1
|
Wu M, Shi Z, Ming Y, Zhao Y, Gao G, Li G, Ma T. The production of ultrahigh molecular weight xanthan gum from a Sphingomonas chassis capable of co-utilising glucose and xylose from corn straw. Microb Biotechnol 2024; 17:e14394. [PMID: 38226955 PMCID: PMC10884872 DOI: 10.1111/1751-7915.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Corn straw is an abundant and renewable alternative for microbial biopolymer production. In this paper, an engineered Sphingomonas sanxanigenens NXG-P916 capable of co-utilising glucose and xylose from corn straw total hydrolysate to produce xanthan gum was constructed. This strain was obtained by introducing the xanthan gum synthetic operon gum as a module into the genome of the constructed chassis strain NXdPE that could mass produce activated precursors of polysaccharide, and in which the transcriptional levels of gum genes were optimised by screening for a more appropriate promoter, P916 . As a result, strain NXG-P916 produced 9.48 ± 0.34 g of xanthan gum per kg of fermentation broth (g/kg) when glucose was used as a carbon source, which was 2.1 times improved over the original engineering strain NXdPE::gum. Furthermore, in batch fermentation, 12.72 ± 0.75 g/kg xanthan gum was produced from the corn straw total hydrolysate containing both glucose and xylose, and the producing xanthan gum showed an ultrahigh molecular weight (UHMW) of 6.04 × 107 Da, which was increased by 15.8 times. Therefore, the great potential of producing UHMW xanthan gum by Sphingomonas sanxanigenens was proved, and the chassis NXdPE has the prospect of becoming an attractive platform organism producing polysaccharides derived from biomass hydrolysates.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yufei Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
2
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Vo DVN. Recent advances and sustainable development of biofuels production from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126203. [PMID: 34710606 DOI: 10.1016/j.biortech.2021.126203] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Many countries in the world are facing the demand for non-renewable fossil fuels because of overpopulation and economic boom. To reduce environmental pollution and zero carbon emission, the conversion of biomass into biofuels has paid better attention and is considered to be an innovative approach. A diverse raw material has been utilized as feedstock for the production of biofuel, depending on the availability of biomass, cost-effectiveness, and their geographic location. Among the different raw materials, lignocellulosic biomass has fascinated many researchers around the world. The current review discovers the potential application of lignocellulosic biomass for the production of biofuels. Various pretreatment methods have been widely used to increase the hydrolysis rate and accessibility of biomass. This review highlights recent advances in pretreatment methodologies for the enhanced production of biofuels. Detailed descriptions of the mechanism of biomass processing pathway, optimization, and modeling study have been discussed.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Castilla-Archilla J, Papirio S, Lens PN. Two step process for volatile fatty acid production from brewery spent grain: Hydrolysis and direct acidogenic fermentation using anaerobic granular sludge. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Wu M, Zhao X, Shen Y, Shi Z, Li G, Ma T. Efficient simultaneous utilization of glucose and xylose from corn straw by Sphingomonas sanxanigenens NX02 to produce microbial exopolysaccharide. BIORESOURCE TECHNOLOGY 2021; 319:124126. [PMID: 32971336 DOI: 10.1016/j.biortech.2020.124126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is a cheap and abundant carbon source in the microbial manufacturing industry. The native co-utilization of glucose and xylose from corn straw total hydrolysate (CSTH) by Sphingomonas sanxanigenens NX02 to produce exopolysaccharide Sanxan was investigated. Batch fermentation demonstrated that, compared to single sugar fermentation, co-substrate of glucose and xylose accelerated cell growth and Sanxan production in the initial 24 h with the same consumption rate. Additionally, NX02 converted CSTH into Sanxan with a yield of 13.10 ± 0.35 g/Kg, which is slightly higher than that of glucose fermentation. Coexistence of three xylose metabolic pathways (Xylose isomerase, Weimberg, and Dahms pathway), incomplete phosphoenolpyruvate-dependent phosphotransferase system, and reinforced fructose metabolism were recognized as the co-utilization mechanism through comparative transcriptome analysis. Therefore, strain NX02 has a prospect of becoming an attractive platform organism to produce polysaccharides and other bio-based products derived from agricultural waste hydrolysate rich in both glucose and xylose.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaqi Shen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
6
|
|
7
|
Uncovering Novel Pathways for Enhancing Hyaluronan Synthesis in Recombinant Lactococcus lactis: Genome-Scale Metabolic Modeling and Experimental Validation. Processes (Basel) 2019. [DOI: 10.3390/pr7060343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hyaluronan (HA), a glycosaminoglycan with important medical applications, is commercially produced from pathogenic microbial sources. The metabolism of HA-producing recombinant generally regarded as safe (GRAS) systems needs to be more strategically engineered to achieve yields higher than native producers. Here, we use a genome-scale model (GEM) to account for the entire metabolic network of the cell while predicting strategies to improve HA production. We analyze the metabolic network of Lactococcus lactis adapted to produce HA and identify non-conventional strategies to enhance HA flux. We also show experimental verification of one of the predicted strategies. We thus identified an alternate route for enhancement of HA synthesis, originating from the nucleoside inosine, that can function in parallel with the traditionally known route from glucose. Adopting this strategy resulted in a 2.8-fold increase in HA yield. The strategies identified and the experimental results show that the cell is capable of involving a larger subset of metabolic pathways in HA production. Apart from being the first report to use a nucleoside to improve HA production, we demonstrate the role of experimental validation in model refinement and strategy improvisation. Overall, we point out that well-constructed GEMs could be used to derive efficient strategies to improve the biosynthesis of high-value products.
Collapse
|
8
|
Feng J, Yang J, Yang W, Chen J, Jiang M, Zou X. Metabolome- and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:94. [PMID: 29632554 PMCID: PMC5883625 DOI: 10.1186/s13068-018-1099-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/26/2018] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polymalic acid (PMA) is a water-soluble biopolymer with many attractive properties for food and pharmaceutical applications mainly produced by the yeast-like fungus Aureobasidium pullulans. Acid hydrolysis of PMA, resulting in release of the monomer l-malic acid (MA), which is widely used in the food and chemical industry, is a competitive process for producing bio-based platform chemicals. RESULTS In this study, the production of PMA and MA from sucrose and sugarcane molasses by A. pullulans was studied in shake flasks and bioreactors. Comparative metabolome analysis of sucrose- and glucose-based fermentation identified 81 intracellular metabolites and demonstrated that pyruvate from the glycolysis pathway may be a key metabolite affecting PMA synthesis. In silico simulation of a genome-scale metabolic model (iZX637) further verified that pyruvate carboxylase (pyc) via the reductive tricarboxylic acid cycle strengthened carbon flux for PMA synthesis. Therefore, an engineered strain, FJ-PYC, was constructed by overexpressing the pyc gene, which increased the PMA titer by 15.1% compared with that from the wild-type strain in a 5-L stirred-tank fermentor. Sugarcane molasses can be used as an economical substrate without any pretreatment or nutrient supplementation. Using fed-batch fermentation of FJ-PYC, we obtained the highest PMA titers (81.5, 94.2 g/L of MA after hydrolysis) in 140 h with a corresponding MA yield of 0.62 g/g and productivity of 0.67 g/L h. CONCLUSIONS We showed that integrated metabolome- and genome-scale model analyses were an effective approach for engineering the metabolic node for PMA synthesis, and also developed an economical and green process for PMA and MA production from renewable biomass feedstocks.
Collapse
Affiliation(s)
- Jun Feng
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Jing Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Wenwen Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Jie Chen
- Wuhan Sunhy Biology Co., Ltd, Wuhan, 430074 People’s Republic of China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
9
|
Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. BIORESOURCE TECHNOLOGY 2018; 253:343-354. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mengyu Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
10
|
Kashiwagi N, Ogino C, Kondo A. Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. BIORESOURCE TECHNOLOGY 2017; 245:1655-1663. [PMID: 28651868 DOI: 10.1016/j.biortech.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Bioproduction using microbes from biomass feedstocks is of interest in regards to environmental problems and cost reduction. Streptomyces as an industrial microorganism plays an important role in the production of useful secondary metabolites for various applications. This strain also secretes a wide range of extracellular enzymes which degrade various biopolymers in nature, and it consumes these degrading substrates as nutrients. Hence, Streptomyces can be employed as a cell factory for the conversion of biomass-derived substrates into various products. This review focuses on the following two points: (1) Streptomyces as a producer of enzymes for degrading biomass-derived polysaccharides and polymers; and, (2) wild-type and engineered strains of Streptomyces as a host for chemical production from biomass-derived substrates.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Fu H, Yang ST, Wang M, Wang J, Tang IC. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. BIORESOURCE TECHNOLOGY 2017; 234:389-396. [PMID: 28343058 DOI: 10.1016/j.biortech.2017.03.073] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Clostridium tyrobutyricum can utilize glucose and xylose as carbon source for butyric acid production. However, xylose catabolism is inhibited by glucose, hampering butyric acid production from lignocellulosic biomass hydrolysates containing both glucose and xylose. In this study, an engineered strain of C. tyrobutyricum Ct-pTBA overexpressing heterologous xylose catabolism genes (xylT, xylA, and xylB) was investigated for co-utilizing glucose and xylose present in hydrolysates of plant biomass, including soybean hull, corn fiber, wheat straw, rice straw, and sugarcane bagasse. Compared to the wild-type strain, Ct-pTBA showed higher xylose utilization without significant glucose catabolite repression, achieving near 100% utilization of glucose and xylose present in lignocellulosic biomass hydrolysates in bioreactor at pH 6. About 42.6g/L butyrate at a productivity of 0.56g/L·h and yield of 0.36g/g was obtained in batch fermentation, demonstrating the potential of C. tyrobutyricum Ct-pTBA for butyric acid production from lignocellulosic biomass hydrolysates.
Collapse
Affiliation(s)
- Hongxin Fu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - I-Ching Tang
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| |
Collapse
|
12
|
Zhang J, Yu L, Lin M, Yan Q, Yang ST. n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. BIORESOURCE TECHNOLOGY 2017; 233:51-57. [PMID: 28258996 DOI: 10.1016/j.biortech.2017.02.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/28/2023]
Abstract
The production of n-butanol from sugarcane juice by metabolically engineered Clostridium tyrobutyricum Ct(Δack)-pscrBAK overexpressing scr operon genes (scrB, scrA, and scrK) for sucrose catabolism and an aldehyde/alcohol dehydrogenase gene (adhE2) for butanol biosynthesis was studied with corn steep liquor (CSL) as a low-cost nitrogen source. In free cell fermentation, butanol production of ∼16g/L at a yield of 0.31±0.02g/g and productivity of 0.33±0.02g/L·h was obtained from sucrose and yield of 0.24±0.02g/g and productivity of 0.30±0.01g/L·h from sugarcane juice containing sucrose, glucose and fructose. The fermentation was also studied in a fibrous bed bioreactor (FBB) operated in a repeated batch mode for 10 consecutive cycles in 10days, achieving an average butanol yield of 0.21±0.02g/g and productivity of 0.53±0.05g/L·h from sugarcane juice, demonstrating its long-term stability without applying the antibiotic selection pressure.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, PR China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Le Yu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Li J, Zhang R, Xu Y, Xiao R, Li K, Liu H, Jiang J, Zhou X, Li L, Zhou L, Gu Y. Ala258Phe substitution in Bacillus sp. YX-1 glucose dehydrogenase improves its substrate preference for xylose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab Eng 2017; 40:50-58. [DOI: 10.1016/j.ymben.2016.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/25/2016] [Accepted: 12/26/2016] [Indexed: 12/28/2022]
|
15
|
Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Appl Microbiol Biotechnol 2017; 101:4327-4337. [DOI: 10.1007/s00253-017-8200-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
16
|
Wei P, Cheng C, Lin M, Zhou Y, Yang ST. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics. BIORESOURCE TECHNOLOGY 2017; 224:581-589. [PMID: 27839861 DOI: 10.1016/j.biortech.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications.
Collapse
Affiliation(s)
- Peilian Wei
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Chi Cheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Yipin Zhou
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Groot J, Cepress-Mclean SC, Robbins-Pianka A, Knight R, Gill RT. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli. Biotechnol Bioeng 2016; 114:885-893. [PMID: 27861733 DOI: 10.1002/bit.26217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 12/25/2022]
Abstract
Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS- mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS- background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joost Groot
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| | - Sidney C Cepress-Mclean
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| | | | - Rob Knight
- Biofrontiers Institute, University of Colorado, Boulder, Colorado
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| |
Collapse
|
18
|
Wei P, Lin M, Wang Z, Fu H, Yang H, Jiang W, Yang ST. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation. BIORESOURCE TECHNOLOGY 2016; 219:91-97. [PMID: 27479799 DOI: 10.1016/j.biortech.2016.07.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 05/12/2023]
Abstract
Propionibacterium freudenreichii cannot use xylose, the second most abundant sugar in lignocellulosic biomass. Although Propionibacterium acidipropionici can use xylose as a carbon source, it is difficult to genetically modify, impeding further improvement through metabolic engineering. This study identified three xylose catabolic pathway genes encoding for xylose isomerase (xylA), xylose transporter (xylT), and xylulokinase (xylB) in P. acidipropionici and overexpressed them in P. freudenreichii subsp. shermanii via an expression plasmid pKHEM01, enabling the mutant to utilize xylose efficiently even in the presence of glucose without glucose-induced carbon catabolite repression. The mutant showed similar fermentation kinetics with glucose, xylose, and the mixture of glucose and xylose, respectively, as carbon source, and with or without the addition of antibiotic for selection pressure. The engineered P. shermanii thus can provide a novel cell factory for industrial production of propionic acid and other value-added products from lignocellulosic biomass.
Collapse
Affiliation(s)
- Peilian Wei
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA; Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Zhongqiang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Hongxin Fu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Hopen Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Wenyan Jiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Enzyme Microb Technol 2016; 93-94:51-58. [DOI: 10.1016/j.enzmictec.2016.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022]
|
20
|
Kong X, Xu H, Wu H, Wang C, He A, Ma J, Ren X, Jia H, Wei C, Jiang M, Ouyang P. Biobutanol production from sugarcane bagasse hydrolysate generated with the assistance of gamma-valerolactone. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Yu L, Xu M, Tang IC, Yang ST. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 2015; 112:2134-41. [PMID: 25894463 DOI: 10.1002/bit.25613] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/09/2023]
Abstract
The glucose-mediated carbon catabolite repression (CCR) in Clostridium tyrobutyricum impedes efficient utilization of xylose present in lignocellulosic biomass hydrolysates. In order to relieve the CCR and enhance xylose utilization, three genes (xylT, xylA, and xylB) encoding a xylose proton-symporter, a xylose isomerase and a xylulokinase, respectively, from Clostridium acetobutylicum ATCC 824 were co-overexpressed with aldehyde/alcohol dehydrogenase (adhE2) in C. tyrobutyricum (Δack). Compared to the strain Ct(Δack)-pM2 expressing only adhE2, the mutant Ct(Δack)-pTBA had a higher xylose uptake rate and was able to simultaneously consume glucose and xylose at comparable rates for butanol production. Ct(Δack)-pTBA produced more butanol (12.0 vs. 3.2 g/L) with a higher butanol yield (0.12 vs. 0.07 g/g) and productivity (0.17 vs. 0.07 g/L · h) from both glucose and xylose, while Ct(Δack)-pM2 consumed little xylose in the fermentation. The results confirmed that the CCR in C. tyrobutyricum could be overcome through overexpressing xylT, xylA, and xylB. The mutant was also able to co-utilize glucose and xylose present in soybean hull hydrolysate (SHH) for butanol production, achieving a high butanol titer of 15.7 g/L, butanol yield of 0.24 g/g, and productivity of 0.29 g/L · h. This study demonstrated the potential application of Ct(Δack)-pTBA for industrial biobutanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Le Yu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, Ohio, 43210
| | - Mengmeng Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, Ohio, 43210
| | | | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, Ohio, 43210.
| |
Collapse
|
22
|
Saha BC, Qureshi N, Kennedy GJ, Cotta MA. Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production. BIORESOURCE TECHNOLOGY 2015; 190:182-8. [PMID: 25958140 DOI: 10.1016/j.biortech.2015.04.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 05/27/2023]
Abstract
Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia coli (strain FBR5) were investigated. The initial ethanol productivity was faster for the seed grown on xylose followed by GXA, CSH, glucose and arabinose. Arabinose grown seed took the longest time to complete the fermentation. Delayed saccharifying enzyme addition in simultaneous saccharification and fermentation of dilute acid pretreated CS by the recombinant E. coli strain FBR5 allowed the fermentation to finish in a shorter time than adding the enzyme simultaneously with xylose grown inoculum. Use of substrate selective inoculum and fermenting pentose sugars first under glucose limited condition helped to alleviate the catabolite repression of the recombinant bacterium on ethanol production from lignocellulosic hydrolyzate.
Collapse
Affiliation(s)
- Badal C Saha
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA(1).
| | - Nasib Qureshi
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA(1)
| | - Gregory J Kennedy
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA(1)
| | - Michael A Cotta
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA(1)
| |
Collapse
|
23
|
Gupta A, Abraham RE, Barrow CJ, Puri M. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. BIORESOURCE TECHNOLOGY 2015; 184:373-378. [PMID: 25497057 DOI: 10.1016/j.biortech.2014.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3.
Collapse
Affiliation(s)
- Adarsha Gupta
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Reinu E Abraham
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
24
|
Matsuoka Y, Shimizu K. Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-014-0031-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
26
|
Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P. A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii to produce solvents from alkali extracted corn cobs. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|