1
|
Gonçalves VN, Pimenta RS, Lopes FAC, Santos KCR, Silva MC, Convey P, Câmara PEAS, Rosa LH. Fungal and fungal-like diversity present in ornithogenically influenced maritime Antarctic soils assessed using metabarcoding. J Basic Microbiol 2024; 64:e2300601. [PMID: 38386010 DOI: 10.1002/jobm.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
We assessed soil fungal and fungal-like diversity using metabarcoding in ornithogenically influenced soils around nests of the bird species Phalacrocorax atriceps, Macronectes giganteus, Pygoscelis antarcticus, and Pygoscelis adelie on the South Shetland Islands, maritime Antarctic. A total of 1,392,784 fungal DNA reads was obtained and assigned to 186 amplicon sequence variants (ASVs). The dominant fungal phylum was Ascomycota, followed by Basidiomycota, Chytridiomycota, Blastocladiomycota, Rozellomycota, Mortierellomycota, Monoblepharomycota, Aphelidiomycota, Basidiobolomycota, Mucoromycota, and the fungal-like Oomycota (Stramenopila), in rank order. Antarctomyces sp., Blastocladiomycota sp., Pseudogymnoascus pannorum, Microascaceae sp., Mortierella sp., Lobulomycetales sp., Sordariomycetes sp., Fungal sp., Rhizophydiales sp., Pseudeurotiaceae sp., Chytridiomycota sp. 1, Filobasidiella sp., Tausonia pullulans, Betamyces sp., and Leucosporidium sp. were the most abundant assigned taxa. The fungal assemblages present in the different ornithogenically influenced soils displayed different diversity indices. However, in general, we detected high fungal diversity and few taxa shared between the samples. Despite the polyextreme environmental conditions experienced in these Antarctic soils, the metabarcoding approach detected a rich and complex fungal community dominated by saprophytes, but with some pathogenic taxa also present. The community was dominated by psychrophilic and psychrotolerant taxa, some apparently endemic to Antarctica, and those identified only at higher taxonomic levels, which may represent currently undescribed fungi. The mycobiome detected included taxa characterized by different ecological roles, including saprotrophic, human- and animal-associated, phytopathogenic, mutualistic, and cosmopolitan. These fungi may potentially be dispersed by birds or in the air column over great distances, including between different regions within Antarctica and from South America, Africa, and Oceania.
Collapse
Affiliation(s)
- Vívian Nicolau Gonçalves
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Raphael Sânzio Pimenta
- Laboratório de Microbiologia Geral e Aplicada, Universidade Federal do Tocantins, Palmas, Tocantins, Brasil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Tocantins, Brasil
| | - Karita C R Santos
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Tocantins, Brasil
| | - Micheline C Silva
- Departamento de Botânica, Universidade de Brasília, Brasília, Brasil
| | - Peter Convey
- British Antarctic Survey, NERC, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Las Palmeras, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brasil
- Programa de Pós-graduação em Fungos, Algas e Plantas, UFSC, Florianópolis, Brasil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
2
|
Li T, Li J, Yan Q, Yang S, Jiang Z. Biochemical characterization of a novel β-galactosidase from Lacticaseibacillus zeae and its application in synthesis of lacto-N-tetraose. J Dairy Sci 2023; 106:6623-6634. [PMID: 37210349 DOI: 10.3168/jds.2023-23221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/02/2023] [Indexed: 05/22/2023]
Abstract
Lacto-N-tetraose (LNT) is one of the most important components of human milk oligosaccharides, which has various beneficial health effects. β-Galactosidase is an important enzyme used in dairy processing. The transglycosylation activity of β-galactosidases offers an attractive approach for LNT synthesis. In this study, we reported for the first time the biochemical characterization of a novel β-galactosidase (LzBgal35A) from Lacticaseibacillus zeae. LzBgal35A belongs to glycoside hydrolases (GH) family 35 and shared the highest identity of 59.9% with other reported GH 35 members. The enzyme was expressed as soluble protein in Escherichia coli. The purified LzBgal35A displayed optimal activity at pH 4.5 and 55°C. It was stable within the pH range of 3.5 to 7.0 and up to 60°C. Moreover, LzBgal35A could catalyze the synthesis of LNT via transferring the galactose residue from o-nitrophenyl-β-galactopyranoside to lacto-N-triose II. Under optimal conditions, the conversion rate of LNT reached 45.4% (6.4 g/L) within 2 h, which was by far the highest yield of LNT synthesized through a β-galactosidase-mediated transglycosylation reaction. This study demonstrated that LzBgal35A has great potential application in LNT synthesis.
Collapse
Affiliation(s)
- Ting Li
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Jing Li
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Qiaojuan Yan
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China; College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Shaoqing Yang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Zhengqiang Jiang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
3
|
Baig DI, Zafar Z, Khan HA, Younus A, Bhatti MF. Genome-wide identification and comparative in-silico characterization of β-galactosidase (GH-35) in ascomycetes and its role in germ tube development of Aspergillus fumigatus via RNA-seq analysis. PLoS One 2023; 18:e0286428. [PMID: 37347747 PMCID: PMC10287015 DOI: 10.1371/journal.pone.0286428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
β-galactosidase (Lactase), an enzyme belonging to the glycoside hydrolase family causing the hydrolysis and trans-glycosylation of β-D-galactosides, has a vital role in dairy industries. The current investigation emphasizes on in-silico identification and comparative analysis of different fungal lactases present in Aspergillus fumigatus, Aspergillus oryzae, Botrytis cinerea, and Fusarium fujikuroi. Prediction of motifs and domains, chromosomal positioning, gene structure, gene ontology, sub-cellular localization and protein modeling were performed using different bioinformatics tools to have an insight into the structural and functional characteristics of β-galactosidases. Evolutionary and homology relationships were established by phylogenetic and synteny analyses. A total of 14 β-gal genes (GH-35) were identified in these species. Identified lactases, having 5 domains, were predicted to be stable, acidic, non-polar and extracellularly localized with roles in polysaccharide catabolic process. Results showed variable exonic/intronic ratios of the gene structures which were randomly positioned on chromosomes. Moreover, synteny blocks and close evolutionary relationships were observed between Aspergillus fumigatus and Aspergillus oryzae. Structural insights allowed the prediction of best protein models based on the higher ERRAT and Q-MEAN values. And RNA-sequencing analysis, performed on A. fumigatus, elucidated the role of β-gal in germ tube development. This study would pave the way for efficient fungal lactase production as it identified β-gal genes and predicted their various features and also it would provide a road-way to further the understanding of A. fumigatus pathogenicity via the expression insights of β-gal in germ tube development.
Collapse
Affiliation(s)
- Danish Ilyas Baig
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Zafar
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haris Ahmed Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amna Younus
- National Institutes of Health (NIH), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
4
|
Qualitative Screening of Yeast Biodiversity for Hydrolytic Enzymes Isolated from the Gastrointestinal Tract of a Coprophage “Gymnopleurus sturmi” and Dung of Ruminants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this study, thirty yeast strains isolated from the gut of coprophagous “Gymnopleurus sturmi” and twenty-four from the dung of ruminants were shown to be producers of cellulases. Cellulolytic yeast isolates could also produce other hydrolytic enzymes such as pectinase, lipase, β-glucosidase, catalase, inulinase, urease, gelatinase, and protease. The oroduction of amylase was present in only one isolate of dung of ruminants. On the other hand, the production of tannase was absent in these isolates. All the yeasts isolated from two sources could utilize various carbon sources, including sorbitol, sucrose, and raffinose, and withstand high concentrations of glucose (300 g/L), salt (100 g/L), and exogenous ethanol. They could grow in a wide pH range of 3 to 11. The growth was stable up to a temperature of 40 °C for isolates from the gut of coprophage and 37 °C for the yeast from the dung of ruminants. These activities and growing conditions were similar to the diet of coprophagous insects and the composition of ruminant manure, likely because the adaptation and distribution of these microorganisms depend on the phenology and trophic preferences of these insects.
Collapse
|
5
|
Singh RV, Sambyal K. β-galactosidase as an industrial enzyme: production and potential. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
7
|
de Jesus LFMC, Guimarães LHS. Production of β-galactosidase by Trichoderma sp. through solid-state fermentation targeting the recovery of galactooligosaccharides from whey cheese. J Appl Microbiol 2020; 130:865-877. [PMID: 32741059 DOI: 10.1111/jam.14805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/31/2023]
Abstract
AIMS Optimization of β-galactosidase production by Trichoderma sp. under solid-state fermentation using wheat bran as solid substrate through an experimental design and its application targeting the recovery of galactooligosaccharides (GOS) from whey cheese. METHODS AND RESULTS The β-galactosidase production by Trichoderma sp. increased 2·3-fold (2·67 U g-1 of substrate) culturing the fungus at 30°C for 187 h, at an inoculum of 105 spores per ml, and a 1 : 1·65 (w/v) ratio of wheat bran to tap water. The best enzyme activity was obtained at 55°C and pH 4·5. The catalytic activity was maintained for up to 180 min incubating at 35-45°C, and above 50% at acidic or alkaline pH for up to 24 h. It also presented resistance to chemical compounds. β-galactosidase catalysed the hydrolysis of the lactose and the transgalactosylation reaction leading to the production of GOS. CONCLUSION Trichoderma sp. produced β-galactosidase with transgalactosylation activity that may be used to recover GOS, products with high added value, from whey cheese. SIGNIFICANCE AND IMPACT OF THE STUDY β-galactosidases are used in different industrial sectors. Therefore, the Trichoderma β-galactosidase is a promising alternative for the production of GOS as prebiotic from the dairy effluents, contributing to the reduction in the environmental impact.
Collapse
Affiliation(s)
- L F M C de Jesus
- Instituto de Química de Araraquara-UNESP, Araraquara, São Paulo, Brazil
| | - L H S Guimarães
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Kim MJ, Lee HW, Kim JY, Kang SE, Roh SW, Hong SW, Yoo SR, Kim TW. Impact of fermentation conditions on the diversity of white colony-forming yeast and analysis of metabolite changes by white colony-forming yeast in kimchi. Food Res Int 2020; 136:109315. [PMID: 32846523 DOI: 10.1016/j.foodres.2020.109315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
The presence of white colony-forming yeast (WCFY) on kimchi surfaces indicates a reduction in kimchi quality. This study aimed to investigate the effect of different fermentation temperatures (4, 10, and 20 °C) and packaging conditions (open or closed) on WCFY diversity, and the changes of metabolite by the difference of WCFY diversity. Community analysis using high-throughput DNA sequencing revealed that Kazachstania servazzii and K. barnettii were most prevalent in kimchi fermented under closed packaging condition at 4, 10, and 20 °C. In open packaging condition, four species of Candida sake, K. servazzii, K. barnettii, and Tausonia pullulans were the predominant yeast species at 4 °C, and four species of C. sake, K. servazzii, K. barnettii, and Debaryomyces hancenii were predominantly detected at 10 °C. The diversity of the WCFY community was higher under the open rather than the closed packaging condition. However, at all fermentation temperatures, non-volatile metabolite production by the different WCFY communities did not significantly differ between open and closed packaging conditions, whereas glycerol levels in kimchi samples harboring WCFY increased relative to the control (0 day). These results indicate that fermentation temperature and air exposure can alter WCFY diversity on kimchi surface, however, non-volatile metabolite profiles in kimchi soup are not significantly affected by the difference of WCFY diversity caused by packaging conditions. This study furthers the current understanding of the growth of undesirable WCFY in kimchi.
Collapse
Affiliation(s)
- Mi-Ju Kim
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Hae-Won Lee
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Joon Yong Kim
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Seong Eun Kang
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Seong Woon Roh
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Sung Wook Hong
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Seung Ran Yoo
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea
| | - Tae-Woon Kim
- Research and Development of Division, World Institute of Kimchi, Gwangju 61755 Republic of Korea.
| |
Collapse
|
9
|
Oliveira DR, Lopes ACA, Pereira RA, Cardoso PG, Duarte WF. Selection of potentially probiotic Kluyveromyces lactis for the fermentation of cheese whey–based beverage. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01518-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Andrade RP, Oliveira DR, Lopes ACA, de Abreu LR, Duarte WF. Survival of Kluyveromyces lactis and Torulaspora delbrueckii to simulated gastrointestinal conditions and their use as single and mixed inoculum for cheese production. Food Res Int 2019; 125:108620. [PMID: 31554038 DOI: 10.1016/j.foodres.2019.108620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
Abstract
The demand for new probiotic products has shown recent increases alongside a growing interest in studying starter cultures of cheeses. This study thus aims to evaluate the ability to survive under simulated gastrointestinal conditions and impact of Torulaspora delbrueckii B14 and Kluyveromyces lactis B10 as single and mixed inocula for cheese production. These two yeast strains were subjected to simulated gastrointestinal tracts and tested for self-aggregation, hydrophobicity, pathogen inhibition, antibiotic resistance, and β-galactosidase production. The yeast strains were also assessed for their ability to survive in different NaCl concentrations (2.5%, 5%, and 10% w/v), multiple temperatures (4 °C and 40 °C), and used as single and mixed starter cultures for cheese production. Yeasts population levels were monitored by YPD plating and MALDI-TOF and metabolites were analyzed by HPLC and GC-MS over the course of the 21 days cheese maturation process. T. delbrueckii B14 and K. lactis B10 both showed >80% viability after the passage through the simulated gastrointestinal tract, had self-aggregation rates >90%, and displayed β-galactosidase activities of 0.35 U/g and 0.53 U/g, respectively. Both yeasts survived at 2.5%, 5%, and 10% NaCl for 21 days and showed growth at 4 °C. In cheese, the single inoculum of K. lactis B10 and mixed inoculum showed the highest levels of lactose consumption. HS-SPME GC-MS analysis of cheese samples allowed the identification of 38 volatile compounds. The highest concentrations of most of these compounds were observed after 21 days of maturation for the cheese produced with mixed inoculum. The most abundant acids detected were hexanoic and decanoic acid; the most abundant alcohols were 2,3-butanediol, 2-phenylethanol and isoamyl alcohol, and the most prevalent ester compounds were isoamyl acetate and phenethyl acetate. Our results therefore show that T. delbrueckii B14 and K. lactis B10 are interesting yeasts for further studies in the context of probiotics and positively impact the composition of desirable volatile compounds in cheeses, particularly when used as mixed inoculum.
Collapse
|
11
|
Ni H, Zhang T, Guo X, Hu Y, Xiao A, Jiang Z, Li L, Li Q. Comparison between irradiating and autoclaving citrus wastes as substrate for solid-state fermentation by Aspergillus aculeatus. Lett Appl Microbiol 2019; 69:71-78. [PMID: 31038763 DOI: 10.1111/lam.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/01/2022]
Abstract
Agricultural or food processing wastes cause serious environmental burden and economic losses. Solid-state fermentation using these wastes is an attractive option to valorize these wastes. However, conventional autoclaving of substrate may degrade nutrients and generate toxins. Unsterilization of the substrate will cause undesired microbial contamination. Therefore, we compared irradiation with autoclaving to treat citrus wastes as substrate for solid-state fermentation by Aspergillus aculeatus. By comparing microbial growth, enzymes tested and medium consumption, irradiated substrate had higher biomass and extracellular protein, more sugar consumption and higher enzyme production than those with autoclaved substrate. Irradiation prevented the generation of cell-inhibiting components such as 5-hydroxymethylfurfural (5-HMF) whereas preserved the flavonoids well that are often enzyme inducers. These findings suggest that irradiation of agricultural and food processing wastes as substrate has advantages over autoclaving for solid-state fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proposes irradiation as an alternative to sterilize agricultural residues rich in nutrients and thermosensitive compounds, such as citrus wastes for fungal solid-state fermentation and production of enzymes.
Collapse
Affiliation(s)
- H Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - T Zhang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - X Guo
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Y Hu
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - A Xiao
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
| | - Z Jiang
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - L Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Q Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
12
|
Kamran A, Bibi Z, Aman A, Ul Qader SA. Purification and catalytic behavior optimization of lactose degrading β-galactosidase from Aspergillus nidulans. Journal of Food Science and Technology 2018; 56:167-176. [PMID: 30728558 DOI: 10.1007/s13197-018-3470-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/07/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
Abstract
The β-galactosidase is an industrially valuable enzyme and used to hydrolyze the lactose into glucose and galactose. Considering the broad utility profile in food industry, β-galactosidase from Aspergillus nidulans was purified and characterized in term of its catalytic properties and stability. It displayed highest catalytic efficiency at 60 °C after 10.0 min within acidic pH environment (pH 5). The β-galactosidase exhibited 100% and 60% catalytic activity at 40 °C and 50 °C, respectively even after 120.0 min. The β-galactosidase activity was remained stable in the presence of Zn2+, Ni2+, and Mg2+ ions. The activity was also retained in all investigated organic solvents except DMSO at various ionic concentrations. The surfactants Triton X-100 and SDS caused positive impact on the catalytic activity of enzyme at 1.0 mM concentration. However, the percent relative activity of β-galactosidase was significantly reduced when incubated with EDTA. The molecular mass of β-galactosidase estimated to be 95 kDa. The SEM micrographs of ONPG before and after β-galactosidase treatment indicated a remarkable difference in the morphology and proved the strong catalytic strength of enzyme. The β-galactosidase also demonstrated exceptional storage stability at - 80 °C, - 20 °C and 4 °C by retaining 86, 79 and 70% activity even after 100.0 days.
Collapse
Affiliation(s)
- Aysha Kamran
- 1Georg-August University School of Science (GAUSS), Georg-August-University Goettingen, Göttingen, Germany.,2Department of Biotechnology, University of Karachi, Karachi, 75270 Pakistan
| | - Zainab Bibi
- 3Department of Biotechnology, Federal Urdu University of Arts, Science and Technology (FUUAST), Gulshan-e-Iqbal Campus, Karachi, 75300 Pakistan
| | - Afsheen Aman
- 4The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270 Pakistan
| | - Shah Ali Ul Qader
- 5Department of Biochemistry, University of Karachi, Karachi, 75270 Pakistan
| |
Collapse
|
13
|
Gil-Durán C, Ravanal MC, Ubilla P, Vaca I, Chávez R. Heterologous expression, purification and characterization of a highly thermolabile endoxylanase from the Antarctic fungus Cladosporium sp. Fungal Biol 2018; 122:875-882. [PMID: 30115321 DOI: 10.1016/j.funbio.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Numerous endoxylanases from mesophilic fungi have been purified and characterized. However, endoxylanases from cold-adapted fungi, especially those from Antarctica, have been less studied. In this work, a cDNA from the Antarctic fungus Cladosporium sp. with similarity to endoxylanases from glycosyl hydrolase family 10, was cloned and expressed in Pichia pastoris. The pure recombinant enzyme (named XynA) showed optimal activity on xylan at 50 °C and pH 6-7. The enzyme releases xylooligosaccharides but not xylose, indicating that XynA is a classical endoxylanase. The enzyme was most active on xylans with high content of arabinose (rye arabinoylan and wheat arabinoxylan) than on xylans with low content of arabinose (oat spelts xylan, birchwood xylan and beechwood xylan). Finally, XynA showed a very low thermostability. After 20-30 min of incubation at 40 °C, the enzyme was completely inactivated, suggesting that XynA would be the most thermolabile endoxylanase described so far in filamentous fungi. This is one of the few reports describing the heterologous expression and characterization of a xylanase from a fungus isolated from Antarctica.
Collapse
Affiliation(s)
- Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - María-Cristina Ravanal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 239, Santiago, Chile; Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia, Chile.
| | - Pamela Ubilla
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile.
| |
Collapse
|
14
|
|
15
|
Duarte AWF, Dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Pessoa Junior A, Durães Sette L. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 2017; 38:600-619. [PMID: 29228814 DOI: 10.1080/07388551.2017.1379468] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.
Collapse
Affiliation(s)
- Alysson Wagner Fernandes Duarte
- a Universidade Federal de Alagoas, Campus Arapiraca , Arapiraca , Brazil.,b Divisão de Recursos Microbianos , Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas , Paulínia , Brazil
| | - Juliana Aparecida Dos Santos
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Marina Vitti Vianna
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Juliana Maíra Freitas Vieira
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Vitor Hugo Mallagutti
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fabio José Inforsato
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Lia Costa Pinto Wentzel
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Luciana Daniela Lario
- d Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario , Rosario , Argentina.,e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Andre Rodrigues
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fernando Carlos Pagnocca
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Adalberto Pessoa Junior
- e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Lara Durães Sette
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| |
Collapse
|
16
|
Chi Z, Liu GL, Lu Y, Jiang H, Chi ZM. Bio-products produced by marine yeasts and their potential applications. BIORESOURCE TECHNOLOGY 2016; 202:244-252. [PMID: 26724870 DOI: 10.1016/j.biortech.2015.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
It has been well documented that the yeasts isolated from different marine environments are so versatile that they can produce various fine chemicals, enzymes, bioactive substances, single cell protein and nanoparticles. Many genes related to the biosynthesis and regulation of these functional biomolecules have been cloned, expressed and characterized. All these functional biomolecules have a variety of applications in industries of food, chemical, agricultural, biofuel, cosmetics and pharmacy. In this review, a summary will be given about these functional biomolecules and their producers of the marine yeasts as well as some related genes in order to draw an outline about necessity for further exploitation of marine yeasts and their bio-products for industrial applications.
Collapse
Affiliation(s)
- Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Yi Lu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China.
| |
Collapse
|
17
|
Cold-Active β-Galactosidases: Sources, Biochemical Properties and Their Biotechnological Potential. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MRZ, Vieira GAL, Lopes VCP, Mainardi PH, dos Santos JA, de Azevedo Duarte L, Otero IVR, da Silva Yoshida AM, Feitosa VA, Pessoa A, Sette LD. Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 2015; 6:269. [PMID: 25914680 PMCID: PMC4392690 DOI: 10.3389/fmicb.2015.00269] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/18/2015] [Indexed: 01/19/2023] Open
Abstract
The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70(∘)C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance.
Collapse
Affiliation(s)
- Rafaella C. Bonugli-Santos
- Instituto Latino Americano de Ciências da Vida e da Natureza, Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-AmericanaParaná, Brazil
| | - Maria R. dos Santos Vasconcelos
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de CampinasPaulínia, Brazil
| | - Michel R. Z. Passarini
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de CampinasPaulínia, Brazil
| | - Gabriela A. L. Vieira
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Viviane C. P. Lopes
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Pedro H. Mainardi
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Juliana A. dos Santos
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Lidia de Azevedo Duarte
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Igor V. R. Otero
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Aline M. da Silva Yoshida
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| | - Valker A. Feitosa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São PauloSão Paulo, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São PauloSão Paulo, Brazil
| | - Lara D. Sette
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de CampinasPaulínia, Brazil
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita FilhoRio Claro, Brazil
| |
Collapse
|
19
|
Mahn A, Angulo A, Cabañas F. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11666-11671. [PMID: 25390544 DOI: 10.1021/jf504957c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, University of Santiago of Chile , Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | | | | |
Collapse
|
20
|
Lemes AC, Machado JR, Brites ML, Luccio MD, Kalil SJ. Design Strategies for Integratedβ-Galactosidase Purification Processes. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201300433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17-1 grown at different temperatures. Extremophiles 2013; 17:241-9. [DOI: 10.1007/s00792-013-0511-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022]
|
22
|
Vincent V, Aghajari N, Pollet N, Boisson A, Boudebbouze S, Haser R, Maguin E, Rhimi M. The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis. Antonie van Leeuwenhoek 2012. [PMID: 23180374 DOI: 10.1007/s10482-012-9852-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene encoding the β-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.0 to 7.5. For its maximal activity this enzyme requires only 0.8 mM Fe(2+) and 1.6 mM Mg(2+). Purified protein displayed a high catalytic efficiency of 102 s(-1) mM(-1) for lactose. The enzyme stability was increased by immobilization mainly at low pH (from 4.0 to 5.5) and high temperatures (55 and 60 °C). The bioconversion of lactose using the L. lactis β-galactosidase allows the production of lactose with a high bioconversion rate (98 %) within a wide range of pH and temperature.
Collapse
Affiliation(s)
- Violette Vincent
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets, Bases Moléculaires des Systèmes Infectieux-UMR 5086, CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines-FR3302, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 900:32-7. [PMID: 22683026 DOI: 10.1016/j.jchromb.2012.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/25/2012] [Accepted: 05/16/2012] [Indexed: 12/29/2022]
Abstract
β-Galactosidase is a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides; its major application in the food industry is to reduce the content of lactose in lactic products. The aim of this work is to recover this enzyme from a cell lysate by adsorption onto Streamline-DEAE in an expanded bed, avoiding, as much as possible, biomass deposition onto the adsorbent matrix. So as to achieve less cell debris-matrix interaction, the adsorbent surface was covered with polyvinyl pyrrolidone. The enzyme showed to bind in the same extent to naked and covered Streamline-DEAE (65 mg β-gal/g matrix) in batch mode in the absence of any biomass. The kinetics of the adsorption process was studied and no effect of the polyvinyl pyrrolidone covering was found. The optimal conditions for the recovery were achieved by using a lysate made of 40% wet weight of cells, a polyvinyl pyrrolidone-covered matrix/lysate ratio of 10% and carrying out the adsorption process in expanded bed with recirculation over 2h in 20 mM phosphate buffer pH 7.4. The fraction recovered after the elution contained 65% of the initial amount of enzyme with a 12.6-fold increased specific activity with respect to the lysate. The polyvinyl pyrrolidone content in the eluate was determined and found negligible. The remarkable point of this work is that it was possible to partially purify the enzyme using a feedstock containing an unusually high biomass concentration in the presence of polyvinyl pyrrolidone onto weak anion exchangers.
Collapse
|
24
|
Batra N, Singh J, Joshi A, Bhatia S. Applications of β-gal-III isozyme from Bacillus coagulans RCS3, in lactose hydrolysis. Int J Biol Macromol 2011; 49:879-84. [PMID: 21855568 DOI: 10.1016/j.ijbiomac.2011.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022]
Abstract
Bacillus coagulans RCS3 isolated from hot water springs secreted five isozymes i.e. β-gal I-V of β-galactosidase. β-gal III isozyme was purified using DEAE cellulose and Sephadex G 100 column chromatography. Its molecular weight characterization showed a single band at 315kD in Native PAGE, while two subunits of 50.1 and 53.7 kD in SDS PAGE. β-Gal III had pH optima in the range of 6-7 and temperature optima at 65°C. It preferred nitro-aryl-β-d-galactoside as substrate having K(m) of 4.16 mM with ONPG. More than 85% and 80% hydrolysis of lactose (1-5%, w/v) was recorded within 48 h of incubation at 55°C and 50°C respectively and pH range of 6-7. About 78-86% hydrolysis of lactose in various brands of standardized milk was recorded at incubation temperature of 50°C. These results marked the applications of β-gal III in processing of milk/whey industry.
Collapse
Affiliation(s)
- Navneet Batra
- Dept. of Biotechnology, GGDSD College, Chandigarh, India.
| | | | | | | |
Collapse
|
25
|
Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose. Appl Biochem Biotechnol 2011; 166:599-611. [PMID: 22086565 DOI: 10.1007/s12010-011-9451-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
In order to isolate β-galactosidase overproducers of the psychrotolerant yeast Guehomyces pullulans 17-1, its cells were mutated by using nitrosoguanidine (NTG). One mutant (NTG-133) with enhanced β-galactosidase production was obtained. The mutant grown in the production medium with 30.0 g/l lactose and 2.0 g/l glucose could produce more β-galactosidase than the same mutant grown in the production medium with only 30.0 g/l lactose while β-galactosidase production by its wild type was sensitive to the presence of glucose in the medium. It was found that 40.0 g/l of the whey powder was the most suitable for β-galactosidase production by the mutant. After optimization of the medium and cultivation conditions, the mutant could produce 29.2 U/ml of total β-galactosidase activity within 132 h at the flask level while the mutant could produce 48.1 U/ml of total β-galactosidase activity within 144 h in 2-l fermentor. Over 77.1% of lactose in the whey powder (5.0% w/v) was hydrolyzed in the presence of the β-galactosidase activity of 280 U/g of lactose within 9 h while over 77.0% of lactose in the whey was hydrolyzed in the presence of β-galactosidase activity of 280 U/g of lactose within 6 h. This was the first time to show that the β-galactosidase produced by the psychrotolerant yeast could be used for hydrolysis of lactose in the whey powder and whey.
Collapse
|
26
|
Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 2010; 14:515-21. [PMID: 20972898 DOI: 10.1007/s00792-010-0331-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
The psychrotolerant yeast Mrakia frigida 2E00797 isolated from sea sediment in Antarctica was found to be able to produce killer toxin against the pathogenic yeast (Metschnikowia bicuspidata WCY) in crab. When the psychrotolerant yeast was grown in the medium with pH 4.5 and 3.0% (wt/vol) NaCl and at 15°C, it could produce the highest amount of killer toxin against the pathogenic yeast M. bicuspidata WCY. The crude killer toxin activity against the pathogenic yeast M. bicuspidata WCY was the highest when it grew at 15°C in the assay medium with 3.0% (wt/vol) NaCl and pH 4.5. At temperatures higher than 25°C, the killing activity produced by M. frigida 2E00797 was completely lost and after the crude killer toxin was pre-incubated at temperatures higher than 40°C for 4 h, the killing activity was also completely lost. The killer toxin produced by M. frigida 2E00797 could kill only M. bicuspidata WCY, Candida tropicalis and Candida albicans among all the fungal species and bacterial species tested in this study.
Collapse
|
27
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|