assessed. Death was included as a censoring event. RESULTS Included were 373 eyes of 373 patients (mean age, 78.6 ± 6.7 years at surgery; 67.4% were female). BLF IOLs were implanted in 206 eyes, and non-BLF IOLs were implanted in 167 eyes with comparable follow-up times (3164 ± 1420 days vs 3180 ± 1403 days, respectively, P = .908) and other baseline parameters (age, gender, corrected distance visual acuity, macular thickness, cumulative number of anti-VEGF injections). Nine preexisting and 77 new-onset MA cases were detected, with similar distribution between BLF and non-BLF eyes (P = .598 and P = .399, respectively). Both univariate Kaplan-Meier (P = .366) and multivariate Cox regression analyses adjusted for age and gender showed that BLF-IOLs were comparable to non-BLF IOLs regarding hazard for new-onset MA (hazard ratio [HR], 1.236; 95% CI, 0.784-1.949; P = .363). Final MA area at the last visit was 5.14 ± 4.71 mm2 for BLF IOLs and 8.56 ± 9.17 mm2 for non-BLF IOLs (P = .028), with the mean annual MA area increase of 0.78 ± 0.84 mm2 and 1.26 ± 1.32 mm2, respectively (P = .042). CONCLUSIONS BLF IOLs did not show added benefit over non-BLF IOLs in terms of MA-free survival but were associated with less progression over time in a cohort of patients with nAMD.
Collapse
Affiliation(s)
- Asaf Achiron
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Tel Aviv Medical Center, (A.A., O.T.) Tel Aviv, Israel
| | - Omer Trivizki
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Tel Aviv Medical Center, (A.A., O.T.) Tel Aviv, Israel
| | - Boris Knyazer
- Faculty of Health Sciences, Ben-Gurion University of the Negev, (B.K., R.T.) Beer-Sheva, Israel; Department of Ophthalmology, Soroka University Medical Center, (B.K.) Beer-Sheva, Israel
| | - Uri Elbaz
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Rabin Medical Center, Petach-Tikva, (U.E.) Tel Aviv, Israel
| | - Idan Hecht
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Shamir Medical Center, (I.H.) Tel Aviv, Israel; Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, (I.H., P.K., R.T.) Helsinki, Finland
| | - Sohee Jeon
- Keye Eye Center, (S.J.) Gangnam-gu, Seoul, South Korea
| | - Piotr Kanclerz
- Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, (I.H., P.K., R.T.) Helsinki, Finland; Hygeia Clinic, (P.K.) Gdańsk, Poland
| | - Raimo Tuuminen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, (B.K., R.T.) Beer-Sheva, Israel; Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, (I.H., P.K., R.T.) Helsinki, Finland; Department of Ophthalmology, Kymenlaakso Central Hospital, (R.T.) Kotka, Finland.
| |
Collapse
|
10
|
Lee JS, Park HJ, Kang SO, Lee SH, Lee CK. The effects of light emitting diodes on mitochondrial function and cellular viability of M-1 cell and mouse CD1 brain cortex neurons. PLoS One 2024; 19:e0306656. [PMID: 39213294 PMCID: PMC11364243 DOI: 10.1371/journal.pone.0306656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
The invention of Light Emitting Diode (LED) revolutionized energy-efficient illumination, but concerns persist regarding the potential harm of blue light to our eyes. In this study, we scrutinized the impact of LED light characteristics on eyes using two cell types: M-1 (rich in mitochondria) and CD-1 (neuronal). Variations in color rendering index (CRI) and correlated color temperature (CCT) were investigated, alongside exposure durations ranging from 0 to 24 hours. The findings illuminated the potential benefits of high-quality LED lighting, characterized by a high CRI and low CCT, which emits a greater proportion of red light. This form of lighting was associated with enhanced cell proliferation, elevated ATP levels, and reduced oxidative stress. In contrast, LEDs with low CRI and high CCT exhibited adverse effects, diminishing cell viability and increasing oxidative stress. These results suggest that high-quality LED lighting may have neuroprotective potential as a treatment option, such as for retinal ganglion cells.
Collapse
Affiliation(s)
- Jong Soo Lee
- Department of Ophthalmology, Pusan National University College of Medicine, Busan, Korea
| | - Hyun Jin Park
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong, Korea
| | - Sang Hak Lee
- Department of Chemistry, Pusan National University, Busan, Korea
| | - Chang Kyu Lee
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Department of Ophthalmology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
11
|
Wang F, Pan H, Mao W, Wang D. Optimizations of luminescent materials for white light emitting diodes toward healthy lighting. Heliyon 2024; 10:e34795. [PMID: 39149032 PMCID: PMC11325363 DOI: 10.1016/j.heliyon.2024.e34795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
White light emitting diodes (wLEDs) have been widely used as the green lighting sources. The commercial wLEDs devices are mainly achieved through the combination of blue emission chips and yellow phosphors, which offer advantages of high efficiency and long lifetime. However, the color rendering index (CRI) of traditional wLEDs is low due to the lack of red components. In recent years, with the improvement of the quality of life, a lot of efforts have been paid to improve the performance of wLEDs devices related to CRI, correlated color temperature, light uniformity, luminous flux, etc. In this article, we summarize the recent advances on the optimization of wLEDs toward healthy lighting. Brief introductions on the fundamentals of healthy effect of lighting are presented, followed by discussions of current methods to realize wLEDs devices. Special overviews on strategies for luminescent materials of wLEDs in recent years are presented. The opportunities and challenges in the future development of wLEDs lighting devices are also discussed.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Pan
- Shandong Best Integrated Housing Co., Ltd, Weifang, 262600, China
| | - Wei Mao
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou, 324000, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Tapasztó B, Flitcroft DI, Aclimandos WA, Jonas JB, De Faber JTHN, Nagy ZZ, Kestelyn PG, Januleviciene I, Grzybowski A, Vidinova CN, Guggenheim JA, Polling JR, Wolffsohn JS, Tideman JWL, Allen PM, Baraas RC, Saunders KJ, McCullough SJ, Gray LS, Wahl S, Smirnova IY, Formenti M, Radhakrishnan H, Resnikoff S, Németh J. Myopia management algorithm. Annexe to the article titled Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol 2024; 34:952-966. [PMID: 38087768 PMCID: PMC11295429 DOI: 10.1177/11206721231219532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
Myopia is becoming increasingly common in young generations all over the world, and it is predicted to become the most common cause of blindness and visual impairment in later life in the near future. Because myopia can cause serious complications and vision loss, it is critical to create and prescribe effective myopia treatment solutions that can help prevent or delay the onset and progression of myopia. The scientific understanding of myopia's causes, genetic background, environmental conditions, and various management techniques, including therapies to prevent or postpone its development and slow its progression, is rapidly expanding. However, some significant information gaps exist on this subject, making it difficult to develop an effective intervention plan. As with the creation of this present algorithm, a compromise is to work on best practices and reach consensus among a wide number of specialists. The quick rise in information regarding myopia management may be difficult for the busy eye care provider, but it necessitates a continuing need to evaluate new research and implement it into daily practice. To assist eye care providers in developing these strategies, an algorithm has been proposed that covers all aspects of myopia mitigation and management. The algorithm aims to provide practical assistance in choosing and developing an effective myopia management strategy tailored to the individual child. It incorporates the latest research findings and covers a wide range of modalities, from primary, secondary, and tertiary myopia prevention to interventions that reduce the progression of myopia.
Collapse
Affiliation(s)
- Beáta Tapasztó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Daniel Ian Flitcroft
- Temple Street Children's Hospital, Dublin, Ireland
- Centre for Eye Research Ireland (CERI) Technological University, Dublin, Ireland
| | | | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | | | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Christina Nicolaeva Vidinova
- Department of Ophthalmology, Military Medical Academy, Sofia, Bulgaria
- Department of Optometry, Sofia University “St. Kliment Ohridski“, Sofia, Bulgaria
| | | | - Jan Roelof Polling
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Optometry and Orthoptics, University of Applied Science, Utrecht, The Netherlands
| | - James S Wolffsohn
- Optometry and Vision Science Research Group, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - J Willem L Tideman
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department Ophthalmology, Martini Hospital, Groningen, The Netherlands
| | - Peter M Allen
- Vision and Hearing Sciences Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Kathryn J Saunders
- Centre for Optometry and Vision Science, Ulster University, Coleraine, UK
| | - Sara J McCullough
- Centre for Optometry and Vision Science, Ulster University, Coleraine, UK
| | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Tübingen, Germany
| | | | - Marino Formenti
- Department of Physics, School of Science, University of Padova, Padova, Italy
| | - Hema Radhakrishnan
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Serge Resnikoff
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Brien Holden Vision Institute, Sydney, Australia
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
13
|
Yang Q, Xia Y, Chen K, Wang Y, Song D, Zhu J, Tong J, Shen Y. Blue light induced ferroptosis via STAT3/GPX4/SLC7A11/FTH1 in conjunctiva epithelium in vivo and in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112908. [PMID: 38663336 DOI: 10.1016/j.jphotobiol.2024.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024]
Abstract
The prevalence of Light-emitting diodes (LEDs) has exposed us to an excessive amount of blue light (BL) which causes various ophthalmic diseases. Previous studies have shown that conjunctiva is vulnerable to BL. In this study, we aimed to investigate the underlying mechanism of BL-induced injury in conjunctiva. We placed C57BL/6 mice and human conjunctival epithelial cell lines (HCECs) under BL (440 nm ± 15 nm, 0.2 mW/cm2) to establish a BL injury model in vivo and in vitro. Immunohistochemistry and MDA assay were used to identify lipid peroxidation (LPO) in vivo. HE staining was applied to detect morphological damage of conjunctival epithelium. DCFH-DA, C11-BODIPY 581/591, Calcein-AM, and FeRhoNox™-1 probes were performed to identify ferroptosis levels in vitro. Real-time qPCR and Western blotting techniques were employed to uncover signaling pathways of blue light-induced ferroptosis. Our findings demonstrated that BL affected tear film instability and induced conjunctival epithelium injury in vivo. Ferrostatin-1 significantly alleviated blue light-induced ferroptosis in vivo and in vitro. BL downregulates the levels of solute carrier family 7 member 11 (SLC7A11), Ferritin heavy chain (FTH1), and glutathione peroxidase (GPX4) by inhibiting the activation and translocation of the Signal transducer and activator of transcription 3 (STAT3) from inducing Fe2+ burst, ROS and LPO accumulation, ultimately resulting in ferroptosis. This study will offer new insight into BL-induced conjunctival injury and LED-induced dry eye.
Collapse
Affiliation(s)
- Qianjie Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yinhao Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dongjie Song
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiru Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
15
|
Chen TC, Chang SW. Non-lethal exposure to short-wavelength light-emitting diodes modulates tight-junction structure in human corneal epithelial cells via cAMP-dependent signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112869. [PMID: 38368634 DOI: 10.1016/j.jphotobiol.2024.112869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Light-emitting diodes (LED)-derived lights have been widely used as a medical treatment in photobiomodulation (PBM). However, the PBM effects in ophthalmology are less well investigated. Herein, we explored the effect of LED-generated light on the tight-junction (TJ) formation in human corneal epithelial cells (HCEs). The HCEs were separately exposed to monochromatic LEDs at wavelengths of 365 nm (UVA), 420 nm (violet), 470 nm (blue), 530 nm (green), 590 nm (amber), 660 nm (deep red), and 740 nm (far red) at 10 J/cm2/day for 1 and 2 days. Long-term cultivation of HCEs without LED exposure for up to 14 days was established as a control. The effects of both LED wavelength and culture duration on cell morphology, cAMP-regulated proteins, TJ-associated proteins, and cell growth-associated proteins were also analyzed. Together with the increase in cell number during prolonged cultivation, cAMP, ZO-1, ZO-2, CLDN1, and CLDN4 all increased significantly during long-term cultivation without LED exposure. There was no difference in HCE viability after exposure to all monochromatic LEDs at an accumulated dose of 20 J/cm2. As determined by immunoblotting, UVA, violet, and blue light increased intracellular cAMP, ZO-1, ZO-2, CLDN1, and CLDN4 expression, respectively. UVA and violet, but not blue, light increased PKAreg-pS77 expression. However, none of the other treatments changed the expression of PKAcat-pT197, VASP-pS157, Bax, Bcl-2, or Bcl-xL. Immunofluorescence staining confirmed the formation of TJ structures. The expressions of ZO-1, ZO-2, CLDN1, and CLDN4 as well as TJ structures 2 days following UVA, violet, and blue exposure were similar to those of control cells after 9 days of cultivation. We conclude that short-wavelength LEDs at non-lethal exposure intensities accelerated the formation of TJ structure in HCEs via a cAMP-dependent regulatory cascade.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Mattam S, Thomas RH, Akansha EO, Jathanna JS, Poojary RR, Sarpangala S, Jose J, Theruveethi N. Influence of white-light-emitting diodes on primary visual cortex layer 5 pyramidal neurons (V1L5PNs) and remodeling by blue-light-blocking lenses. Int Ophthalmol 2024; 44:118. [PMID: 38416231 PMCID: PMC10901925 DOI: 10.1007/s10792-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
Studies have explored the consequences of excessive exposure to white-light-emitting diodes (LEDs) in the retina. Hence, we aimed to assess the implications of such exposure on structural alterations of the visual cortex, learning and memory, and amelioration by blue-light-blocking lenses (BBLs). Eight-week-old Wistar rats (n = 24) were used for the experiment and divided into four groups (n = 6 in each group) as control, white LED light exposure (LE), BBL Crizal Prevencia-1 (CP), and DuraVision Blue-2 (DB). Animals in the exposure group were exposed to white LED directly for 28 days (12:12-h light/dark cycle), whereas animals in the BBL groups were exposed to similar light with BBLs attached to the LEDs. Post-exposure, a Morris water maze was performed for memory retention, followed by structural analysis of layer 5 pyramidal neurons in the visual cortex. We observed a significant difference (P < 0.001) in the functional test on day 1 and day 2 of training in the LE group. Structural analysis of Golgi-Cox-stained visual cortex layer 5 pyramidal neurons showed significant alterations in the apical and basal branching points (p < 0.001) and basal intersection points (p < 0.001) in the LE group. Post hoc analysis revealed significant changes between (p < 0.001) LE and CP and (p < 0.001) CP and DB groups. Constant and cumulative exposure to white LEDs presented with structural and functional alterations in the visual cortex, which are partly remodeled by BBLs.
Collapse
Affiliation(s)
- Susmitha Mattam
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
- Sankara College of Optometry, Hyderabad, 500032, India
| | - R Huban Thomas
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Elizebeth O Akansha
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
- University of Houston College of Optometry, Houston, USA
| | - Judith S Jathanna
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Radhika R Poojary
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shailaja Sarpangala
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Judy Jose
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
17
|
Fitzpatrick NK, Chachay V, Capra S, Briskey D, Jackman S, Shore A, Bowtell J. Assessing electronic device use behaviours in healthy adults: development and evaluation of a novel tool. BMC Public Health 2024; 24:186. [PMID: 38225654 PMCID: PMC10790453 DOI: 10.1186/s12889-024-17637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Chronic exposure of the macula to blue light from electronic devices has been identified as a potential macular health concern. The impacts remain poorly investigated as no validated methods to capture usual device use behaviours exist. PURPOSE The aim of this study was to develop and validate the Electronic Device Use Questionnaire (EDUQ) against multiple 24-h electronic device use diaries in healthy Australian and United Kingdom adults. METHODS The EDUQ and diaries were developed to capture device use across categories (television, computer and handheld devices). Over eight weeks 56 Australian and 24 United Kingdom participants completed three questionnaires and eight diaries via online platforms. Tool validity was determined through Bland-Altman plot analysis of mean daily hours of device use between the tools. RESULTS The EDUQ demonstrated poor validity in both cohorts with poor agreement when compared with the diaries. When the device categories were combined, a mean difference between the tools of 1.54 h/day, and 95% limits of agreement between -2.72 h/day and 5.80 h/day was observed in the Australian cohort. Across both cohorts and all device categories the mean differences indicated individuals were more likely to report higher device use through the questionnaire rather than diaries. CONCLUSIONS The EDUQ is a novel tool and demonstrated the difficulty for participants of accurately recalling usual behaviour of device use. Poor agreement in reported device use occurred across all device categories. The poor agreement may be related to factors such as memory recall bias, and the number of diaries captured not being reflective of usual use. Future studies should look to address these factors to improve validity of device use capture.
Collapse
Affiliation(s)
- Naomi K Fitzpatrick
- Sport and Health Sciences, University of Exeter, Exeter, UK.
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Veronique Chachay
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sandra Capra
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sarah Jackman
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Angela Shore
- NIHR Exeter Clinical Research Facility, University of Exeter, Exeter, UK
| | - Joanna Bowtell
- Sport and Health Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
18
|
Su H, Lin H, Li P, Li B, Xu X, Li J, Wu Y, Hui J, Liu D. Conversion of Waste Expanded Polystyrene into Blue-Emitting Polymer Film for Light-Emitting Diode Applications. Polymers (Basel) 2023; 15:4693. [PMID: 38139945 PMCID: PMC10747055 DOI: 10.3390/polym15244693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The wide range of applications and continuous demand for plastics is causing serious global environmental problems. Massive discharges of expanded polystyrene (EPS) are thought to be primarily responsible for the increased white pollution. Waste EPS has received wide attention in the development of innovative products. White light-emitting diodes pumped by a near-UV chip (n-UV WLEDs) are regarded as a very promising solid-state lighting. The performance of the n-UV WLED is largely determined by the properties of the tricolor luminescence materials. In this work, a blue-emitting polymer film for n-UV WLED applications was developed from waste EPS. First, using waste EPS as a raw material, benzimidazole groups were bonded to PS benzene rings by chemical reactions to obtain modified PS (PS-PBI). Then, a film based on PS-PBI was prepared by a simple solution drop-casting method. The PS-PBI film can emit intense blue light when irradiated with 365 nm light. An n-UV WLED pumped by a 365 nm UV chip was fabricated using PS-PBI film as the blue-emitting layer. The fabricated n-UV WLED shows excellent luminescence properties, such as a bright white light with color coordinates of (0.337, 0.331), a relatively low color temperature (CCT, 5270 K), and an especially high color rendering index (CRI, 93.6). The results prove that the blue-emitting PS-PBI film prepared from waste EPS is a very promising candidate for n-UV WLED applications. The strategy of converting waste EPS into a high-value-added blue-emitting film in this work provides a convenient and feasible approach for upcycling waste EPS, achieving significant environmental and economic benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
19
|
Yamamoto H, Yamaoka K, Shinohara A, Shibata K, Takao KI, Ogura A. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem Sci 2023; 14:11243-11250. [PMID: 37860659 PMCID: PMC10583705 DOI: 10.1039/d3sc03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
In organic chemistry, selecting mild conditions for transformations and saving energy are increasingly important for achieving sustainable development goals. Herein, we describe a red-light-mediated Barton decarboxylation using readily available red-light-emitting diodes as the energy source and zinc tetraphenylporphyrin as the catalyst, avoiding explosive or hazardous reagents or external heating. Mechanistic studies suggest that the reaction probably proceeds via Dexter energy transfer between the activated catalyst and the Barton ester. Furthermore, a one-pot wavelength-selective reaction within the visible light range is developed in combination with a blue-light-mediated photoredox reaction, demonstrating the compatibility of two photochemical transformations based on mechanistic differences. This one-pot process expands the limits of the decarboxylative Giese reaction beyond polarity matching.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kohei Yamaoka
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ann Shinohara
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
20
|
Cougnard-Gregoire A, Delcourt C. Response to the Letter to the Editor Regarding "Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review" by Iqbal et al. Ophthalmol Ther 2023; 12:2817-2819. [PMID: 37428402 PMCID: PMC10441948 DOI: 10.1007/s40123-023-00760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
| | - Cécile Delcourt
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| |
Collapse
|
21
|
Das A, Sil A, Kumar P, Khan I. Blue light and skin: what is the intriguing link? Clin Exp Dermatol 2023; 48:968-977. [PMID: 37097168 DOI: 10.1093/ced/llad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Blue light has garnered attention because of its ability to penetrate more deeply into the skin layers, and induce cellular dysfunction and DNA damage. Photoageing, hyperpigmentation and melasma are some of the cutaneous changes that develop on exposure to blue light. To date, the therapeutic roles of blue light have been evaluated in dermatological conditions like psoriasis, eczema, acne vulgaris, actinic keratosis and cutaneous malignancies, among others. In this review, we have attempted to present an evidence-based compilation of the effects of blue light on the skin.
Collapse
Affiliation(s)
- Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| | - Abheek Sil
- Department of Dermatology, Venereology and Leprosy, R.G. Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Piyush Kumar
- Department of Dermatology, Madhubani Medical College & Hospital, Madhubani, Bihar, India
| | - Ismat Khan
- Department of Dermatology, Medical College and Hospital Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Zhang L, Lei CY, Zhang ZC, Gu JY, Zhang MX. Accidental macular injury from short-term exposure to a handheld high-intensity LED light. Heliyon 2023; 9:e18705. [PMID: 37554811 PMCID: PMC10404656 DOI: 10.1016/j.heliyon.2023.e18705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE To report a case of macular injury caused by short-term exposure to a handheld high-intensity light emitting diode (LED) light. DESIGN Interventional case report. PARTICIPANT A patient with macular injury caused by short-term exposure to the light of a handheld high-intensity LED device. INTERVENTION The patient was examined and followed for 3 months after exposure with ophthalmologic examinations (including funduscopy, optical coherence tomography [OCT], fluorescein angiography [FA], and multifocal electroretinography [mfERG]). The injured eye was treated with one retrobulbar injection of 20 mg triamcinolone acetonide at 5 days after exposure. MAIN OUTCOME MEASURES Visual acuity, ophthalmoscopic, and OCT findings. RESULTS 3 days after exposure, the best corrected visual acuity (BCVA) of the right eye was 6/20. OCT revealed the acute stage of the injury with eminence of the retinal pigment epithelium (RPE). BCVA was improved to 16/20 and 20/20 at 19 and 33 days after exposure, respectively. OCT results of follow-ups at five days, 19 days, 33 days and 3 months after exposure have demonstrated the restoration process of the injury. CONCLUSIONS Short-term exposure to high-intensity LED light may cause damage to the retina. As the expansion of LED use in modern life, education and supervision are of urgent need for public health.
Collapse
Affiliation(s)
- Li Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | - Chun-Yan Lei
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | | | - Jin-Yue Gu
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | - Mei-Xia Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Huang H, Xiang G, Song C, He Z, Zhang J, Zhang J, Yue Z, Zhang X, Wang P, Jin Y, Mei M, Ding J, Wang Y, Zhao Y, Wang H. "Blue-free" orange ZnO-related light-emitting diode based on a natural interface layer of Ga 2O 3 and ZnGa 2O 4. OPTICS LETTERS 2023; 48:3571-3574. [PMID: 37390183 DOI: 10.1364/ol.493700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
To fabricate a ZnO-related light-emitting diode (LED) with zero emission at blue wavelengths ("blue-free"), an ingenious strategy is employed. Specifically, for the first time to the best of our knowledge, a natural oxide interface layer, possessing remarkable visible emission potential, is introduced into the Au/i-ZnO/n-GaN metal-insulator-semiconductor (MIS) structure. The unique Au/i-ZnO/interface layer/n-GaN structure successfully eliminated the harmful blue emissions (400-500 nm) from the ZnO film, and the remarkable orange electroluminescence is mainly attributed to the impact ionization process of the natural interface layer at high electric field. It is worth mentioning that the device achieved ultra-low color temperature (2101 K) and excellent color rendering index (92.8) under electrical injection, indicating that the device could fulfill the requirements of electronic display systems and general illumination, and might even play unexpected roles in special lighting domains. The results obtained provide a novel and effective strategy for the design and preparation of ZnO-related LEDs.
Collapse
|
24
|
Kang WS, Kim E, Choi H, Lee KH, Kim KJ, Lim D, Choi SY, Kim Y, Son SA, Kim JS, Kim S. Therapeutic Potential of Peucedanum japonicum Thunb. and Its Active Components in a Delayed Corneal Wound Healing Model Following Blue Light Irradiation-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:1171. [PMID: 37371901 DOI: 10.3390/antiox12061171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Blue light is reported to be harmful to eyes by inducing reactive oxygen species (ROS). Herein, the roles of Peucedanum japonicum Thunb. leaf extract (PJE) in corneal wound healing under blue light irradiation are investigated. Blue-light-irradiated human corneal epithelial cells (HCECs) show increased intracellular ROS levels and delayed wound healing without a change in survival, and these effects are reversed by PJE treatment. In acute toxicity tests, a single oral administration of PJE (5000 mg/kg) does not induce any signs of clinical toxicity or body weight changes for 15 days post-administration. Rats with OD (oculus dexter, right eye) corneal wounds are divided into seven treatment groups: NL (nonwounded OS (oculus sinister, left eye)), NR (wounded OD), BL (wounded OD + blue light (BL)), and PJE (BL + 25, 50, 100, 200 mg/kg). Blue-light-induced delayed wound healing is dose-dependently recovered by orally administering PJE once daily starting 5 days before wound generation. The reduced tear volume in both eyes in the BL group is also restored by PJE. Forty-eight hours after wound generation, the numbers of inflammatory and apoptotic cells and the expression levels of interleukin-6 (IL-6) largely increase in the BL group, but these values return to almost normal after PJE treatment. The key components of PJE, identified by high-performance liquid chromatography (HPLC) fractionation, are CA, neochlorogenic acid (NCA), and cryptochlorogenic acid (CCA). Each CA isomer effectively reverses the delayed wound healing and excessive ROS production, and their mixture synergistically enhances these effects. The expression of messenger RNAs (mRNAs) related to ROS, such as SOD1, CAT, GPX1, GSTM1, GSTP1, HO-1, and TRXR1, is significantly upregulated by PJE, its components, and the component mixture. Therefore, PJE protects against blue-light-induced delayed corneal wound healing via its antioxidative, anti-inflammatory, and antiapoptotic effects mechanistically related to ROS production.
Collapse
Affiliation(s)
- Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Eun Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Hakjoon Choi
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Ki Hoon Lee
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Kyeong Jo Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Dosung Lim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Su-Young Choi
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Youngbae Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Seon Ah Son
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Jin Seok Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| |
Collapse
|
25
|
Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther 2023; 12:755-788. [PMID: 36808601 PMCID: PMC9938358 DOI: 10.1007/s40123-023-00675-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
INTRODUCTION Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.
Collapse
|
26
|
Lou L, Frishman LJ, Beach KM, Rajagopalan L, Hung LF, She Z, Smith EL, Ostrin LA. Long-term blue light rearing does not affect in vivo retinal function in young rhesus monkeys. Doc Ophthalmol 2023:10.1007/s10633-023-09931-0. [PMID: 36995437 DOI: 10.1007/s10633-023-09931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Exposure to blue light is thought to be harmful to the retina. The purpose of this study was to determine the effects of long-term exposure to narrowband blue light on retinal function in rhesus monkeys. METHODS Young rhesus monkeys were reared under short-wavelength "blue" light (n = 7; 465 nm, 183 ± 28 lx) on a 12-h light/dark cycle starting at 26 ± 2 days of age. Age-matched control monkeys were reared under broadband "white" light (n = 8; 504 ± 168 lx). Light- and dark-adapted full-field flash electroretinograms (ERGs) were recorded at 330 ± 9 days of age. Photopic stimuli were brief red flashes (0.044-5.68 cd.s/m2) on a rod-saturating blue background and the International Society for Clinical Electrophysiology of Vision (ISCEV) standard 3.0 white flash on a 30 cd/m2 white background. Monkeys were dark adapted for 20 min and scotopic stimuli were ISCEV standard white flashes of 0.01, 3.0, and 10 cd.s/m2. A-wave, b-wave, and photopic negative response (PhNR) amplitudes were measured. Light-adapted ERGs in young monkeys were compared to ERGs in adult monkeys reared in white light (n = 10; 4.91 ± 0.88 years of age). RESULTS For red flashes on a blue background, there were no significant differences in a-wave (P = 0.46), b-wave (P = 0.75), and PhNR amplitudes (P = 0.94) between white light and blue light reared monkeys for all stimulus energies. ISCEV standard light- and dark-adapted a- and b-wave amplitudes were not significantly different between groups (P > 0.05 for all). There were no significant differences in a- and b-wave implicit times between groups for all ISCEV standard stimuli (P > 0.05 for all). PhNR amplitudes of young monkeys were significantly smaller compared to adult monkeys for all stimulus energies (P < 0.05 for all). There were no significant differences in a-wave (P = 0.19) and b-wave (P = 0.17) amplitudes between young and adult white light reared monkeys. CONCLUSIONS Long-term exposure to narrowband blue light did not affect photopic or scotopic ERG responses in young monkeys. Findings suggest that exposure to 12 h of daily blue light for approximately 10 months does not result in altered retinal function.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, USA
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, USA
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, USA
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, USA.
| |
Collapse
|
27
|
Stanhope J, Weinstein P. Will the increased use of ring lights during the coronavirus pandemic lead to a growing burden of macular degeneration? Med Hypotheses 2023; 175:111064. [PMID: 37144026 PMCID: PMC10043955 DOI: 10.1016/j.mehy.2023.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The pandemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has brought with it many changes in the way with live, work, and socialise. One such change is an increase in the use of videoconferencing for communication with friends, family and work colleagues, and doing presentations, while physically distancing. We demonstrate an increase in the use of ring lights during the pandemic, and argue that this increased exposure to blue light may lead to a growing burden of macular degeneration in coming years.
Collapse
Affiliation(s)
- Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Philip Weinstein
- School of Public Health, The University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| |
Collapse
|
28
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
29
|
Jin M, Zhang XY, Ying Q, Hu HJ, Feng XT, Peng Z, Pang YL, Yan F, Zhang X. Antioxidative and Mitochondrial Protection in Retinal Pigment Epithelium: New Light Source in Action. Int J Mol Sci 2023; 24:ijms24054794. [PMID: 36902225 PMCID: PMC10003667 DOI: 10.3390/ijms24054794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Low-color-temperature light-emitting diodes (LEDs) (called 1900 K LEDs for short) have the potential to become a healthy light source due to their blue-free property. Our previous research demonstrated that these LEDs posed no harm to retinal cells and even protected the ocular surface. Treatment targeting the retinal pigment epithelium (RPE) is a promising direction for age-related macular degeneration (AMD). Nevertheless, no study has evaluated the protective effects of these LEDs on RPE. Therefore, we used the ARPE-19 cell line and zebrafish to explore the protective effects of 1900 K LEDs. Our results showed that the 1900 K LEDs could increase the cell vitality of ARPE-19 cells at different irradiances, with the most pronounced effect at 10 W/m2. Moreover, the protective effect increased with time. Pretreatment with 1900 K LEDs could protect the RPE from death after hydrogen peroxide (H2O2) damage by reducing reactive oxygen species (ROS) generation and mitochondrial damage caused by H2O2. In addition, we preliminarily demonstrated that irradiation with 1900 K LEDs in zebrafish did not cause retinal damage. To sum up, we provide evidence for the protective effects of 1900 K LEDs on the RPE, laying the foundation for future light therapy using these LEDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xu Zhang
- Correspondence: ; Tel.: +86-791-86318907
| |
Collapse
|
30
|
Zhang C, Zhu Z, Zhao J, Li Y, Zhang Z, Zheng Y. Ubiquitous light-emitting diodes: Potential threats to retinal circadian rhythms and refractive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160809. [PMID: 36502986 DOI: 10.1016/j.scitotenv.2022.160809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The use of light-emitting diodes (LEDs) has increased considerably in the 21st century with humans living in a modern photoperiod with brighter nights and dimmer days. Prolonged exposure to LEDs, especially at night, is considered a new source of pollution because it may affect the synthesis and secretion of retinal melatonin and dopamine, resulting in negative impacts on retinal circadian clocks and potentially disrupting retinal circadian rhythms. The control of ocular refraction is believed to be related to retinal circadian rhythms. Moreover, the global prevalence of myopia has increased at an alarming rate in recent decades. The widespread use of LEDs and the rapid increase in the prevalence of myopia overlap, which is unlikely to be a coincidence. The connection among LEDs, retinal circadian rhythms, and refractive development is both fascinating and confusing. In this review, we aim to develop a systematic framework that includes LEDs, retinal circadian rhythms and refractive development. This paper summarizes the possible mechanisms by which LEDs may disrupt retinal circadian rhythms. We propose that prolonged exposure to LEDs may induce myopia by disrupting retinal circadian rhythms. Finally, we suggest several possible countermeasures to prevent LED interference on retinal circadian rhythms, with the hope of reducing the onset and progression of myopia.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhe Zhu
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Jinan 250000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
31
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
32
|
Influence of Light-EmittingDiode-Derived Blue Light Overexposure on Rat Ocular Surface. J Ophthalmol 2023; 2023:1097704. [PMID: 36660316 PMCID: PMC9845051 DOI: 10.1155/2023/1097704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 01/12/2023] Open
Abstract
We aim to investigate the effect of overexposure to blue light on the rat ocular surface and explore the potential mechanisms. 450 nm light-emitting diode (LED) derived light at 1000 lux was used to irradiate SD rats, 12 hours a day, for consecutive 28 days. Rats in the control group were exposed to 400 lux white light at the same time (in an indoor environment). Tear film breakup time (TBUT), tear volume, and corneal fluorescein staining scores were used to measure the changes to the ocular surface. Expressions of nuclear factor-κB (NF-κB), inhibitor-κB (I-κB), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured by real-time PCR, and the activation of the NF-κB pathway was detected by Western blotting, respectively. Cornea ultrastructure was examined by TEM and optical microscope on day 28. Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB signaling pathway, was used to measure the inhibition of blue light injury. The above indexes were detected again when compared with the solvent-treated group. On day 28, compared with day 0, the TBUT of the blue light group was significantly shorter, and the score was significantly higher. The amount of tear secretion changed slightly with time. HE and PAS staining revealed significantly decreased corneal epithelial cell layers and increased goblet cells after 28-day irradiation of blue light. Disarranged stromal cells, vacuoles in the basal nuclei, and decreased desmosomes were also found in the blue light group. Significantly increased levels of NF-κB, IL-6, TNF-α, and the ratio of phosphorylated NF-κB p65 (pNF-κB p65) to total NF-κB p65 implied blue light-induced damage and pathway activation. In addition, PDTC significantly reduced the phosphorylation of NF-κB activated in blue light-treated corneas and alleviated the ocular surface changes caused by blue light. Finally, our results demonstrated that long-term blue light exposure in rats could cause ocular surface changes and manifest as dry eye. Inflammation and activation of the NF-κB pathway may play a role in the pathogenesis.
Collapse
|
33
|
Theruveethi N, Joshi MB, Jathanna JS, Valiathan M, Kabekkodu SP, Bhandarkar M, Thomas RH, Thangarajan R, Bhat SS, Surendran S. Effect of Light Emitting Diodes (LED) Exposure on Vitreous Metabolites-Rodent Study. Metabolites 2023; 13:metabo13010081. [PMID: 36677006 PMCID: PMC9861686 DOI: 10.3390/metabo13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The exposure to blue and white Light emitting diodes (LED) light leads to damage in the visual system with short-term LED light exposure. Chronic exposure, adaptive responses to light, and self-protective mechanisms against LED light exposures need to be explored, and it would be essential to understand the repercussions of LED radiation on vitreous metabolites. A total of 24 male Wistar rats were used in this study, divided into four groups (n = 6 in each group). Three experimental groups of rats were exposed to either blue, white, or yellow LED light for 90 days (12:12 light-dark cycle routine) with uniform illumination (450−500 lux). Standard lab settings were used to maintain control rats. Vitreous fluids were subjected to untargeted metabolomics analysis using liquid chromatography-mass spectrometry (LC/MS). PLS-DA analysis indicated significant the separation of m metabolites among groups, suggesting that LED exposure induces metabolic reprogramming in the vitreous. Amino acids and their modifications showed significant alterations among groups which included D-alanine, D-serine (p < 0.05), lysine (p < 0.001), aspartate (p = 0.0068), glutathione (p = 0.0263), taurine (p = 0.007), and hypotaurine. In chronic light exposure, the self-protective or reworking system could be depleted, which may decrease the ability to compensate for the defending mechanism. This might fail to maintain the metabolomic structural integrity of the vitreous metabolites.
Collapse
Affiliation(s)
- Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judith S. Jathanna
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manna Valiathan
- Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manasa Bhandarkar
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - R. Huban Thomas
- Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Rajesh Thangarajan
- Department of Anatomy, International Medical School, Management and Science University (MSU), Shah Alam 40100, Malaysia
| | - Shailaja S. Bhat
- Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sudarshan Surendran
- American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge P.O. Box 1451, Antigua and Barbuda
- Correspondence:
| |
Collapse
|
34
|
Zhang R, Zhang Z, Han J, Yang L, Li J, Song Z, Wang T, Zhu J. Advanced liquid crystal-based switchable optical devices for light protection applications: principles and strategies. LIGHT, SCIENCE & APPLICATIONS 2023; 12:11. [PMID: 36593244 PMCID: PMC9807646 DOI: 10.1038/s41377-022-01032-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/18/2022] [Accepted: 11/01/2022] [Indexed: 05/14/2023]
Abstract
With the development of optical technologies, transparent materials that provide protection from light have received considerable attention from scholars. As important channels for external light, windows play a vital role in the regulation of light in buildings, vehicles, and aircrafts. There is a need for windows with switchable optical properties to prevent or attenuate damage or interference to the human eye and light-sensitive instruments by inappropriate optical radiation. In this context, liquid crystals (LCs), owing to their rich responsiveness and unique optical properties, have been considered among the best candidates for advanced light protection materials. In this review, we provide an overview of advances in research on LC-based methods for protection against light. First, we introduce the characteristics of different light sources and their protection requirements. Second, we introduce several classes of light modulation principles based on liquid crystal materials and demonstrate the feasibility of using them for light protection. In addition, we discuss current light protection strategies based on liquid crystal materials for different applications. Finally, we discuss the problems and shortcomings of current strategies. We propose several suggestions for the development of liquid crystal materials in the field of light protection.
Collapse
Affiliation(s)
- Ruicong Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiajun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Zicheng Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China.
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin, 150080, China.
| |
Collapse
|
35
|
Li X, Zhu S, Qi F. Blue light pollution causes retinal damage and degeneration by inducing ferroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112617. [PMID: 36495671 DOI: 10.1016/j.jphotobiol.2022.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
With the development of technology and electronic products, the problem of light pollution is becoming more and more serious. Blue light, the most energetic light in visible light, is the main culprit of teenage vision problems in the modern environment. As the tissue with the highest oxygen consumption, the retina is vulnerable to oxidative stress. However, the exact way in which blue light-triggered reactive oxygen species (ROS) cause retinal cell death remains unclear. Ferroptosis is a newly defined cell death pathway, whose core molecular mechanism is cell death caused by excessive lipid peroxidation. In this study, the results indicated that blue light-triggered ROS burst in retinal cells, in the meantime, intracellular Fe2+ levels were also significantly up-regulated. Further, deferoxamine (DFO) significantly improved blue light-triggered lipid peroxidation and cell death in ARPE-19 cells, and ferrostatin-1 (Fer-1) alleviated retinal oxidative stress and degeneration in rats. Furthermore, the GSH-GPX4 and FSP1-CoQ10-NADH systems served as key systems for cellular defense against ferroptosis, and interestingly, our results demonstrated that blue light triggered imbalance of the GSH-GPX4 and FSP1-CoQ10-NADH systems in retinal cells. Taken together, these pieces of evidence suggest that ferroptosis may be a crucial pathway for blue light-induced retinal damage and degeneration, which helps us to understand exactly why blue light pollution causes visual impairment in adolescents.
Collapse
Affiliation(s)
- Xuan Li
- Lanzhou University Second Hospital, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China..
| | - Fujian Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
VISUAL OPSINS: PHYSIOLOGICAL ALTERATION PROMOTED BY LED LIGHT. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
37
|
New Series of Red-Light Phosphor Ca 9-xZn xGd 0.9(PO 4) 7:0.1Eu 3+ ( x = 0-1). Molecules 2023; 28:molecules28010352. [PMID: 36615547 PMCID: PMC9822231 DOI: 10.3390/molecules28010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, a new series of phosphors, Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0.00−1.00, step dx 0.05), was synthesized, consisting of centro- and non-centrosymmetric phases with β-Ca3(PO4)2-type structure. Crystal structures with space groups R3c (0.00 ≤ x < 0.35) and R3¯c (x > 0.8) were determined using X-ray powder diffraction and the method of optical second harmonic generation. In the region 0.35 ≤ x ≤ 0.75, phases R3c and R3¯c were present simultaneously. Refinement of the Ca8ZnGd(PO4)7 crystal structure with the Rietveld method showed that 71% of Gd3+ ions are in M3 sites and 29% are in M1 sites. A luminescent spectroscopy study of Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ indicated the energy transfer from the crystalline host to the Gd3+ and Eu3+ luminescent centers. The maximum Eu3+ luminescence intensity corresponds to the composition with x = 1.
Collapse
|
38
|
Nie J, Xu N, Chen Z, Huang L, Jiao F, Chen Y, Pan Z, Deng C, Zhang H, Dong B, Li J, Tao T, Kang X, Chen W, Wang Q, Tong Y, Zhao M, Zhang G, Shen B. More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency. Photochem Photobiol Sci 2022; 22:809-824. [PMID: 36527588 DOI: 10.1007/s43630-022-00354-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague-Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance ([Formula: see text]) than conventional white LED. The results illustrated that [Formula: see text] proposed by IEC 62471 could not exactly evaluate the light damage on rats' retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.
Collapse
Affiliation(s)
- Jingxin Nie
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Zhizhong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China.
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China.
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China.
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China.
| | - Fei Jiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Yiyong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Zuojian Pan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Chuhan Deng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Haodong Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Boyan Dong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Xiangning Kang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Weihua Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Qi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Yuzhen Tong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Guoyi Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Bo Shen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China
| |
Collapse
|
39
|
Fietz A, Hurst J, Schnichels S. Out of the Shadow: Blue Light Exposure Induces Apoptosis in Müller Cells. Int J Mol Sci 2022; 23:ijms232314540. [PMID: 36498867 PMCID: PMC9739907 DOI: 10.3390/ijms232314540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Awareness toward the risks of blue light (BL) exposure is rising due to increased use of BL-enriched LEDs in displays. Short-wave BL (400-500 nm) has a high photochemical energy, leading to the enhanced production of reactive oxygen species (ROS). BL potentially plays a role in causing dry eye, cataracts, and age-related macular degeneration (AMD). The effect of BL on retinal pigment epithelium cells (RPEs) or photoreceptors has been extensively investigated. In contrast, only a few studies have investigated the effects of BL exposure on Müller cells (MCs). This is mainly due to their lack of photosensitive elements and the common assumption that their reaction to stress is only secondary in disease development. However, MCs perform important supportive, secretory, and immune functions in the retina, making them essential for retinal survival. Increased oxidative stress is a key player in many retinal diseases such as AMD or glaucoma. We hypothesize that increased oxidative stress can also affect MCs. Thus, we simulated oxidative stress levels by exposing primary porcine MCs and human MIO-M1 cells to BL. To confirm the wavelength-specificity, the cells were further exposed to red (RL), purple (PL), and white light (WL). BL and WL exposure increased ROS levels, but only BL exposure led to apoptosis in primary MCs. Thus, BL accounted for the harmful part of WL exposure. When cells were simultaneously exposed to BL and RL (i.e., PL), cell damage due to BL could be partly prevented, as could the inhibition of p53, demonstrating the protective effect of RL and p53 dependency. In contrast, BL hardly induced apoptosis in MIO-M1 cells, which is likely due to the immortalization of the cells. Therefore, enhanced oxidative stress levels can significantly harm MC function, probably leading to decreased retinal survival and, thus, further enhancing the progression of retinal diseases. Preventing the cell death of these essential retinal cells represents a promising therapy option to enhance retinal survival.
Collapse
|
40
|
Liu X, Li M, Zhang Q, Wang Y, Li N, Peng S, Yin T, Guo S, Liu Y, Yan L, Zhang D, Kim J, Liu G, Wang Y, Yang W. Pressure Engineering Promising Transparent Oxides with Large Conductivity Enhancement and Strong Thermal Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202973. [PMID: 36180391 PMCID: PMC9631087 DOI: 10.1002/advs.202202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Transparent conducting oxides (TCO) with high electrical conductivity and high visible light transparency are desired for a wide range of high-impact engineering. Yet, usually, a compromise must be made between conductivity and transparency, limiting the practical application of a TCO to the next level. Furthermore, TCO performance is highly sensitive to composition, so conventional synthesis methods, such as chemical doping, cannot unravel the mysteries of the quantitative structure-performance relationship. Thus, improving the fundamental understanding or creating materials-by-design has limited success. Here, a strategy is proposed to modulate the lattice and electronic and optical properties precisely by applying pressure on a TCO. Strikingly, after compression-decompression treatment on the indium titanium oxides (ITiO), a highly transparent and metastable phase with two orders of magnitude enhancement in conductivity is synthesized from an irreversible phase transition. Moreover, this phase possesses previously unattainable filter efficiency on hazardous blue light up to 600 °C, providing potential for healthcare-related applications with strong thermal stability up to 200 °C. These results demonstrate that pressure engineering is a clean and effective tool for tailoring functional materials that are not achievable by other means, providing an exciting alternative property-tuning dimension in materials science.
Collapse
Affiliation(s)
- Xuqiang Liu
- Key Laboratory for Anisotropy and Texture of MaterialsNortheastern UniversityShenyang110819China
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Mingtao Li
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Qian Zhang
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Yiming Wang
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Shang Peng
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Tao Yin
- Key Laboratory for Anisotropy and Texture of MaterialsNortheastern UniversityShenyang110819China
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Ye Liu
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Limin Yan
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics & PlanetologyUniversity of Hawaii ManoaHonoluluHI96822USA
| | - Jaeyong Kim
- Department of Physics and Institute for High PressureHanyang UniversitySeoul04763South Korea
| | - Gang Liu
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Yandong Wang
- Key Laboratory for Anisotropy and Texture of MaterialsNortheastern UniversityShenyang110819China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| |
Collapse
|
41
|
Akansha EO, Bui BV, Ganeshrao SB, Bakthavatchalam P, Gopalakrishnan S, Mattam S, Poojary RR, Jathanna JS, Jose J, Theruveethi NN. Blue-Light-Blocking Lenses Ameliorate Structural Alterations in the Rodent Hippocampus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12922. [PMID: 36232222 PMCID: PMC9564388 DOI: 10.3390/ijerph191912922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days of light exposure (12:12 light: dark cycle), rats were trained for the Morris water maze memory retention test, and brain tissues were sectioned for hippocampal neuronal analysis using Golgi and Cresyl violet stains. The memory retention test was significantly delayed (p < 0.05) in LE compared with DB groups on day 1 of training. Comparison of Golgi-stained neurons showed significant structural alterations, particularly in the basal dendrites of hippocampal neurons in the LE group, with BBLs significantly mitigating these structural changes (p < 0.05). Comparison of Cresyl-violet-stained neurons revealed significantly (p < 0.001) increased degenerated hippocampal neurons in LE rats, with fewer degenerated neurons in the CP lens group for CA1 neurons (p < 0.05), and for both CP and DB groups (p < 0.05) for CA3 neurons. Thus, in addition to documented effects on visual centers, high-level blue-light exposure also results in degeneration in hippocampal neurons with associated behavioral deficits. These changes can be partially ameliorated with blue-light-blocking lenses.
Collapse
Affiliation(s)
- Elizebeth O. Akansha
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Bang V. Bui
- Department of Optometry & Vision Sciences, School of Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shonraj B. Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
- INSOFE Education, upGrad-INSOFE, Hyderabad 500034, India
| | - Pugazhandhi Bakthavatchalam
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal 576104, India
| | - Sivakumar Gopalakrishnan
- Department of Physiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Susmitha Mattam
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Radhika R. Poojary
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judith S. Jathanna
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judy Jose
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nagarajan N. Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
42
|
Xu X, Zheng F, Cai Y, Lin J, Zeng Z, Wei S, Wu S. Sleep health and its related influencing factors in primary and middle school students in Fuzhou: A large multi-center cross-sectional study. Front Public Health 2022; 10:924741. [PMID: 35991023 PMCID: PMC9386349 DOI: 10.3389/fpubh.2022.924741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background This current study set out to investigate the status of sleep health in 7–20-year-old students in Fuzhou and explore the related influencing factors of sleep health. Methods A total of 38,467 children and adolescents in Fuzhou were included in the study through a random stratified cluster sampling. Data were collected from May to June 2019, in 18 primary schools and 18 middle schools from nine districts, Fuzhou. Children's parents and adolescents of sampled classes were invited to fill out a series of questionnaires about the performance of the last 6 months (sociodemographic characteristics, sleep-related lifestyle behaviors, and electronic-products usage). Multiple linear regression was carried out to analyze data. Results Of the total 40,888 questionnaires we released, 38,467 were valid and effective with the response rate was 94.08%. The age of the surveyed participants was 11.85 ± 3.1, including 20,013 boys and 18,454 girls. The multiple linear regression analysis identified factors associated with sleep health (p < 0.05): Boy (coef = 0.073, 95% CI: 0.030–0.115), age (coef = 1.797, 95% CI: 0.224–0.243), key school (coef = 2.069, 95% CI: 0.105–0.193), urban (coef = 0.096, 95% CI: 0.054–0.139), excessive daytime sleepiness (coef = 0.535, 95% CI: 0.432–0.639), unhealthy sleep habits (coef = 0.363, 95% CI: 0.307–0.419), eating before sleep (coef = 0.578, 95% CI: 0.527–0.630), using electronic products in bedroom (coef = 0.074, 95% CI: 0.028–0.121), screen time per day during school (coef = 0.260, 95% CI: 0.235–0.284), frequency of using electronics 30 min before bedtime (coef = 0.150, 95% CI: 0.134–0.166), strained relationship with parents (coef = 0.361, 95% CI: 0.270–0.452), strained relationship with peers (coef = 0.267, 95% CI: 0.171–0.363), excessive homework or learning (coef = 0.189, 95% CI: 0.141–0.237), time for doing homework (coef = 0.266, 95% CI: 0.245–0.287), and mood swings frequently (coef = 1.174, 95% CI: 1.127–1.221) negatively impact sleep health. Sleep alone (coef = −0.204, 95% CI: −0.262–0.147) were the risk factors for sleep health. Furthermore, frequent mood swings was considered the most influential factor on overall variables. Conclusions Sleep health is associated with factors covered sociodemographic characteristics, family sleep habits, and routine activities before bedtime. Multiple measures should be taken to improve sleep quality in a targeted manner.
Collapse
Affiliation(s)
- Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuhao Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Office of Academic Research, Fujian Provincial Hospital, Fuzhou, China
| | - Yingying Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jie Lin
- The Second Attached Hospital of Fujian Medical University, Quanzhou, China
| | - Zhaonan Zeng
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Shichao Wei
- Sleep Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Shichao Wei
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Siying Wu
| |
Collapse
|
43
|
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022; 8:e10282. [PMID: 36042717 PMCID: PMC9420367 DOI: 10.1016/j.heliyon.2022.e10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Light is necessary for human health and well-being. As we spend more time indoors, we are being increasingly exposed to artificial light. The development of artificial lighting has allowed us to control the brightness, colour, and timing of our light exposure. Yet, the widespread use of artificial light has raised concerns about the impact of altering our light environment on our health. The widespread adoption of personal digital devices over the past decade has exposed us to yet another source of artificial light. We spend a significant amount of time using digital devices with light-emitting screens, including smartphones and tablets, at close range. The light emitted from these devices, while appearing white, has an emission spectrum with a peak in the blue range. Blue light is often characterised as hazardous as its photon energy is higher than that of other wavelengths of visible light. Under certain conditions, visible blue light can cause harm to the retina and other ocular structures. Blue light can also influence the circadian rhythm and processes mediated by melanopsin-expressing intrinsically photosensitive retinal ganglion cells. While the blue component of sunlight is necessary for various physiological processes, whether the low-illuminance artificial blue light emitted from digital devices presents a risk to our health remains an ongoing area of debate. As technological advancements continue, it is relevant to understand how new devices may influence our well-being. This review examines the existing research on artificial blue light safety and the eye, visual performance, and circadian functions.
Collapse
Affiliation(s)
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
44
|
Preferences of Dairy Cattle for Supplemental Light-Emitting Diode Lighting in the Resting Area. Animals (Basel) 2022; 12:ani12151894. [PMID: 35892544 PMCID: PMC9331357 DOI: 10.3390/ani12151894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Light from the environment is important for vision and regulating various biological processes. Providing supplemental lighting in the stall area could allow for individually targeted or group-level control of light. This study aimed to determine whether dairy cattle had preferences for short-term exposure to white (full-spectrum) light-emitting diode (LED) light or no LED light, yellow-green or white LED light, and blue or white LED light in the stall area. In total, 14 lactating cows were housed in a free-stall pen with unrestricted access to 28 stalls. LED light was controlled separately for each side of the stall platform. Two combinations of light were tested per week, and each week consisted of three adaptation days and four treatment days. Lying behaviour and video data were recorded continuously using leg-mounted pedometers and cameras, respectively. Preference was assessed by the amount of time spent lying and the number of bouts under each light treatment. No differences occurred between treatments within each week for daily lying time and number of bouts. Similarly, no differences occurred between treatments within each time period. Further controlled studies of long-term exposure to different LED wavelengths and intensities are required to determine potential benefits on metabolic processes.
Collapse
|
45
|
Price RB, Labrie D, Sullivan B, Sliney DH. The potential 'Blue Light Hazard' from LED Headlamps. J Dent 2022; 125:104226. [PMID: 35872222 DOI: 10.1016/j.jdent.2022.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Many dental personnel use light-emitting diode (LED) headlamps for hours every day. The potential retinal 'blue light hazard' from these white light headlamps is unknown. METHODS The spectral radiant powers received from direct and indirect viewing of an electronic tablet, an LED curing light, a halogen headlamp, and 6 brands of LED headlamps were measured using integrating spheres attached to fiberoptic spectroradiometers. The spectral radiant powers were measured both directly and indirectly at a 35 cm distance, and the maximum daily exposure times (tMAX) were calculated. RESULTS The headlamps emitted very different radiant powers, emission spectra, and color temperatures (K). The total powers emitted at zero distance ranged from 47 mW from the halogen headlamp to 378 mW from the most powerful LED headlamp. The color temperatures from the headlamps ranged from 3098 K to 7253 K. The tMAX exposure times in an 8-hour day when the headlamps were viewed directly at a distance of 35 cm were: 810 s from the halogen headlamp, 53 to 220 s from the LED headlamps, and 62 s from the LED curing light. Light from the LED headlamps that was reflected back from a white reference tile 35 cm away did not exceed the maximum permissible exposure time for healthy adults. Using a blue dental dam increased the amount of reflected blue light, but tMAX was still greater than 24 hours. CONCLUSIONS White light LED headlamps emit very different spectra, and they all increase the retinal 'blue light hazard' compared to a halogen source. When the headlamps were viewed directly at a distance of 35 cm, the 'blue light hazard' from some headlamps was greater than from an LED curing light. Depending on the headlamp brand, tMAX could be reached after only 53s. The light from the LED headlamps that was reflected back from a white surface that was 35 cm away did not exceed the maximum permissible ocular exposure limits for healthy adults. CLINICAL RELEVANCE Reflected white light from dental headlamps does not pose a blue light hazard for healthy adults. Direct viewing may be hazardous, but the hazard can be prevented by using the appropriate blue-light-blocking glasses.
Collapse
Affiliation(s)
- Richard B Price
- Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada.
| | - Daniel Labrie
- Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Braden Sullivan
- Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada
| | - David H Sliney
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
46
|
Han Y, Huang X, Liu J, Ni J, Bai Y, Zhao B, Han S, Zhang C. Seeking eye protection from biomass: Carbon dot-based optical blocking films with adjustable levels of blue light blocking. J Colloid Interface Sci 2022; 617:44-52. [DOI: 10.1016/j.jcis.2022.02.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
|
47
|
Selective blue-filtering spectacle lens protected primary porcine RPE cells against light emitting diode-induced cell damage. PLoS One 2022; 17:e0268796. [PMID: 35609057 PMCID: PMC9129023 DOI: 10.1371/journal.pone.0268796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate whether use of a selective-blue-filtering (S-BF) lens can protect cultured primary porcine RPE cells against photo-irradiation. Transmittance of S-BF and UV-filtering (UVF) lenses was characterised spectrophotometrically. RPE cells were exposed to 1700 lux of white (peak λ at 443 and 533 nm; 0.44 mW/cm2) or blue (peak λ at 448 and 523 nm; 0.85 mW/cm2) LED light for 16 h to evaluate the influence of light source on the culture. The effect of the S-BF and UVF ophthalmic lenses on RPE cell cultures under blue light irradiation was then investigated. Cell viability was compared using trypan blue and MTT assays. Intracellular ROS production was detected by a fluorescein probe CM-H2DCFDA. Expression levels of catalase and Prdx3 were analysed by western blot. Trypan blue staining showed blue light caused more cell death than no light (p = 0.001) or white light (p = 0.005). MTT assay supported the hypothesis that exposure to blue light damaged RPE cells more severely than no light (p = 0.002) or white light (p = 0.014). Under blue light, use of the S-BF lens, which blocked 17% more blue light than the UVF lens, resulted in higher cellular viability (S-BF: 93.4±1.4% vs UVF: 90.6±1.4%; p = 0.022; MTT: 1.2-fold; p = 0.029). Blue and white light both significantly increased ROS production. The S-BF lens protected cells, resulting in lower levels of ROS and higher expression of catalase and Prdx3. To conclude, blue LED light exposure resulted in significant cytotoxicity to RPE cells. Partial blockage of blue light by an S-BF lens led to protective effects against retinal phototoxicity, which were mediated by reduction of ROS and increased levels of antioxidant enzymes.
Collapse
|
48
|
Song W, Zhu R, Gao W, Xing C, Yang L. Blue Light Induces RPE Cell Necroptosis, Which Can Be Inhibited by Minocycline. Front Med (Lausanne) 2022; 9:831463. [PMID: 35559340 PMCID: PMC9086715 DOI: 10.3389/fmed.2022.831463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Damage to and death of the retinal pigment epithelium (RPE) are closely related to retinal degeneration. Blue light is a high-energy light that causes RPE damage and triggers inflammatory responses. This study investigates whether blue light induces RPE necroptosis, explores pharmacologic therapy and specific mechanisms, and provides hints for research on retinal degeneration. Methods The human RPE cell line ARPE-19 was cultured and subjected to blue light insult in vitro. Annexin V/PI was used to evaluate RPE survival. Minocycline was applied to inhibit the death of RPE. Proteomic measurement was used to analyze protein expression. Inhibitors of necroptosis and apoptosis were applied to assess the death mode. Immunofluorescence of protein markers was detected to analyze the mechanism of cell death. Subcellular structural changes were detected by transmission electron microscopy. Reactive oxygen species (ROS) was tested by DCFH-DA. Mitochondrial membrane potential (Δψm) was detected by JC-1. BALB/c mice received bule light exposure, and RPE flatmounts were stained for verification in vivo. Results Blue light illumination induced RPE death, and minocycline significantly diminished RPE death. Proteomic measurement showed that minocycline effectively mitigated protein hydrolysis and protein synthesis disorders. Necroptosis inhibitors (Nec-1s, GSK-872) increased the survival of RPE cells, but apoptosis inhibitors (Z-VAD-FMK) did not. After blue light illumination, high-mobility group box-1 (HMGB1) was released from the nucleus, receptor-interacting protein kinase 3 (RIPK3) aggregated, and mixed-lineage kinase domain-like protein (MLKL) increased in the RPE. The application of minocycline alleviated the above phenomena. After blue light illumination, RPE cells exhibited necrotic characteristics accompanied by destruction of cell membranes and vacuole formation, but nuclear membranes remained intact. Minocycline improved the morphology of RPE. Blue light increased ROS and decreased Δψm of RPE, minocycline did not reduce ROS but kept Δψm stable. In vivo, HMGB1 release and RIPK3 aggregation appeared in the RPE of BALB/c mice after blue light illumination, and minocycline alleviated this effect. Conclusions Blue light exposure causes RPE necroptosis. Minocycline reduces the death of RPE by keeping Δψm stable, inhibiting necroptosis, and preventing HMGB1 release. These results provide new ideas for the pathogenesis and treatment of retinal degeneration.
Collapse
Affiliation(s)
- Weilin Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenna Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Chen Xing
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
49
|
Xu X, Shen Y, Shu Y, Guan Y, Wei D. Synthesis and application of poly methyl indole-4-carboxylate with blue light blocking properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Theruveethi N, Bui BV, Joshi MB, Valiathan M, Ganeshrao SB, Gopalakrishnan S, Kabekkodu SP, Bhat SS, Surendran S. Blue Light-Induced Retinal Neuronal Injury and Amelioration by Commercially Available Blue Light-Blocking Lenses. Life (Basel) 2022; 12:life12020243. [PMID: 35207530 PMCID: PMC8877890 DOI: 10.3390/life12020243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Blue light exposure-induced retinal damage has been extensively studied. Although many in vitro studies have shown the benefits of blue light-blocking lenses (BBL) there have been few comprehensive in vivo studies to assess the effects of BBL. We investigated the influence of blue light exposure using light-emitting diodes on retinal histology and visual cortex neurons in rodents. We also considered whether retinal and cortical changes induced by blue light could be ameliorated with blue light-blocking lenses. A total of n = 24 (n = 6 in each group; control, light exposure without lenses, two different BBLs)) male Wistar rats were subjected to blue light exposure (LEDs, 450–500 lux) without or with BBLs (400–490 nm) for 28 days on a 12:12 h light–dark cycle. Histological analysis of retinae revealed apoptosis and necrosis of the retinal pigment epithelium (RPE), photoreceptors, and inner retina in the light exposure (LE) group, along with increase caspase-3 immunostaining in the ganglion cell layer (p < 0.001). BBL groups showed less caspase-3 immunostaining compared with the LE group (p < 0.001). V1-L5PNs (primary visual cortex layer 5 pyramidal neurons) demonstrated reduced branching and intersections points for apical (p < 0.001) and basal (p < 0.05) dendrites following blue light exposure. Blue light-blocking lenses significantly improved the number of basal branching points compared with the LE group. Our study shows that prolonged exposure to high levels of blue light pose a significant hazard to the visual system resulting in damage to the retina with the associated remodeling of visual cortex neurons. BBL may offer moderate protection against exposure to high levels of blue light.
Collapse
Affiliation(s)
- Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India; (N.T.); (S.B.G.)
| | - Bang Viet Bui
- Department of Optometry & Vision Sciences, School of Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (M.B.J.); (S.P.K.)
| | - Manna Valiathan
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (M.V.); (S.G.); (S.S.B.)
| | - Shonraj Ballae Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India; (N.T.); (S.B.G.)
| | - Sivakumar Gopalakrishnan
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (M.V.); (S.G.); (S.S.B.)
| | - Shama Prasada Kabekkodu
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (M.B.J.); (S.P.K.)
| | - Shailaja S. Bhat
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (M.V.); (S.G.); (S.S.B.)
| | - Sudarshan Surendran
- Department of Anatomy, Manipal Campus, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
- Correspondence:
| |
Collapse
|