1
|
Hachem M, Ali AH, Hejou M, Almansoori A, Abulhassan S, Hussein F, Khalifa R, Khalifa R, Corridon PR. Sustainable and biotechnological production of docosahexaenoic acid from marine protists and slaughterhouse waste. Crit Rev Biotechnol 2025:1-18. [PMID: 40414819 DOI: 10.1080/07388551.2025.2499895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/27/2025]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid, abundant in the brain and eyes. DHA is crucial for maintaining the structural integrity and physiological functions of these vital organs. Within the brain, DHA is concentrated in the gray matter, synaptic membranes, and hippocampus. Likewise, in the eyes, substantial quantities can be found in the retina, with lower levels in the cornea and lens. Previous studies have outlined the potential for culturing marine heterotrophic protists in ways that provide cost-effective and sustainable DHA biosynthesis. Similarly, our previous work on repurposing slaughterhouse waste has highlighted this underutilized source of brain and ocular tissue, which can support the extraction of valuable nutrients such as DHA. In this review, we will examine the current state of the art related to DHA production from these two sources, explore potential applications, and outline the possible benefits that may be generated from our approaches, with an emphasis on ocular diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Food Technology and Security Research Center, Khalifa University of Sciences and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, United Arab Emirates
| | - Abdelmoneim H Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mariam Hejou
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aliyaa Almansoori
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shamma Abulhassan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fatimah Hussein
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Rana Khalifa
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Rayan Khalifa
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Zhang L, Li H, Song Z, Gao Q, Bian C, Ma Q, Wei Y, Liang M, Xu H. Mixtures of Algal Oil and Terrestrial Oils in Diets of Tiger Puffer ( Takifugu rubripes). Animals (Basel) 2025; 15:1187. [PMID: 40362002 PMCID: PMC12071136 DOI: 10.3390/ani15091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have a key role in maintaining fish growth and health. However, fish oil (FO), the main source of n-3 LC-PUFAs, is in relative shortage due to the rapid development of the aquaculture industry. In this study, we investigated the efficacy of replacing fish oil with mixtures of algal oil (AO) from Schizochytrium sp. and terrestrially sourced oils (animal oil poultry oil (PO) or vegetable oil rapeseed oil (RO)) in the diets of juvenile tiger puffer (average initial body weight 23.8 ± 1.51 g). An 8-week feeding trial was conducted using three experimental diets: a control diet containing 6% added FO (control FO-C) and two diets with 3% AO + 3% PO or RO (groups AO+PO and AO+RO, respectively), replacing FO. Each diet was fed to triplicate tanks with 25 fish in each tank. The weight gain, feed conversion ratio, body composition, and serum biochemical parameters were not significantly different among the three groups, except that the AO+PO group had a significantly lower muscle lipid content than the other two groups. The AO-added diets significantly increased the DHA content in whole fish, muscle, and liver samples but significantly reduced the EPA content. The oil mixture treatments significantly increased the contents of monounsaturated fatty acid (MUFA) but significantly decreased the contents of saturated fatty acids (SFAs) in the liver and whole fish samples. However, the MUFA and SFA contents in the muscle samples were not significantly different among the dietary groups. The diets with oil mixtures did not affect the hepatic histology but tended to result in the atrophy of intestinal villi. The treatment diets downregulated the hepatic gene expression of proinflammatory cytokines (il-1β and tnf-α) and the fibrosis marker gene, acta2. However, the AO+PO diet inhibited the intestinal gene expression of the tight junction protein, claudin 18. In the muscle, the treatment diets upregulated the expression of genes related to cell differentiation and apoptosis (myod, myog, myf6, myf5, bcl-2, and bax). In conclusion, Schizochytrium sp. oil in combination with terrestrial oils (poultry oil or rapeseed oil) can be an effective alternative to fish oil in the diets of tiger puffer, but the mixing strategy may be better modified in consideration of intestinal health.
Collapse
Affiliation(s)
- Lu Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Haoxuan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Ziling Song
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qingyan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Chenchen Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
3
|
Sharma T, Das N, Mehta Kakkar P, Mohapatra RK, Pamidimarri S, Singh RK, Kumar M, Guldhe A, Nayak M. Microalgae as an emerging alternative raw material of docosahexaenoic acid and eicosapentaenoic acid - a review. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40188418 DOI: 10.1080/10408398.2025.2486267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely applied due to their nutraceutical and healthcare benefits. With the rising rates of chronic diseases, there is a growing consumer interest and demand for sustainable dietary sources of n-3 PUFAs. Currently, microalgae have emerged as a sustainable source of n-3 PUFAs which are rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regarded as promising alternatives to conventional sources (seafood) that cannot meet the growing demands of natural food supplements. This review provides a comprehensive overview of recent advancements in strategies such as genetic engineering, mutagenesis, improving photosynthetic efficiency, nutritional or environmental factors, and cultivation approaches to improve DHA and EPA production efficiency in microalgae cells. Additionally, it explains the application of DHA and EPA-rich microalgae in animal feed, human nutrition- snacks, and supplements to avoid malnutrition and non-communicable diseases.
Collapse
Affiliation(s)
- Tanishka Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nisha Das
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Mehta Kakkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Sudheer Pamidimarri
- Department of Molecular Biology and Genetics, Gujarat Biotechnology University, Gandhinagar, India
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, India
| | - Manoranjan Nayak
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
4
|
Jadhav HB, Choudhary P, Deshmukh ND, Singh DK, Das M, Das A, Sai NCS, Muthusamy G, Annapure US, Ramniwas S, Mugabi R, Nayik GA. Advancements in non-thermal technologies for enhanced extraction of functional triacylglycerols from microalgal biomass: A comprehensive review. Food Chem X 2024; 23:101694. [PMID: 39184314 PMCID: PMC11342120 DOI: 10.1016/j.fochx.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Microalgae have emerged as a storehouse of biologically active components having numerous health benefits that can be used in the formulation of nutraceuticals, and functional foods, for human consumption. Among these biologically active components, functional triacylglycerols are increasingly attracting the attention of researchers owing to their beneficial characteristics. Microalgae are excellent sources of triacylglycerol containing omega-3 and omega-6 fatty acids and can be used by the vegan population as a replacement for fish oil. The functional triacylglycerols extracted using conventional processes have various drawbacks resulting in lower yield and inferior quality products. The non-thermal technologies are emerging as user-friendly and environment-friendly technologies that intensify the yield of final products and maintain the high purity of extracted products that can be used in food, cosmetic, pharmaceutical, and nutraceutical applications. The present review focuses on major non-thermal technologies that can probably be used for the extraction of high-quality functional triacylglycerols from microalgae.
Collapse
Affiliation(s)
- Harsh B. Jadhav
- Department of Food Technology, Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic Sector 13, HUDA, Bhiwani, Haryana 127021, India
| | - Nikhil D. Deshmukh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, India
| | - Dhananjay Kumar Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, India
| | - Moumita Das
- Department of Food and Nutrition, Swami Vivekananda University, Barrackpore, Kolkata, India
| | - Arpita Das
- Department of Food and Nutrition, Brainware University, Kolkata, India
| | - Nadiminti Chandana Sri Sai
- Department of Dairy Sciences and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gayathri Muthusamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Gulzar Ahmad Nayik
- Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
5
|
Januário AP, Félix C, Félix R, Shiels K, Murray P, Valentão P, Lemos MFL. Exploring the Therapeutical Potential of Asparagopsis armata Biomass: A Novel Approach for Acne Vulgaris Treatment. Mar Drugs 2024; 22:489. [PMID: 39590768 PMCID: PMC11595352 DOI: 10.3390/md22110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Acne vulgaris, a high-prevalence skin condition afflicting people, persists as a significant challenge in the absence of effective treatments and emerging antibiotic resistance. To address this pressing concern, exploration of innovative approaches is of the utmost importance. Asparagopsis armata, an invasive red seaweed renowned for its diverse array of bioactive compounds, emerges as a promising candidate. This study seeks to elucidate the potential utility of A. armata biomass in the treatment of acne vulgaris. Crude extracts were obtained through solid-liquid extraction, and fractions were obtained using liquid-liquid extraction. The analyzed bioactivities included antioxidant, antimicrobial, and anti-inflammatory. Also, chemical characterization was performed to identify free fatty acids and compounds through LC-MS and elements. The present findings unveil compelling attributes, including anti-Cutibacterium acnes activity, cytotoxic and non-cytotoxic effects, antioxidant properties, and its ability to reduce nitric oxide production with consequent anti-inflammatory potential. Additionally, chemical characterization provides insights into its mineral elements, free fatty acids, and diverse compounds. The observed antimicrobial efficacy may be linked to halogenated compounds and fatty acids. Cytoprotection appears to be associated with the presence of glycerolipids and glycosylated metabolites. Furthermore, its antioxidant activity, coupled with anti-inflammatory properties, can be attributed to phenolic compounds, such as flavonoids. This study underscores the potential of A. armata as a natural ingredient in skincare formulations, offering an important contribution to the ongoing battle against acne vulgaris.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Katie Shiels
- LIFE—Health and Wellbeing Biosciences Research Institute, Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (P.M.)
| | - Patrick Murray
- LIFE—Health and Wellbeing Biosciences Research Institute, Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (P.M.)
| | - Patrícia Valentão
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
| |
Collapse
|
6
|
Guerrero-Elias HY, Camacho-Ruiz MA, Espinosa-Salgado R, Mateos-Díaz JC, Camacho-Ruiz RM, Asaff-Torres A, Rodríguez JA. Spectrophotometric assay for the screening of selective enzymes towards DHA and EPA ethyl esters hydrolysis. Enzyme Microb Technol 2024; 182:110531. [PMID: 39486155 DOI: 10.1016/j.enzmictec.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), hold notable significance due to their pharmaceutical relevance. Obtaining PUFAs from diverse sources like vegetables, fish oils, and algae poses challenges due to the mixed fatty acid (FA) composition. Therefore, focusing on particular FAs necessitates purification and resolution processes. To address this, we propose a continuous assay for screening lipases selective for ethyl EPA (E-EPA) or ethyl DHA (E-DHA). Utilizing microplate spectrophotometry, the method enables quantification of liberated fatty acids from ethyl esters (E-EPA or E-DHA). This involves assessing enzyme selectivity by measuring the release of FAs through p-nitrophenolate protonation, either separately for each substrate or in competition with a reference substrate, resorufin acetate. Ten lipases underwent screening, revealing Burkholderia cepacia lipase's (BCL) preference for ethyl DHA hydrolysis (E-EPA/E-DHA = 0.82 ± 0.07 and the lipase selectivity ratio (S) for E-EPA/E-DHA = 0.13 ± 0.04) and Candida antarctica lipase B's (CALB) high specific activity towards both E-EPA and E-DHA (531.14 ± 37.76 and 281.79 ± 2.79 U/mg, respectively) and E-EPA preference (E-EPA/E-DHA = 1.86 ± 0.15 and S E-EPA/E-DHA = 2.59±0.15). Candida rugosa recombinant isoform 4 (rCRLip4) and commercial Candida rugosa lipase (CRL) exhibited significant preference for E-EPA hydrolysis (E-EPA/E-DHA = 2.18 ±0.51 and 2.26 ±0.36, respectively; and S E-EPA/E-DHA = 7.59 ± 1.59 and 7.88 ± 2.13, respectively). Docking analyses of rCRLip4, BCL, and CALB demonstrated no statistically significant differences in activation energies or distances to the catalytic serine; however, they agreed with the experimental results. These findings suggest potential mutagenesis or directed evolution strategies for CALB to enhance E-EPA selectivity, with rCRLip4 emerging as a promising candidate for further investigation. This assay offers a valuable tool for identifying lipases with desired substrate selectivity, with broad implications for pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Hiram Y Guerrero-Elias
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - M Angeles Camacho-Ruiz
- Laboratorio de Investigación en Biotecnología, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco 46200, Mexico
| | - Ruben Espinosa-Salgado
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Rosa María Camacho-Ruiz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazaran Rosas 46, Hermosillo, Sonora 83304, Mexico
| | - Jorge A Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco 45019, Mexico.
| |
Collapse
|
7
|
Cagney MH, O'Neill EC. Strategies for producing high value small molecules in microalgae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108942. [PMID: 39024780 DOI: 10.1016/j.plaphy.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Eukaryotic microalgae are a diverse group of organisms that can be used for the sustainable production of a wide range of high value compounds, including lipids, flavours and dyes, bioplastics, and cosmetics. Optimising total biomass production often does not lead to optimal product yield and more sophisticated biphasic growth strategies are needed, introducing specific stresses to induce product synthesis. Genetic tools have been used to increase yields of natural products or to introduce new pathways to algae, and wider deployment of these tools offers promising routes for commercial production of high value compounds utilising minimal inputs.
Collapse
Affiliation(s)
- Michael H Cagney
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ellis C O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Hassane AMA, Eldiehy KSH, Saha D, Mohamed H, Mosa MA, Abouelela ME, Abo-Dahab NF, El-Shanawany ARA. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 2024; 206:338. [PMID: 38955856 DOI: 10.1007/s00203-024-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, P.O. Box 784028, Assam, India
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, P.O. Box 255000, Zibo, China
| | - Mohamed A Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, P.O. Box 12619, Giza, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Nageh F Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Abdel-Rehim A El-Shanawany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
9
|
Couëdelo L, Lennon S, Abrous H, Chamekh I, Bouju C, Griffon H, Vaysse C, Larvol L, Breton G. In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization. Nutrients 2024; 16:1014. [PMID: 38613047 PMCID: PMC11013230 DOI: 10.3390/nu16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.
Collapse
Affiliation(s)
- Leslie Couëdelo
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | - Hélène Abrous
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Ikram Chamekh
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Corentin Bouju
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Hugues Griffon
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Carole Vaysse
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | | |
Collapse
|
10
|
Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog Lipid Res 2023; 92:101255. [PMID: 37838255 DOI: 10.1016/j.plipres.2023.101255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.
Collapse
Affiliation(s)
- Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Azqa Ashraf
- School of Food Science and Engineering, Ocean University of China, Qingdao 2666100, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
11
|
Kaur N, Brraich OS. Detrimental influence of industrial effluents, especially heavy metals, on limnological parameters of water and nutritional profile in addition to enzymatic activities of fish, Sperata seenghala (Sykes, 1839) from diverse Ramsar sites, India (Punjab). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1012. [PMID: 37526774 DOI: 10.1007/s10661-023-11600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
The present research was designed to determine the nutritive value of the liver and intestine of fish, Sperata seenghala, the impact of effluence load on limnological parameters of water and proximate composition of fish organs, especially on fatty acids, liver enzymatic activities, seasonal variations in the nutritional profile of fish, and to check and compare the pollution status of Ramsar sites in Punjab by calculating the water quality index, heavy metal pollution index, and metal index from June 2018 to August 2020. WQI of Harike wetland was found to be 53.95, which depicts that water quality in this region is "poor". At Nangal wetland, water quality index was reported to be "excellent" quality water and fit for the whole ecological unit. Overall heavy metal pollution index for Harike wetland was reported 174.569, whereas for Nangal wetland it was 5.994, depicting massive contaminant loads in a polluted region. MI value was also recorded as being higher (6.9336) in polluted habitat than in control habitat (0.8175). In fish liver, significant (p < 0.05) higher mean total lipids (6.73%), total proteins (3.98%), moisture (77.69%), ash (3.56%), and carbohydrates (3.79%) were observed in the samples from Nangal wetland than Harike wetland. A similar trend was reported in all biochemical contents of the fish intestine. Enzyme activities such as aspartate-aminotransferase and alanine-aminotransferase were significantly elevated (p < 0.05) in the specimens collected from the polluted region. The mean total n-3 (except in spring), n-6 polyunsaturated fatty acids (except in winter), and average monounsaturated and saturated fatty acids diminished significantly (p < 0.05) in the liver of fish from contaminated habitat than control site. In the intestine of fish collected from the polluted region, significant reductions in the mean total n-3 (except in autumn as well as summer), total n-6 PUFAs (in autumn and winter), and total SFAs were reported than control site.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India.
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India.
| | - Onkar Singh Brraich
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
12
|
Chen W, Li T, Du S, Chen H, Wang Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front Bioeng Biotechnol 2023; 11:1146881. [PMID: 37064250 PMCID: PMC10102661 DOI: 10.3389/fbioe.2023.1146881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Algae play a crucial role in the earth’s primary productivity by producing not only oxygen but also a variety of high-value nutrients. One such nutrient is polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and can be consumed by animals through the food chain and eventually by humans. Omega-3 and omega-6 PUFAs are essential nutrients for human and animal health. However, compared with plants and aquatic sourced PUFA, the production of PUFA-rich oil from microalgae is still in the early stages of exploration. This study has collected recent reports on algae-based PUFA production and analyzed related research hotspots and directions, including algae cultivation, lipids extraction, lipids purification, and PUFA enrichment processes. The entire technological process for the extraction, purification and enrichment of PUFA oils from algae is systemically summarized in this review, providing important guidance and technical reference for scientific research and industrialization of algae-based PUFA production.
Collapse
Affiliation(s)
- Weixian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianpei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuwen Du
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
13
|
Sasaki R, Toda S, Sakamoto T, Sakuradani E, Shigeto S. Simultaneous Imaging and Characterization of Polyunsaturated Fatty Acids, Carotenoids, and Microcrystalline Guanine in Single Aurantiochytrium limacinum Cells with Linear and Nonlinear Raman Microspectroscopy. J Phys Chem B 2023; 127:2708-2718. [PMID: 36920390 PMCID: PMC10068736 DOI: 10.1021/acs.jpcb.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Thraustochytrids are heterotrophic marine protists known for their high production capacity of various compounds with health benefits, such as polyunsaturated fatty acids and carotenoids. Although much effort has been focused on developing optimal cultivation methods for efficient microbial production, these high-value compounds and their interrelationships are not well understood at the single-cell level. Here we used spontaneous (linear) Raman and multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy to visualize and characterize lipids (e.g., docosahexaenoic acid) and carotenoids (e.g., astaxanthin) accumulated in single living Aurantiochytrium limacinum cells. Spontaneous Raman imaging with the help of multivariate curve resolution-alternating least-squares enabled us to make unambiguous assignments of the molecular components we detected and derive their intracellular distributions separately. Near-IR excited CARS imaging yielded the Raman images at least an order of magnitude faster than spontaneous Raman imaging, with suppressed contributions of carotenoids. As the culture time increased from 2 to 5 days, the lipid amount increased by a factor of ∼7, whereas the carotenoid amount did not change significantly. Furthermore, we observed a highly localized component in A. limacinum cells. This component was found to be mixed crystals of guanine and other purine derivatives. The present study demonstrates the potential of the linear-nonlinear Raman hybrid approach that allows for accurate molecular identification and fast imaging in a label-free manner to link information derived from single cells with strategies for mass culture of useful thraustochytrids.
Collapse
Affiliation(s)
- Risa Sasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Shogo Toda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Takaiku Sakamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Eiji Sakuradani
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
14
|
Cämmerer M, Mayer T, Schott C, Steingroewer J, Petrich R, Borsdorf H. Membrane inlet—ion mobility spectrometry with automatic spectra evaluation as online monitoring tool for the process control of microalgae cultivation. Eng Life Sci 2023; 23:e2200039. [PMID: 37025189 PMCID: PMC10071569 DOI: 10.1002/elsc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
The cultivation of algae either in open raceway ponds or in closed bioreactors could allow the renewable production of biomass for food, pharmaceutical, cosmetic, or chemical industries. Optimal cultivation conditions are however required to ensure that the production of these compounds is both efficient and economical. Therefore, high-frequency analytical measurements are required to allow timely process control and to detect possible disturbances during algae growth. Such analytical methods are only available to a limited extent. Therefore, we introduced a method for monitoring algae release volatile organic compounds (VOCs) in the headspace above a bioreactor in real time. This method is based on ion mobility spectrometry (IMS) in combination with a membrane inlet (MI). The unique feature of IMS is that complete spectra are detected in real time instead of sum signals. These spectral patterns produced in the ion mobility spectrum were evaluated automatically via principal component analysis (PCA). The detected peak patterns are characteristic for the respective algae culture; allow the assignment of the individual growth phases and reflect the influence of experimental parameters. These results allow for the first time a continuous monitoring of the algae cultivation and thus an early detection of possible disturbances in the biotechnological process.
Collapse
Affiliation(s)
- Malcolm Cämmerer
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| | - Thomas Mayer
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| | - Carolin Schott
- Faculty of Mechanical Science and Engineering Institute of Natural Materials Technology, Technical University Dresden Dresden Germany
| | - Juliane Steingroewer
- Faculty of Mechanical Science and Engineering Institute of Natural Materials Technology, Technical University Dresden Dresden Germany
| | - Ralf Petrich
- IFU GmbH Private Institute for Analytics Frankenberg/Sa. Germany
| | - Helko Borsdorf
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| |
Collapse
|
15
|
Feng Y, Zhu Y, Bao Z, Wang B, Liu T, Wang H, Yu T, Yang Y, Yu L. Construction of Glucose-6-Phosphate Dehydrogenase Overexpression Strain of Schizochytrium sp. H016 to Improve Docosahexaenoic Acid Production. Mar Drugs 2022; 21:md21010017. [PMID: 36662190 PMCID: PMC9866257 DOI: 10.3390/md21010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an important omega-3 polyunsaturated fatty acid (PUFA) that plays a critical physiological role in human health. Schizochytrium sp. is considered an excellent strain for DHA production, but the synthesis of DHA is limited by the availability of nicotinamide adenine dinucleotide phosphate (NADPH). In this study, the endogenous glucose-6-phosphate dehydrogenase (G6PD) gene was overexpressed in Schizochytrium sp. H016. Results demonstrated that G6PD overexpression increased the availability of NADPH, which ultimately altered the fatty acid profile, resulting in a 1.91-fold increase in DHA yield (8.81 g/L) and increased carbon flux by shifting it from carbohydrate and protein synthesis to lipid production. Thus, G6PD played a vital role in primary metabolism. In addition, G6PD significantly increased DHA content and lipid accumulation by 31.47% and 40.29%, respectively. The fed-batch fermentation experiment results showed that DHA production reached 17.01 g/L in the overexpressing G6PD strain. These results elucidated the beneficial effects of NADPH on the synthesis of PUFA in Schizochytrium sp. H016, which may be a potential target for metabolic engineering. Furthermore, this study provides a promising regulatory strategy for the large-scale production of DHA in Schizochytrium sp.
Collapse
Affiliation(s)
- Yumei Feng
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhendong Bao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Bohan Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tingting Liu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Huihui Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tianyi Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Ying Yang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
- Correspondence: ; Tel.: +86-2-787-792-264
| |
Collapse
|
16
|
Cerone M, Smith TK. Desaturases: Structural and mechanistic insights into the biosynthesis of unsaturated fatty acids. IUBMB Life 2022; 74:1036-1051. [PMID: 36017969 PMCID: PMC9825965 DOI: 10.1002/iub.2671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
This review highlights the key role of fatty acid desaturases in the synthesis of naturally occurring, more common and not unsaturated fatty acids. The three major classes of fatty acid desaturases, such as acyl-lipid, acyl-acyl carrier protein and acyl-coenzyme A, are described in detail, with particular attention to the cellular localisation, the structure, the substrate and product specificity and the expression and regulation of desaturase genes. The review also gives an insight into the biocatalytic reaction of fatty acid desaturation by covering the general and more class-specific mechanistic studies around the synthesis of unsaturated fatty acids Finally, we conclude the review by looking at the numerous novel applications for desaturases in order to meet the very high demand for polyunsaturated fatty acids, taking into account the opportunity for the development of new, more efficient, easily reproducible, sustainable bioengineering advances in the field.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| |
Collapse
|
17
|
Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J Fungi (Basel) 2022; 8:jof8101099. [PMID: 36294664 PMCID: PMC9605242 DOI: 10.3390/jof8101099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, the increasing interest in microalgae as sources of new biomolecules and environmental remediators stimulated scientists’ investigations and industrial applications. Nowadays, microalgae are exploited in different fields such as cosmeceuticals, nutraceuticals and as human and animal food supplements. Microalgae can be grown using various cultivation systems depending on their final application. One of the main problems in microalgae cultivations is the possible presence of biological contaminants. Fungi, among the main contaminants in microalgal cultures, are able to influence the production and quality of biomass significantly. Here, we describe fungal contamination considering both shortcomings and benefits of fungi-microalgae interactions, highlighting the biological aspects of this interaction and the possible biotechnological applications.
Collapse
|
18
|
Peng H, Zhang Y, Ren Z, Wei Z, Chen R, Zhang Y, Huang X, Yu T. Cartilaginous Metabolomics Reveals the Biochemical-Niche Fate Control of Bone Marrow-Derived Stem Cells. Cells 2022; 11:cells11192951. [PMID: 36230915 PMCID: PMC9562901 DOI: 10.3390/cells11192951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Joint disorders have become a global health issue with the growth of the aging population. Screening small active molecules targeting chondrogenic differentiation of bone marrow-derived stem cells (BMSCs) is of urgency. In this study, microfracture was employed to create a regenerative niche in rabbits (n = 9). Cartilage samples were collected four weeks post-surgery. Microfracture-caused morphological (n = 3) and metabolic (n = 6) changes were detected. Non-targeted metabolomic analysis revealed that there were 96 differentially expressed metabolites (DEMs) enriched in 70 pathways involved in anti-inflammation, lipid metabolism, signaling transduction, etc. Among the metabolites, docosapentaenoic acid 22n-3 (DPA) and ursodeoxycholic acid (UDCA) functionally facilitated cartilage defect healing, i.e., increasing the vitality and adaptation of the BMSCs, chondrogenic differentiation, and chondrocyte functionality. Our findings firstly reveal the differences in metabolomic activities between the normal and regenerated cartilages and provide a list of endogenous biomolecules potentially involved in the biochemical-niche fate control for chondrogenic differentiation of BMSCs. Ultimately, the biomolecules may serve as anti-aging supplements for chondrocyte renewal or as drug candidates for cartilage regenerative medicine.
Collapse
Affiliation(s)
- Haining Peng
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266000, China
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ziran Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Renjie Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yingze Zhang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaohong Huang
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
- Correspondence: (X.H.); (T.Y.)
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266000, China
- Correspondence: (X.H.); (T.Y.)
| |
Collapse
|
19
|
Patel AK, Chauhan AS, Kumar P, Michaud P, Gupta VK, Chang JS, Chen CW, Dong CD, Singhania RR. Emerging prospects of microbial production of omega fatty acids: Recent updates. BIORESOURCE TECHNOLOGY 2022; 360:127534. [PMID: 35777644 DOI: 10.1016/j.biortech.2022.127534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Healthy foods containing omega-3/omega-6 polyunsaturated fatty acids (PUFAs) have been in great demand because of their unique dietary and health properties. Reduction in chronic inflammatory and autoimmune diseases has shown their therapeutic and health-promoting effects when consumed under recommended ratio 1:1-1:4, however imbalanced ratios (>1:4, high omega-6) enhance these risks. The importance of omega-6 is apparent however microbial production favors larger production of omega-3. Current research focus is prerequisite to designing omega-6 production strategies for better application prospects, for which thraustochytrids could be promising due to higher lipid productivity. This review provides recent updates on essential fatty acids production from potential microbes and their application, especially major insights on omega research, also discussed the novel possible strategies to promote omega-3 and omega-6 accumulation via engineering and omics approaches. It covers strategies to block the conversion of omega-6 into omega-3 by enzyme inhibition, nanoparticle-mediated regulation and/or metabolic flux regulation, etc.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Ajeet Singh Chauhan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Prashant Kumar
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institute Pascal, 63000 Clermont-Ferrand, France
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|
20
|
Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022; 62:999-1029. [PMID: 35014044 DOI: 10.1002/jobm.202100477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
Microalgae and cyanobacteria (blue-green algae) are used as food by humans. They have gained a lot of attention in recent years because of their potential applications in biotechnology. Microalgae and cyanobacteria are good sources of many valuable compounds, including important biologically active compounds with antiviral, antibacterial, antifungal, and anticancer activities. Under optimal growth condition and stress factors, algal biomass produce varieties of potential bioactive compounds. In the current review, bioactive compounds production and their remarkable applications such as pharmaceutical and nutraceutical applications along with processes involved in identification and characterization of the novel bioactive compounds are discussed. Comprehensive knowledge about the exploration, extraction, screening, and trading of bioactive products from microalgae and cyanobacteria and their pharmaceutical and other applications will open up new avenues for drug discovery and bioprospecting.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ramu Meenatchi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Kalpana Pachillu
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Foundation for Aquaculture Innovation and Technology Transfer (FAITT), Thoraipakkam, Chennai, Tamil Nadu, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
21
|
Ontoria-Oviedo I, Amaro-Prellezo E, Castellano D, Venegas-Venegas E, González-Santos F, Ruiz-Saurí A, Pelacho B, Prósper F, Pérez del Caz MD, Sepúlveda P. Topical Administration of a Marine Oil Rich in Pro-Resolving Lipid Mediators Accelerates Wound Healing in Diabetic db/db Mice through Angiogenesis and Macrophage Polarization. Int J Mol Sci 2022; 23:ijms23179918. [PMID: 36077316 PMCID: PMC9456080 DOI: 10.3390/ijms23179918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired wound healing in patients with type 2 diabetes (DM2) is characterized by chronic inflammation, which delays wound closure. Specialized pro-resolving lipid mediators (SPMs) are bioactive molecules produced from essential polyunsaturated fatty acids (PUFAs), principally omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). SPMs are potent regulators of inflammation and have been used to suppress chronic inflammation in peripheral artery disease, non-alcoholic fatty liver disease, and central nervous system syndromes. LIPINOVA® is a commercially available safe-grade nutritional supplement made from a fractionated marine lipid concentrate derived from anchovy and sardine oil that is rich in SPMs and EPA, as well as DHA precursors. Here, we assessed the effect of LIPINOVA® in wound dressing applications. LIPINOVA® showed biocompatibility with keratinocytes and fibroblasts, reduced the abundance of pro-inflammatory macrophages (Mφ1), and promoted in vitro wound closure. Daily application of the marine oil to open wounds made by punch biopsy in db/db mice promoted wound closure by accelerating the resolution of inflammation, inducing neoangiogenesis and Mφ1/Mφ2 macrophage polarization. In conclusion, LIPINOVA® displays pro-resolutive properties and could be exploited as a therapeutic agent for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Delia Castellano
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | | | | | - Amparo Ruiz-Saurí
- Departamento de Patología, Facultad de Medicina, Instituto de Investigación Sanitaria INCLIVA, Universitat de Valencia, 46026 Valencia, Spain
| | - Beatriz Pelacho
- Regenerative Medicine Department, Center for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Department, Center for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Departamento de Hematología y Terapia Celular, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - María Dolores Pérez del Caz
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
- Correspondence: or ; Tel.: +34-96-1246635
| |
Collapse
|
22
|
An increase in the membrane lipids recycling by PDAT overexpression stimulates the accumulation of triacylglycerol in Nannochloropsis gaditana. J Biotechnol 2022; 357:28-37. [PMID: 35931238 DOI: 10.1016/j.jbiotec.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022]
Abstract
Oleaginous microalgae represent potential feedstocks for the sustainable production of lipids thanks to their ability to accumulate triacylglycerols (TAGs). TAG accumulation in several algal species is strongly induced under specific conditions such as nutrient deprivation and high light which, however, also negatively impact growth. Genetic modification of lipogenic pathways can potentially enhance TAG accumulation without negatively affecting growth, avoiding the trade-off between biomass and lipids productivity. In this study, the phospholipid: diacylglycerol acyltransferase (PDAT), an enzyme involved in membrane lipid recycling, was overexpressed in the seawater alga Nannochloropsis gaditana. PDAT overexpression induced increased TAG content in actively growing algae cultures while no effects were observed in conditions naturally stimulating strong lipid accumulation such as high light and nitrogen starvation. The increase of TAG content was confirmed also in a strain cultivated in industrially relevant conditions even though PDAT overexpression, if too strong, the gene overexpression becomes detrimental for growth in the longer term. Results overall suggest that genetic modulation of the PDAT gene represents a promising strategy to increase microalgae lipids content by minimizing negative effects on biomass productivity.
Collapse
|
23
|
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs 2022; 20:md20060342. [PMID: 35736145 PMCID: PMC9227187 DOI: 10.3390/md20060342] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Heba I. Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo 11757, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Aminah A. Barqawi
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
24
|
Diaz-MacAdoo D, Mata MT, Riquelme C. Influence of Irradiance and Wavelength on the Antioxidant Activity and Carotenoids Accumulation in Muriellopsis sp. Isolated from the Antofagasta Coastal Desert. Molecules 2022; 27:molecules27082412. [PMID: 35458610 PMCID: PMC9031948 DOI: 10.3390/molecules27082412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 12/10/2022] Open
Abstract
Microalgae are a valuable natural resource for a variety of biocompounds such as carotenoids. The use of different light spectra and irradiance has been considered as a promising option to improve the production of these compounds. The objective of this study was to evaluate the influence of different wavelengths (white, red, and blue) and irradiances (80 and 350 µmol photons/m2/s) on the photosynthetic state, total carotenoids and lutein productivity (HPLC), lipids (Nile red method) and antioxidant activity (DPPH) of the microalgae Muriellopsis sp. (MCH-35). This microalga, which is a potential source of lutein, was isolated from the coastal desert of Antofagasta, Chile, and adapted to grow in seawater. The results indicate that the culture exposed to high-intensity red light showed the highest biomass yield (2.5 g/L) and lutein productivity (>2.0 mg L−1day−1). However, blue light was found to have a stimulating effect on the synthesis of lutein and other carotenoids (>0.8% dry wt). Furthermore, a direct relationship between lipid accumulation and high light intensity was evidenced. Finally, the highest antioxidant activity was observed with high-intensity white light, these values have no direct relationship with lutein productivity. Therefore, the findings of this study could be utilized to obtain biocompounds of interest by altering certain culture conditions during the large-scale cultivation of MCH-35.
Collapse
|
25
|
Shah AM, Yang W, Mohamed H, Zhang Y, Song Y. Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids. Front Nutr 2022; 9:827837. [PMID: 35369055 PMCID: PMC8968027 DOI: 10.3389/fnut.2022.827837] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Microbes have gained a lot of attention for their potential in producing polyunsaturated fatty acids (PUFAs). PUFAs are gaining scientific interest due to their important health-promoting effects on higher organisms including humans. The current sources of PUFAs (animal and plant) have associated limitations that have led to increased interest in microbial PUFAs as most reliable alternative source. The focus is on increasing the product value of existing oleaginous microbes or discovering new microbes by implementing new biotechnological strategies in order to compete with other sources. The multidisciplinary approaches, including metabolic engineering, high-throughput screening, tapping new microbial sources, genome-mining as well as co-culturing and elicitation for the production of PUFAs, have been considered and discussed in this review. The usage of agro-industrial wastes as alternative low-cost substrates in fermentation for high-value single-cell oil production has also been discussed. Multidisciplinary approaches combined with new technologies may help to uncover new microbial PUFA sources that may have nutraceutical and biotechnological importance.
Collapse
Affiliation(s)
- Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
26
|
Fazili ABA, Shah AM, Zan X, Naz T, Nosheen S, Nazir Y, Ullah S, Zhang H, Song Y. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact 2022; 21:29. [PMID: 35227264 PMCID: PMC8883733 DOI: 10.1186/s12934-022-01758-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides—an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.
Collapse
|
27
|
Wingfield BD, De Vos L, Wilson AM, Duong TA, Vaghefi N, Botes A, Kharwar RN, Chand R, Poudel B, Aliyu H, Barbetti MJ, Chen S, de Maayer P, Liu F, Navathe S, Sinha S, Steenkamp ET, Suzuki H, Tshisekedi KA, van der Nest MA, Wingfield MJ. IMA Genome - F16 : Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta. IMA Fungus 2022; 13:3. [PMID: 35197126 PMCID: PMC8867778 DOI: 10.1186/s43008-022-00089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ravindra Nath Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, University of Western Australia, Perth, Australia
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | - Pieter de Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - FeiFei Liu
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | | | - Shagun Sinha
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Kalonji A Tshisekedi
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
28
|
Investigation on Cell Disruption Techniques and Supercritical Carbon Dioxide Extraction of Mortierella alpina Lipid. Foods 2022; 11:foods11040582. [PMID: 35206059 PMCID: PMC8871302 DOI: 10.3390/foods11040582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
Mortierella alpina, an oleaginous fungus, has been shown to be a potential source for arachidonic acid (ARA) production. The recovery of intracellular lipids from M. alpina is an important step for the downstream bioprocessing, and green extraction techniques with a focus on being efficient and eco-friendly have drawn much attention. In this study, different cell disruption techniques (mechanical: high-speed homogenization 10,000 rpm, ultrasonication 20 kHz, high-pressure process (HPP) 200–600 MPa; non- mechanical: acid treatment HCl) were investigated for lipid recovery from M. alpina, and process parameters (A. temperature, B. pressure, C. cosolvent ratio) of supercritical carbon dioxide (SC-CO2) lipid extraction were studied by applying response surface methodology (RSM). Compared with Soxhlet extraction as a control group (100%), high-speed homogenization has the highest lipid recovery (115.40%) among mechanical disruption techniques. Besides, there was no significant difference between high-speed homogenization and 1 M HCl treatment (115.55%) in lipid recovery. However, lipid recovery decreased to 107.36% as the concentration of acid was increased to 3 M, and acid treatment showed a negative effect on the ARA ratio. In HPP treatment, the highest lipid recovery (104.81%) was obtained at 400 MPa, 1 time of treatment and water medium. In the response surface model of SC-CO2 extraction, results showed the major influence of the process parameters to lipid recovery was pressure, and there are interaction effects of AC (temperature and cosolvent ratio) and BC (pressure and cosolvent ratio). Lipid recovery of SC-CO2 extraction reached 92.86% at 201 bar, 58.9 °C and cosolvent ratio 1:15. The microbial lipid recovery process of this study could be used as a reference and an eco-friendly alternative for the future downstream bioprocessing of ARA production by M. alpina.
Collapse
|
29
|
Patel A, Desai SS, Mane VK, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Kadalag NL, Pawar PR, Prakash G. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production. BIORESOURCE TECHNOLOGY 2022; 346:126544. [PMID: 34902489 DOI: 10.1016/j.biortech.2021.126544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Marine protist Aurantiochytrium limacinum produces docosahexaenoic acid (DHA) as main polyunsaturated fatty acid (PUFA) and lacks any monounsaturated fatty acids (MUFA), while eicosapentaenoic acid (EPA) and MUFA's are produced by Phaeodactylum tricornutum. The marine diatom P. tricornutum was co-cultured with A.limacinum to match the EPA:DHA ratio of fish oil. Modulation in initial cell density ratio overcame the dominance of A.limacinum during co-cultivation and led to regulated proliferation of both species. Media engineering with nitrate and glycerol concentration yielded 2:1 (56.44: 30.11) mg g-1 and 1:1 (47.43: 49.61) mg g-1 EPA: DHA ratio. The oil and biomass obtained from co-cultivation comprised of MUFA's such as palmitoleic acid (2.65 mg g-1) and oleic acid (1.25 mg g-1) along with pigments like fucoxanthin (367.18 µg g-1), β-carotene (8.98 µg g-1) and astaxanthin (0.77 µg g-1). Thus, co-cultivation of P. tricornutum with A. limacinum represented a unique strategy towards achieving desired fatty acid composition.
Collapse
Affiliation(s)
- Nikhil L Kadalag
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Pratik R Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
31
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
32
|
Chang R, Cao W, Wang Y, Li S, Li X, Bose T, Si H. Melanodevriesia, a new genus of endolichenic oleaginous black yeast recovered from the Inner Mongolia Region of China. Fungal Syst Evol 2022; 9:1-9. [PMID: 35978989 PMCID: PMC9355103 DOI: 10.3114/fuse.2022.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Black yeasts are a phylogenetically diverse group of ascomycetous fungi that may exist in both unicellular and mycelial morphs. This group of fungi contains numerous commercially significant species as well as others whose precise roles are unknown, such as endolichenic species. There is currently a paucity of data about endolichenic black yeast species. To bridge this gap, we surveyed China’s Inner Mongolia Autonomous Region in July 2019. Several fungal species associated with diverse lichens were isolated during this survey. Among these were two isolates of a previously unknown species of oleaginous black yeast from Mycosphaerellales. Analyses of morphological and molecular data revealed that these two isolates were closely related to Xenodevriesia strelitziicola (Xenodevriesiaceae), although with significant differences. As a result, we established the genus Melanodevriesiagen. nov. to describe this previously unknown species, Melanodevriesia melanelixiaesp. nov. In addition, we used Transmission Electron Microscopy to visualise the intracellular oil bodies metabolised by this fungus in its unicellular state. The black yeast species identified in this study may have a wide range of commercial applications. More research is needed to determine the chemical composition of the microbial oil synthesized by this fungus and whether it has commercial value. Citation: Chang R, Cao W, Wang Y, Li S, Li X, Bose T, Si HL (2022). Melanodevriesia, a new genus of endolichenic oleaginous black yeast recovered from the Inner Mongolia Region of China. Fungal Systematics and Evolution9: 1–9. doi: 10.3114/fuse.2022.09.01
Collapse
Affiliation(s)
- R. Chang
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - W. Cao
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - Y. Wang
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - S. Li
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - X. Li
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - T. Bose
- Department of Biochemistry, Genetics & Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - H.L. Si
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| |
Collapse
|
33
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
34
|
|
35
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
36
|
ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Mar Drugs 2021; 19:md19100564. [PMID: 34677463 PMCID: PMC8539320 DOI: 10.3390/md19100564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.
Collapse
|
37
|
Li Z, Meng T, Hang W, Cao X, Ni H, Shi Y, Li Q, Xiong Y, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Citrate-Mediated Acyl-CoA Synthesis Is Required for the Promotion of Growth and Triacylglycerol Production in Oleaginous Yeast Lipomyces starkeyi. Microorganisms 2021; 9:microorganisms9081693. [PMID: 34442772 PMCID: PMC8400019 DOI: 10.3390/microorganisms9081693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
The oleaginous yeast Lipomyces starkeyi is an excellent producer of triacylglycerol (TAG) as a feedstock for biodiesel production. To understand the regulation of TAG synthesis, we attempted to isolate mutants with decreased lipid productivity and analyze the expression of TAG synthesis-related genes in this study. A mutant with greatly decreased lipid productivity, sr22, was obtained by an effective screening method using Percoll density gradient centrifugation. The expression of citrate-mediated acyl-CoA synthesis-related genes (ACL1, ACL2, ACC1, FAS1, and FAS2) was decreased in the sr22 mutant compared with that of the wild-type strain. Together with a notion that L. starkeyi mutants with increased lipid productivities had increased gene expression, there was a correlation between the expression of these genes and TAG synthesis. To clarify the importance of citrate-mediated acyl-CoA synthesis pathway on TAG synthesis, we also constructed a strain with no ATP-citrate lyase responsible for the first reaction of citrate-mediated acyl-CoA synthesis and investigated the importance of ATP-citrate lyase on TAG synthesis. The ATP-citrate lyase was required for the promotion of cell growth and TAG synthesis in a glucose medium. This study may provide opportunities for the development of an efficient TAG synthesis for biodiesel production.
Collapse
|
40
|
Li CJ, Xin MR, Sun ZL. Selection of extraction solvents for edible oils from microalgae and improvement of the oxidative stability. J Biosci Bioeng 2021; 132:365-371. [PMID: 34344605 DOI: 10.1016/j.jbiosc.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
Microalgae are natural, green raw material and could be used for the development of edible oil for its abundant polyunsaturated fatty acids, with fast growth rate. The wet mud and dry powder of Scenedesmus dimorphus were applied to compare the extraction effects of different organic solvent systems in this study. The results displayed that, by using the ethanol/n-hexane (3:2, v/v) mixed solvent, the oil extraction rate from wet algal mud was 68.31 %, with 71.65 % of neutral lipid, and 1.87 % of vitamin E; the retention rates of protein, chlorophyll, and carbohydrates in the algal residue after oil extraction were 60.56 %, 53.27 %, and 80.20 %, respectively. Through the single solvent n-hexane, the oil extraction rate from dried algal powder was 71.52 %, with 75.86 % of neutral lipids, and 1.63 % of vitamin E. The retention rates of protein, chlorophyll, and carbohydrate were 55.92 %, 61.33 % and 78.35 %, respectively, suggesting the high rate of nutrient retention. In addition, the orthogonal experiments indicated that the compound of low concentration natural antioxidants with 0.010 % of tea polyphenols, 0.005 % of vitamin E, and 0.015 % of rosemary extract had the best effects on improvement of oxidative stability.
Collapse
Affiliation(s)
- Chan-Juan Li
- Shandong Technology and Business University, Yantai 264005, China
| | - Meng-Ru Xin
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zhong-Liang Sun
- College of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
41
|
Cerone M, Smith TK. A Brief Journey into the History of and Future Sources and Uses of Fatty Acids. Front Nutr 2021; 8:570401. [PMID: 34355007 PMCID: PMC8329090 DOI: 10.3389/fnut.2021.570401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
Fats and lipids have always had a primary role in the history of humankind, from ancient civilisations to the modern and contemporary time, going from domestic and cosmetic uses, to the first medical applications and later to the large-scale industrial uses for food, pharmaceutical, cosmetics, and biofuel production. Sources and uses of those have changed during time following the development of chemical sciences and industrial technological advances. Plants, fish, and animal fats have represented the primary source of lipids and fats for century. Nowadays, the use of fatty acid sources has taken a turn: industries are mainly interested in polyunsaturated fatty acids (PUFAs), which have beneficial properties in human health; and also, for high-value fatty acids product for innovative and green production of biofuel and feedstocks. Thus, the constant increase in demand of fatty acids, the fact that marine and vegetable sources are not adequate to meet the high level of fatty acids required worldwide and climate change, have determined the necessity of the search for renewable and sustainable sources for fatty acids. Biotechnological advances and bioengineering have started looking at the genetic modification of algae, bacteria, yeasts, seeds, and plants to develop cell factory able to produce high value fatty acid products in a renewable and sustainable manner. This innovative approach applied to FA industry is a peculiar example of how biotechnology can serve as a powerful mean to drive the production of high value fatty acid derivatives on the concept of circular bioeconomy, based on the reutilisation of organic resources for alternative and sustainable productive patterns that are environmentally friendly.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
42
|
Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids. Mar Drugs 2021; 19:md19070386. [PMID: 34356811 PMCID: PMC8303828 DOI: 10.3390/md19070386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 01/20/2023] Open
Abstract
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4-63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.
Collapse
|
43
|
Laddha H, Pawar PR, Prakash G. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum. BIORESOURCE TECHNOLOGY 2021; 332:125062. [PMID: 33839510 DOI: 10.1016/j.biortech.2021.125062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Thraustochytrids have predominantly been grown on hydrophilic substrates i.e. by "de novo" fermentation. The fatty acid composition of thraustochytrids oil in "de novo" mode is enriched in saturated palmitic acid and polyunsaturated docosahexaenoic acid. The "ex novo" fermentation of a novel Aurantiochytrium limacinum ICTSG-17 with waste acid oil altered the fatty acid composition of produced oil. This led to increased total unsaturated fatty acids (TUFA) and concomitant decrease in the total saturated fatty acids (TSFA) resulting in higher TUFA/TSFA ratio. However, cell growth and DHA content in "ex novo" were lower than that of "de novo" fermentation. Integration of "de novo" and "ex novo" fermentation modes were devised to attain high biomass and lipids enriched in DHA. Sequential "de novo"-"ex novo" fermentation resulted in ~20 g/L biomass and ~40% DHA content and higher TUFA/TSFA ratio as compared to that of "de novo" mode.
Collapse
Affiliation(s)
- Hrishikesh Laddha
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Pratik R Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
44
|
The Role of Heterotrophic Microalgae in Waste Conversion to Biofuels and Bioproducts. Processes (Basel) 2021. [DOI: 10.3390/pr9071090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, microalgae have attracted attention from the scientific community worldwide, being considered a promising feedstock for renewable energy production, as well as for a wide range of high value-added products such as pigments and poly-unsaturated fatty acids for pharmaceutical, nutraceutical, food, and cosmetic markets. Despite the investments in microalgae biotechnology to date, the major obstacle to its wide commercialization is the high cost of microalgal biomass production and expensive product extraction steps. One way to reduce the microalgae production costs is the use of low-cost feedstock for microalgae production. Some wastes contain organic and inorganic components that may serve as nutrients for algal growth, decreasing the culture media cost and, thus, the overall process costs. Most of the research studies on microalgae waste treatment use autotrophic and mixotrophic microalgae growth. Research on heterotrophic microalgae to treat wastes is still scarce, although this cultivation mode shows several benefits over the others, such as higher organic carbon load tolerance, intracellular products production, and stability in production all year round, regardless of the location and climate. In this review article, the use of heterotrophic microalgae to simultaneously treat wastes and produce high value-added bioproducts and biofuels will be discussed, critically analyzing the most recent research done in this area so far and envisioning the use of this approach to a commercial scale in the near future.
Collapse
|
45
|
Isolation and Optimization of Culture Conditions of Thraustochytrium kinnei for Biomass Production, Nanoparticle Synthesis, Antioxidant and Antimicrobial Activities. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This work deals with the identification of a predominant thraustochytrid strain, the optimization of culture conditions, the synthesis of nanoparticles, and the evaluation of antioxidant and antimicrobial activities in biomass extracts and nanoparticles. Thraustochytrium kinnei was identified as a predominant strain from decomposing mangrove leaves, and its culture conditions were optimized for maximum biomass production of 13.53 g·L−1, with total lipids of 41.33% and DHA of 39.16% of total fatty acids. Furthermore, the strain was shown to synthesize gold and silver nanoparticles in the size ranges of 10–85 nm and 5–90 nm, respectively. Silver nanoparticles exhibited higher total antioxidant and DPPH activities than gold nanoparticles and methanol extract of the strain. The silver nanoparticles showed higher antimicrobial activity than gold nanoparticles and petroleum ether extract of the strain. Thus, Thraustochytrium kinnei is proven to be promising for synthesis of silver nanoparticles with high antioxidant and antimicrobial activity.
Collapse
|
46
|
Pilecky M, Závorka L, Arts MT, Kainz MJ. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol Rev Camb Philos Soc 2021; 96:2127-2145. [PMID: 34018324 DOI: 10.1111/brv.12747] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| | - Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| |
Collapse
|
47
|
Mariam I, Kareya MS, Nesamma AA, Jutur PP. Delineating metabolomic changes in native isolate Aurantiochytrium for production of docosahexaenoic acid in presence of varying carbon substrates. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Crisóstomo CAB, Almeida TS, Soares RR. Towards triglycerides-based biorefineries: Hydrolysis-reforming-hydrogenation in one-pot over Ni/γ-Al2O3 based catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
50
|
Laamanen C, Desjardins S, Senhorinho G, Scott J. Harvesting microalgae for health beneficial dietary supplements. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|