1
|
Hulleman JD, Jeon S, Bali S, DiCesare SM, Abbas A, Daniel S, Ortega AJ, Collier GE, Yang J, Bhattacharyaa A, McCoy MK, Joachimiak LA, Posner BA. Select azo compounds post-translationally modulate HTRA1 abundance and activity potentially through interactions at the trimer interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.13.651909. [PMID: 40463243 PMCID: PMC12132422 DOI: 10.1101/2025.05.13.651909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
High-temperature requirement protein A1 (HTRA1) is a secreted serine protease with diverse substrates, including extracellular matrix proteins, proteins involved in amyloid deposition, and growth factors. Accordingly, HTRA1 has been implicated in a variety of neurodegenerative diseases including a leading cause of blindness in the elderly, age-related macular degeneration (AMD). In fact, genome wide association studies have identified that the 10q26 locus which contains HTRA1 confers the strongest genetic risk factor for AMD. A recent study has suggested that AMD-associated risk alleles in HTRA1 correlate with a significant age-related defect in HTRA1 synthesis in the retinal pigmented epithelium (RPE) within the eye, possibly accounting for AMD susceptibility. Thus, we sought to identify small molecule enhancers of HTRA1 transcription and/or protein abundance using an unbiased high-throughput screening approach. To accomplish this goal, we used CRISPR/Sp.Cas9 engineering to introduce an 11 amino acid luminescent peptide tag (HiBiT) onto the C-terminus of HTRA1 in immortalized ARPE-19 cells. Editing was very efficient (~88%), verified by genomic DNA analysis, short interfering RNA (siRNA), and HiBiT blotting. Nineteen-hundred and twenty compounds from two libraries were screened. An azo compound with reported anti-amyloidogenic and cardioprotective activity, Chicago Sky Blue 6B (CSB), was identified as an enhancer of endogenous HTRA1 secretion (2.0 ± 0.3 fold) and intracellular levels (1.7 ± 0.2 fold). These results were counter-screened using HiBiT complement factor H (CFH) edited ARPE-19 cells, verified using HiBiT blotting, and were not due to HTRA1 transcriptional changes. Importantly, serine hydrolase activity-based protein profiling (SH-ABPP) demonstrated that CSB does not affect HTRA1's specific activity. However, interestingly, in follow-up studies, Congo Red, another azo compound structurally similar to CSB, also substantially increased intracellular HTRA1 levels (up to 3.6 ± 0.3 fold) but was found to significantly impair HTRA1 enzymatic reactivity (0.45 ± 0.07 fold). Computational modeling of potential azo dye interaction with HTRA1 suggests that CSB and Congo Red can bind to the non-catalytic face of the trimer interface but with different orientation tolerances and interaction energies. These studies identify select azo dyes as HTRA1 chemical probes which may serve as starting points for future HTRA1-centered small molecule therapeutics.
Collapse
Affiliation(s)
- John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Seungje Jeon
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Sofia Bali
- Center for Alzheimer’s and Neurodegenerative Diseases, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Ali Abbas
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Julian Yang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Archishman Bhattacharyaa
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Lukasz A. Joachimiak
- Center for Alzheimer’s and Neurodegenerative Diseases, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| |
Collapse
|
2
|
Blasiak J, Pawlowska E, Helotera H, Ionov M, Derwich M, Kaarniranta K. Potential of autophagy in subretinal fibrosis in neovascular age-related macular degeneration. Cell Mol Biol Lett 2025; 30:54. [PMID: 40307700 PMCID: PMC12044759 DOI: 10.1186/s11658-025-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that can lead to legal blindness and vision loss. In its advanced stages, it is classified into dry and neovascular AMD. In neovascular AMD, the formation of new blood vessels disrupts the structure of the retina and induces an inflammatory response. Treatment for neovascular AMD involves antibodies and fusion proteins targeting vascular endothelial growth factor A (VEGFA) and its receptors to inhibit neovascularization and slow vision loss. However, a fraction of patients with neovascular AMD do not respond to therapy. Many of these patients exhibit a subretinal fibrotic scar. Thus, retinal fibrosis may contribute to resistance against anti-VEGFA therapy and the cause of irreversible vision loss in neovascular AMD patients. Retinal pigment epithelium cells, choroidal fibroblasts, and retinal glial cells are crucial in the development of the fibrotic scar as they can undergo a mesenchymal transition mediated by transforming growth factor beta and other molecules, leading to their transdifferentiation into myofibroblasts, which are key players in subretinal fibrosis. Autophagy, a process that removes cellular debris and contributes to the pathogenesis of AMD, regardless of its type, may be stimulated by epithelial-mesenchymal transition and later inhibited. The mesenchymal transition of retinal cells and the dysfunction of the extracellular matrix-the two main aspects of fibrotic scar formation-are associated with impaired autophagy. Nonetheless, the causal relationship between autophagy and subretinal fibrosis remains unknown. This narrative/perspective review presents information on neovascular AMD, subretinal fibrosis, and autophagy, arguing that impaired autophagy may be significant for fibrosis-related resistance to anti-VEGFA therapy in neovascular AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402, Plock, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Hanna Helotera
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
| | - Maksim Ionov
- Faculty of Health Sciences, Mazovian Academy in Plock, 09-402, Plock, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210, Kuopio, Finland
| |
Collapse
|
3
|
Kılıç KC, Duruksu G, Öztürk A, Rençber SF, Kılıç B, Yazır Y. Therapeutic potential of adult stem cells-derived mitochondria transfer combined with curcumin administration into ARPE-19 cells in age-related macular degeneration model. Tissue Cell 2025; 93:102687. [PMID: 39705870 DOI: 10.1016/j.tice.2024.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Mitochondria transfer from human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs-mt) and human endometrium-derived mesenchymal stem cells (hE-MSCs-mt), along with curcumin, were explored as potential treatments for age-related macular degeneration (AMD) caused by mitochondrial inefficiency, using a retinal model to assess impacts of curcumin and hWJ-MSCs-mt or hE-MSCs-mt on AMD. METHODS ARPE-19 cells established an in vitro AMD model. Cells were exposed to 0-50 μM curcumin for 24 hours to determine optimal concentration by assessing their viability. Immunofluorescence examined SOD1, TNF-α, and TGF-β levels at optimal hydrogen peroxide (H2O2) concentration. β-galactosidase staining and DCFH analysis evaluated H2O2-induced cellular senescence. Immunofluorescence assessed REP65, CRALBP1 (RLBP1), Pink1, and Parkin expression, whereas qRT-PCR analyzed Nrf2, Ire1a, ARMS2, HTRA1, RPE65, RLBP1, NOX4, and TOMM20 expression following co-treatment with curcumin and hWJ-MSCs-mt or hE-MSCs-mt. RESULTS Curcumin improved ARPE-19 cell survival under H2O2-induced oxidative stress by regulating SOD1, TNF-α, TGF-β, DCFH, and MDA levels. hWJ-MSCs-mt transfer increased RLBP1 and Parkin expression, whereas curcumin reduced Parkin expression. hE-MSCs-mt transfer upregulated Parkin, RPE65, Pink1, and RLBP1 expressions, with curcumin enhancing RPE65 expression. hWJ-MSCs-mt and curcumin combined more effectively downregulated expressions of stress-related genes (Nrf2, Ire1α, NOX4) and improved expression of mitochondrial function gene (TOMM20). hE-MSCs-mt transfer with curcumin synergistically enhanced expression of retinal health markers (RPE65, RLBP1) and downregulated expression of damage-associated genes (HTRA1, ARMS2) in AMD models. CONCLUSION Curcumin combined with hWJ-MSCs-mt or hE-MSCs-mt is a potential AMD therapy owing to its anti-inflammatory properties; however, further in vivo and human studies are needed to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Kamil Can Kılıç
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey.
| | - Ahmet Öztürk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Selenay Furat Rençber
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Buket Kılıç
- Department of Therapy and Rehabilitation, European Vocational School, Kocaeli Health and Technology University, Kocaeli, Turkey
| | - Yusufhan Yazır
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
4
|
Eichenbaum DA, Holekamp N, Khanani AM, Pieramici D, Hershberger V, Sheth V, Brunstein F, Ma L, Zou Y, Indjeian VB, Dere R, Maia M, Hsu JC, Gao SS, Yaspan B, Willis JR, Wiley H, Lai P, Chen H. Phase 2 Study of the Anti-High Temperature Requirement A1 (HtrA1) Fab Galegenimab (FHTR2163) in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Am J Ophthalmol 2025; 275:14-26. [PMID: 40089174 DOI: 10.1016/j.ajo.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE To investigate the safety, tolerability, and efficacy of intravitreal injection of galegenimab, an anti-HtrA1 FAb, in patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). DESIGN Phase 2, single-masked, randomized clinical trial. METHODS Eligible GA patients with BCVA letter scores of ≥ 24 letters and baseline GA lesion size 2.54∼25.4 mm2 in the study eye were enrolled. Patients were randomized 2:1:2 to receive 20 mg galegenimab every 4 (Q4W) or 8 weeks (Q8W), or sham Q4/8 W. The primary endpoint was mean change in GA area from baseline to Week 72 measured by fundus autofluorescence. A data monitoring committee (DMC) conducted periodic unmasked review of cumulative safety/limited efficacy data of the ongoing study. RESULTS Among 337 patients who received ≥ 1 dose and have at least one postbaseline GA area measurement, the adjusted mean change in GA area from baseline to Week 72 was 2.67, 2.50, and 2.38 mm2 for the galegenimab Q4W, galegenimab Q8W, and pooled sham arms, respectively. Differences between the treated and sham groups were not statistically significant. However, the rate of intraocular inflammation was high (7.1%, 16/224 patients) among treated patients. The DMC recommended early termination of the study based on an early benefit/risk analysis. CONCLUSION Galegenimab administration did not show a difference in mean change in GA area from baseline to Week 72 compared with sham. Inhibition of HtrA1 with a Fab did not slow down GA progression.
Collapse
Affiliation(s)
- David A Eichenbaum
- From the Retina Vitreous Associates of Florida (D.A.E.), St. Petersburg, Florida, USA.
| | | | - Arshad M Khanani
- Sierra Eye Associates (A.M.K.), Reno, Nevada, USA; Reno School of Medicine (A.M.K.), University of Nevada, Reno, Nevada, USA
| | - Dante Pieramici
- California Retina Consultants (D.P.), Santa Barbara, California, USA
| | | | - Veeral Sheth
- University Retina and Macula Associates (V.S.), Oak Forest, Illinois, USA
| | - Flavia Brunstein
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Ling Ma
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Yixuan Zou
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Vahan B Indjeian
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Randall Dere
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Mauricio Maia
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Joy C Hsu
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Simon S Gao
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Brian Yaspan
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Jeffrey R Willis
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Henry Wiley
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Phillip Lai
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Hao Chen
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| |
Collapse
|
5
|
Chaar DL, Li Z, Shang L, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Smith JA. Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer's Disease. Int J Mol Sci 2025; 26:2443. [PMID: 40141087 PMCID: PMC11942532 DOI: 10.3390/ijms26062443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Genetic variants increase the risk of neurocognitive disorders in later life, including vascular dementia (VaD) and Alzheimer's disease (AD), but the precise relationships between genetic risk factors and underlying disease etiologies are not well understood. Transcriptome-wide association studies (TWASs) can be leveraged to better characterize the genes and biological pathways underlying genetic influences on disease. To date, almost all existing TWASs on VaD and AD have been conducted using expression studies from individuals of a single genetic ancestry, primarily European. Using the joint likelihood-based inference framework in Multi-ancEstry TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European ancestry (EA) and African ancestry (AA) samples to identify genes associated with general cognitive function, white matter hyperintensity (WMH), and AD. Regions were fine-mapped using Fine-mapping Of CaUsal gene Sets (FOCUS). We identified 266, 23, 69, and 2 genes associated with general cognitive function, WMH, AD (using EA GWAS summary statistics), and AD (using AA GWAS), respectively (Bonferroni-corrected alpha = p < 2.9 × 10-6), some of which had been previously identified. Enrichment analysis showed that many of the identified genes were in pathways related to innate immunity, vascular dysfunction, and neuroinflammation. Further, the downregulation of ICA1L was associated with a higher WMH and with AD, indicating its potential contribution to overlapping AD and VaD neuropathology. To our knowledge, our study is the first TWAS on cognitive function and neurocognitive disorders that used expression mapping studies for multiple ancestries. This work may expand the benefits of TWASs beyond a single ancestry group and help to identify gene targets for pharmaceuticals or preventative treatments for dementia.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Lulu Shang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
6
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
7
|
Willoughby JJ, Jensen AM. Abca4, mutated in Stargardt disease, is required for structural integrity of cone outer segments. Dis Model Mech 2025; 18:DMM052052. [PMID: 39610324 PMCID: PMC11744051 DOI: 10.1242/dmm.052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Stargardt disease (STGD), the leading cause of inherited childhood blindness, is primarily caused by mutations in the ABCA4 gene; yet, the underlying mechanisms of photoreceptor degeneration remain elusive, partly due to limitations in existing animal disease models. To expand our understanding, we mutated the human ABCA4 paralogues abca4a and abca4b in zebrafish, which has a cone-rich retina. Our study unveiled striking dysmorphology and elongation of cone outer segments (COS) in abca4a;abca4b double mutants, alongside reduced phagocytosis by the retinal pigmented epithelium (RPE). We report that zebrafish Abca4 protein forms a distinctive stripe along the length of COS, suggesting a potential structural role. We further show that, in wild-type zebrafish, outer segments of cone cells constitutively present externalized phosphatidylserine, an apoptotic 'eat-me' signal, and that this pattern is disrupted in abca4a;abca4b double mutants, potentially contributing to reduced RPE phagocytic activity. More broadly, constitutive presentation of the 'eat-me' signal by COS - if conserved in humans - might have important implications for other retinal degenerative diseases, including age-related macular degeneration. Our zebrafish model provides novel insights into cone dysfunction and presents a promising platform for unraveling the mechanisms of STGD pathogenesis and advancing therapeutic interventions.
Collapse
Affiliation(s)
| | - Abbie M. Jensen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Pan Y, Iwata T. Role of ARMS2/HTRA1 risk alleles in the pathogenesis of neovascular age-related macular degeneration. Taiwan J Ophthalmol 2024; 14:531-539. [PMID: 39803407 PMCID: PMC11717327 DOI: 10.4103/tjo.tjo-d-23-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2025] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of severe irreversible blindness worldwide in the elderly population. AMD is a multifactorial disease mainly caused by advanced age, environmental factors, and genetic variations. Genome-wide association studies (GWAS) have strongly supported the link between ARMS2/HTRA1 locus on chromosome 10q26 and AMD development, encompassing multiple variants, rs10490924 (c.205G > T, p.A69S in ARMS2), insertion/deletion (del443/ins54 in ARMS2), and rs11200638 (in HTRA1 promoter region). In this comprehensive review, we provide an overview of the role played by ARMS2/HTRA1 risk alleles in neovascular AMD pathogenesis, covering GWAS, in vitro studies, and animal models, shedding light on their underlying molecular genetic mechanisms. Further extensive research is also imperative, including confirmation of these findings, identifying novel treatment targets, and advancing primary and secondary prevention strategies for AMD.
Collapse
Affiliation(s)
- Yang Pan
- NHO Tokyo Medical Center, National Institute of Sensory Organs, Tokyo, Japan
| | - Takeshi Iwata
- NHO Tokyo Medical Center, National Institute of Sensory Organs, Tokyo, Japan
| |
Collapse
|
9
|
Sun Y, Yang H, Guo J, Du J, Han S, Yang X. Identification of HTRA1, DPT and MXRA5 as potential biomarkers associated with osteoarthritis progression and immune infiltration. BMC Musculoskelet Disord 2024; 25:647. [PMID: 39148085 PMCID: PMC11325630 DOI: 10.1186/s12891-024-07758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Our study aimed to identify potential specific biomarkers for osteoarthritis (OA) and assess their relationship with immune infiltration. METHODS We utilized data from GSE117999, GSE51588, and GSE57218 as training sets, while GSE114007 served as a validation set, all obtained from the GEO database. First, weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were performed to identify hub modules and potential functions of genes. We subsequently screened for potential OA biomarkers within the differentially expressed genes (DEGs) of the hub module using machine learning methods. The diagnostic accuracy of the candidate genes was validated. Additionally, single gene analysis and ssGSEA was performed. Then, we explored the relationship between biomarkers and immune cells. Lastly, we employed RT-PCR to validate our results. RESULTS WGCNA results suggested that the blue module was the most associated with OA and was functionally associated with extracellular matrix (ECM)-related terms. Our analysis identified ALB, HTRA1, DPT, MXRA5, CILP, MPO, and PLAT as potential biomarkers. Notably, HTRA1, DPT, and MXRA5 consistently exhibited increased expression in OA across both training and validation cohorts, demonstrating robust diagnostic potential. The ssGSEA results revealed that abnormal infiltration of DCs, NK cells, Tfh, Th2, and Treg cells might contribute to OA progression. HTRA1, DPT, and MXRA5 showed significant correlation with immune cell infiltration. The RT-PCR results also confirmed these findings. CONCLUSIONS HTRA1, DPT, and MXRA5 are promising biomarkers for OA. Their overexpression strongly correlates with OA progression and immune cell infiltration.
Collapse
Affiliation(s)
- Yunchao Sun
- Hebei North University, Zhangjiakou, Hebei, 075000, China
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Hui Yang
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Jiaquan Guo
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Jian Du
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Shoujiang Han
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China.
| | - Xinming Yang
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
- Department of orthopaedic surgery, The first affiliated hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China.
| |
Collapse
|
10
|
Navneet S, Ishii M, Rohrer B. Altered Elastin Turnover, Immune Response, and Age-Related Retinal Thinning in a Transgenic Mouse Model With RPE-Specific HTRA1 Overexpression. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39028977 PMCID: PMC11262478 DOI: 10.1167/iovs.65.8.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Purpose A single-nucleotide polymorphism in HTRA1 has been linked to age-related macular degeneration (AMD). Here we investigated the potential links between age-related retinal changes, elastin turnover, elastin autoantibody production, and complement C3 deposition in a mouse model with RPE-specific human HTRA1 overexpression. Methods HTRA1 transgenic mice and age-matched CD1 wild-type mice were analyzed at 6 weeks and 4, 6, and 12 to 14 months of age using in vivo retinal imaging by optical coherence tomography (OCT) and fundus photography, as well as molecular readouts, focusing on elastin and elastin-derived peptide quantification, antielastin autoantibody, and total Ig antibody measurements and immunohistochemistry to examine elastin, IgG, and C3 protein levels in retinal sections. Results OCT imaging indicated thinning of inner nuclear layer as an early phenotype in HTRA1 mice, followed by age and age/genotype-related thinning of the photoreceptor layer, RPE, and total retina. HTRA1 mice exhibited reduced elastin protein levels in the RPE/choroid and increased elastin breakdown products in the retina and serum. A corresponding age-dependent increase of serum antielastin IgG and IgM autoantibodies and total Ig antibody levels was observed. In the RPE/choroid, these changes were associated with an age-related increase of IgG and C3 deposition. Conclusions Our results confirm that RPE-specific overexpression of human HTRA1 induces certain AMD-like phenotypes in mice. This includes altered elastin turnover, immune response, and complement deposition in the RPE/choroid in addition to age-related outer retinal and photoreceptor layer thinning. The identification of elastin-derived peptides and corresponding antielastin autoantibodies, together with increased C3 deposition in the RPE/choroid, provides a rationale for an overactive complement system in AMD irrespective of the underlying genetic risk.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Masaaki Ishii
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, South Carolina, United States
| |
Collapse
|
11
|
Fei X, Jung S, Kwon S, Kim J, Corson TW, Seo SY. Challenges and opportunities of developing small-molecule therapies for age-related macular degeneration. Arch Pharm Res 2024; 47:538-557. [PMID: 38902481 PMCID: PMC11753178 DOI: 10.1007/s12272-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in senior adults. The disease can be categorized into two types: wet AMD and dry AMD. Wet AMD, also known as exudative or neovascular AMD, is less common but more severe than dry AMD and is responsible for 90% of the visual impairment caused by AMD and affects 20 million people worldwide. Current treatment options mainly involve biologics that inhibit the vascular endothelial growth factor or complement pathways. However, these treatments have limitations such as high cost, injection-related risks, and limited efficacy. Therefore, new therapeutic targets and strategies have been explored to improve the outcomes of patients with AMD. A promising approach is the use of small-molecule drugs that modulate different factors involved in AMD pathogenesis, such as tyrosine kinases and integrins. Small-molecule drugs offer advantages, such as oral administration, low cost, good penetration, and increased specificity for the treatment of wet and dry AMD. This review summarizes the current status and prospects of small-molecule drugs for the treatment of wet AMD. These advances are expected to support the development of effective and targeted treatments for patients with AMD.
Collapse
Affiliation(s)
- Xiang Fei
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Sooyun Jung
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Jiweon Kim
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Timothy W Corson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| |
Collapse
|
12
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
13
|
Minegishi Y, Haga Y, Ueda K. Emerging potential of immunopeptidomics by mass spectrometry in cancer immunotherapy. Cancer Sci 2024; 115:1048-1059. [PMID: 38382459 PMCID: PMC11007014 DOI: 10.1111/cas.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
With significant advances in analytical technologies, research in the field of cancer immunotherapy, such as adoptive T cell therapy, cancer vaccine, and immune checkpoint blockade (ICB), is currently gaining tremendous momentum. Since the efficacy of cancer immunotherapy is recognized only by a minority of patients, more potent tumor-specific antigens (TSAs, also known as neoantigens) and predictive markers for treatment response are of great interest. In cancer immunity, immunopeptides, presented by human leukocyte antigen (HLA) class I, play a role as initiating mediators of immunogenicity. The latest advancement in the interdisciplinary multiomics approach has rapidly enlightened us about the identity of the "dark matter" of cancer and the associated immunopeptides. In this field, mass spectrometry (MS) is a viable option to select because of the naturally processed and actually presented TSA candidates in order to grasp the whole picture of the immunopeptidome. In the past few years the search space has been enlarged by the multiomics approach, the sensitivity of mass spectrometers has been improved, and deep/machine-learning-supported peptide search algorithms have taken immunopeptidomics to the next level. In this review, along with the introduction of key technical advancements in immunopeptidomics, the potential and further directions of immunopeptidomics will be reviewed from the perspective of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
14
|
Chen L, Zhong Y, Sun S, Yang Z, Hong H, Zou D, Song C, Li W, Leng H. HTRA1 from OVX rat osteoclasts causes detrimental effects on endplate chondrocytes through NF-κB. Heliyon 2023; 9:e17595. [PMID: 37416639 PMCID: PMC10320255 DOI: 10.1016/j.heliyon.2023.e17595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Endplate osteochondritis is considered one of the major causes of intervertebral disc degeneration (IVDD) and low back pain. Menopausal women have a higher rate of endplate cartilage degeneration than similarly aged men, but the related mechanisms are still unclear. Subchondral bone changes, mainly mediated by osteoblasts and osteoclasts, are considered an important reason for the degeneration of cartilage. This work explored the role of osteoclasts in endplate cartilage degeneration, as well as its underlying mechanisms. A rat ovariectomy (OVX) model was used to induce estrogen deficiency. Our experiments indicated that OVX significantly promoted osteoclastogenesis and anabolism and catabolism changes in endplate chondrocytes. OVX osteoclasts cause an imbalance between anabolism and catabolism in endplate chondrocytes, as shown by a decrease in anabolic markers such as Aggrecan and Collagen II, and an increase in catabolic markers such as a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinases (MMP13). Osteoclasts were also confirmed in this study to be able to secrete HtrA serine peptidase 1 (HTRA1), which resulted in increased catabolism in endplate chondrocytes through the NF-κB pathway under estrogen deficiency. This study demonstrated the involvement and mechanism of osteoclasts in the anabolism and catabolism changes of endplate cartilage under estrogen deficiency, and proposed a new strategy for the treatment of endplate osteochondritis and IVDD by targeting HTRA1.
Collapse
Affiliation(s)
- Longting Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yiming Zhong
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Shang Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zihuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Haofeng Hong
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Da Zou
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, China
| | - Chunli Song
- Beijing Key Lab of Spine Diseases, Beijing, 100191, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
15
|
Del Amo EM, Bishop PN, Godia P, Aarons L. Towards a population pharmacokinetic/pharmacodynamic model of anti-VEGF therapy in patients with age-related macular degeneration. Eur J Pharm Biopharm 2023:S0939-6411(23)00121-2. [PMID: 37178941 DOI: 10.1016/j.ejpb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE To develop a population pharmacokinetic/pharmacodynamic model (popPKPD) of intravitreal bevacizumab treatment for neovascular age-related macular degeneration (nAMD) patients to learn about the PK/PD relationship and utilise it for dosing regimen decisions on future nAMD patients. METHODS The Greater Manchester Avastin for Neovascularisation (GMAN) randomised clinical trial data was retrospectively utilised, and the best-corrected visual acuity (BCVA) and central macular retinal thickness (CRT, measured by optical coherence tomography) were the PD inputs to the model. Using the nonlinear mixed-effects method, the best PKPD structural model was investigated, and the clinical significance of the two different dosing treatment regimens (as-needed versus routine) was evaluated. RESULTS A structural model to describe the change of BCVA from the baseline of nAMD patients was successfully obtained based on the turnover PD model concept (drug stimulates the "visual acuity response production"). The popPKPD model and simulation indicate that the routine regimen protocol improves patient visual outcome compared to the as-needed protocol. For the change in CRT, the turnover structural PKPD model was too demanding to fit to the given clinical data. CONCLUSIONS This is the first popPKPD attempt in nAMD treatment that shows the potential of this strategy to understand/inform the dosing regimen. Clinical trials with richer PD data will provide the means to build more robust models.
Collapse
Affiliation(s)
- Eva M Del Amo
- University of Eastern Finland, School of Pharmacy, Biopharmaceutics, Yliopistonranta 1, 70210 Kuopio, Finland; Division of Pharmacy and Optometry, University of Manchester, United Kingdom.
| | - Paul N Bishop
- Division of Evolution, Infection and Genomics, School of Biological Sciences, FBMH, University of Manchester, United Kingdom; Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom
| | - Pere Godia
- Juniper Networks UK Ltd, 3 Lotus Park, Staines, TW18 3AG, United Kingdom
| | - Leon Aarons
- Division of Pharmacy and Optometry, University of Manchester, United Kingdom
| |
Collapse
|
16
|
Huang BB, Fawzi AA. Disentangling the Impact of Reticular Pseudodrusen Phenotype and the ARMS2/HTRA1 Risk Allele in Geographic Atrophy: The AREDS 2 Study Report 32. Ophthalmology 2023; 130:460-461. [PMID: 37085233 DOI: 10.1016/j.ophtha.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 04/23/2023] Open
|
17
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|