1
|
Tang R, Xu R, Gao X, Dai C, Qin X, Yang J. Production of α-amylase from gluconate and carbon dioxide by protein synthesis and secretion optimization in Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2025; 416:131744. [PMID: 39500400 DOI: 10.1016/j.biortech.2024.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024]
Abstract
Chemoautotrophic Cupriavidus necator H16 has a strong protein synthesis ability and has been used to produce intracellular protein products. However, studies optimizing its secretion system and the producing extracellular enzyme products (EEPs) are lacking. Here, we focused on investigating the feasibility of synthesizing and secreting EEPs in C. necator H16, using α-amylase as a prototype. α-Amylase expression optimization, genome modification, and secretion system engineering were performed to construct and optimize the α-amylase-producing engineering C. necator H16. Finally, the optimized engineering strain could produce α-amylase, with the α-amylase activity per unit cells reaching up to 5.54 U/OD600 using gluconate as substrate, which was 29.2-fold compared with that of initial engineering strain. Additionally, when using carbon dioxide as substrate, the α-amylase activity per unit cells of engineered strain reached 4.26 U/OD600. Overall, this study demonstrates the feasibility of developing C. necator H16 as a host for autotrophic production of α-amylase.
Collapse
Affiliation(s)
- Ruohao Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China
| | - Rui Xu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Xuemin Gao
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Cunxi Dai
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China.
| |
Collapse
|
2
|
Nongthombam KS, Mutum SS, Pandey RR. In Vitro Biological Activities of an Endophytic Fungus, Trichoderma sp. L2D2 Isolated from Anaphalis contorta. Indian J Microbiol 2024; 64:1757-1768. [PMID: 39678975 PMCID: PMC11645356 DOI: 10.1007/s12088-024-01232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/13/2024] [Indexed: 12/17/2024] Open
Abstract
The endophytic fungus, Trichoderma sp. L2D2 was isolated from the medicinal plant Anaphalis contorta and has been assessed for extracellular enzyme production, plant growth promotion, antifungal, antibacterial, and antioxidant activities in vitro. The endophyte has been found to produce amylase, cellulose, and ammonia qualitatively. The antifungal activity was evaluated using Curvularia lunata, Fusarium oxysporum, Aspergillus niger, Aspergillus flavus, Sclerotium oryzae, Rhizoctonia solani, Alternaria brassicicola, Colletotrichum capsici, Ustilaginoidea virens, and Alternaria tenuissima by the dual culture method and showed strong antifungal activity with 100% inhibition against S. oryzae and C. capsici. For antibacterial activity, ethyl acetate extract of Trichoderma sp. L2D2 was tested against Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, Salmonella typhi, Escherichia coli, and Shigella flexneri by the agar well diffusion method and the 96-well microplate method, and has shown the lowest MIC of 15.62 µg/ml against S. aureus and E. coli. The DPPH assay was used to examine the free radical scavenging activity of the crude extract of the endophytic fungus and showed good antioxidant activity with an IC50 value of 85.94 µg/ml.
Collapse
Affiliation(s)
| | - Shyamkesho Singh Mutum
- Department of Life Sciences (Botany), Manipur University, Canchipur, Manipur 795003 India
| | - Radha Raman Pandey
- Department of Life Sciences (Botany), Manipur University, Canchipur, Manipur 795003 India
| |
Collapse
|
3
|
Wei D, Ma T, Montalbán-López M, Li X, Wu X, Mu D. Enhanced Production, Enzymatic Activity, and Thermostability of an α-Amylase from Bacillus amyloliquefaciens in Lactococcus lactis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24587-24598. [PMID: 39453228 DOI: 10.1021/acs.jafc.4c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A novel α-amylase gene (BAA) from Bacillus amyloliquefaciens was cloned into Lactococcus lactis, designing two recombinant α-amylases to facilitate extracellular secretion. Following optimizing the expression conditions, the highest yield of BAA (88.12 mmol/L) was achieved upon 36 h induction and 5 ng/mL nisin concentration. Determining the enzymatic properties of BAA revealed its poor stability and activity at high temperatures, hindering its widespread application. Therefore, we used computer-aided design to generate a mutant, S275L, which exhibited significantly improved activity and thermostability: an 18.7% increase in enzymatic activity (3767.38 U/mg), a 10 °C increase in optimal temperature, and a 49.2% improvement in stability at 60 °C. Molecular dynamics simulations and force analysis confirmed these enhancements. Finally, the mutant S275L's potential was further analyzed for starch hydrolysis on poultry feed. Therefore, the mutant S275L holds promising as an enzyme agent for enhanced feed digestibility and quality.
Collapse
Affiliation(s)
- Dehua Wei
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Hefei University of Technology, Hefei 230601, China
| | - Tiange Ma
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Xingjiang Li
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| | - Xuefeng Wu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| |
Collapse
|
4
|
Si H, Xie F, Yang R, Gu W, Wu S, Zhang J, Zhang Y, Qiao Y. Recent developments in enzymatic preparation, physicochemical properties, bioactivity, and application of resistant starch type III from staple food grains. Int J Biol Macromol 2024; 279:135521. [PMID: 39260638 DOI: 10.1016/j.ijbiomac.2024.135521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Resistant starch (RS) was classified into five types and referred to the starch that cannot be digested and absorbed by the small intestine of healthy human beings. Among them, RS3 has received a lot of attention from researchers because of its good functional properties and greater application prospects. Meanwhile, the enzymatic method is widely used in the preparation of RS3 because of its high efficiency and environmental protection. α-Amylase and pullulanase as the main enzymes can effectively improve the yield of RS3. The physical properties of RS3 have an excellent potential for application in improving food crispness, texture and producing low glycemic index (GI) foods. It is more valuable because it has biological activities such as inducing apoptosis in tumor cells, lowering intestinal pH, and regulating blood glucose, etc. This paper summarized the current research progress of RS3 from different staple food grains, including current applications of enzymes commonly used in the preparation of RS3, physical properties and biological activities of RS3, and the application of RS3 in different areas to provide a theoretical basis for future research on RS3 as well as further development and applications based on the market requirement.
Collapse
Affiliation(s)
- Haoyu Si
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruifang Yang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Gu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Songheng Wu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jing Zhang
- Shanghai Jingliang Industry (Group) Co., Ltd., Shanghai 201210, China
| | - Yi Zhang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yongjin Qiao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd., Shanghai 201401, China.
| |
Collapse
|
5
|
Ma Y, Zhang L, Ma X, Bai K, Tian Z, Wang Z, Muratkhan M, Wang X, Lü X, Liu M. Saccharide mapping as an extraordinary method on characterization and identification of plant and fungi polysaccharides: A review. Int J Biol Macromol 2024; 275:133350. [PMID: 38960255 DOI: 10.1016/j.ijbiomac.2024.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.
Collapse
Affiliation(s)
- Yuntian Ma
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lichen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuoer Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhangyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Marat Muratkhan
- Department of Food Technology and Processing Products, Technical Faculty, Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Manshun Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Radzlin N, Mohamad Ali MS, Goh KM, Yaakop AS, Zakaria II, Kahar UM. Exploring a novel GH13_5 α-amylase from Jeotgalibacillus malaysiensis D5 T for raw starch hydrolysis. AMB Express 2024; 14:71. [PMID: 38874807 PMCID: PMC11178733 DOI: 10.1186/s13568-024-01722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
α-Amylase plays a crucial role in the industrial degradation of starch. The genus Jeotgalibacillus of the underexplored marine bacteria family Caryophanaceae has not been investigated in terms of α-amylase production. Herein, we report the comprehensive analysis of an α-amylase (AmyJM) from Jeotgalibacillus malaysiensis D5T (= DSM28777T = KCTC33550T). Protein phylogenetic analysis indicated that AmyJM belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and exhibits low sequence identity with known α-amylases, with its closest counterpart being the GH13_5 α-amylase from Bacillus sp. KSM-K38 (51.05% identity). Purified AmyJM (molecular mass of 70 kDa) is stable at a pH range of 5.5-9.0 and optimally active at pH 7.5. The optimum temperature for AmyJM is 40 °C, where the enzyme is reasonably stable at this temperature. Similar to other α-amylases, the presence of CaCl2 enhanced both the activity and stability of AmyJM. AmyJM exhibited activity toward raw and gelatinized forms of starches and related α-glucans, generating a mixture of reducing sugars, such as glucose, maltose, maltotriose, maltotetraose, and maltopentaose. In raw starch hydrolysis, AmyJM exhibited its highest efficiency (51.10% degradation) in hydrolyzing raw wheat starch after 3-h incubation at 40 °C. Under the same conditions, AmyJM also hydrolyzed tapioca, sago, potato, rice, and corn raw starches, yielding 16.01-30.05%. These findings highlight the potential of AmyJM as a biocatalyst for the saccharification of raw starches, particularly those derived from wheat.
Collapse
Affiliation(s)
- Nurfatini Radzlin
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute Bioscience, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
7
|
Kumar H, Mandal S, Yadav R, Gupta S, Meena H, Kadu M, Kudawla R, Sharma P, Kaur IP, Maiti S, Ipsen JH, Bhatia T. Bottom-up approach to explore alpha-amylase assisted membrane remodelling. Chem Phys Lipids 2024; 259:105374. [PMID: 38176612 DOI: 10.1016/j.chemphyslip.2023.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Soluble alpha-amylases play an important role in the catabolism of polysaccharides. In this work, we show that the malt α -amylase can interact with the lipid membrane and further alter its mechanical properties. Vesicle fluctuation spectroscopy is used for quantitative measurement of the membrane bending rigidity of phosphatidylcholines lipid vesicles from the shape fluctuation based on the whole contour of Giant Unilamellar Vesicles (GUVs). The bending rigidity of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid vesicles in water increases significantly with the presence of 0.14 micromolar alpha-amylase (AA) in the exterior solution. It appears that the enzyme present in the external solution interacts with the outer layer of the bilayer membrane, leading to an asymmetry of the solution on either side of the bilayer membrane and altering its elasticity. At AA concentration of 1.5 micromolars and above, changes in the morphology of the GUV membrane are observed. The interaction between AA in the external solution and the external leaflet causes the bilayer membrane to curve spontaneously, leading to the formation of outbuds, giving a positive spontaneous curvature of C0 ≤ 0.05 μm-1 at ≈ 1 mg / ml of the AA concentration. We validate and characterize its concentration-dependent role in stabilizing the membrane curvature. Our findings indicate that the involvement of the enzyme, depending on the concentration, can have a considerable effect on the mechanical characteristics of the membrane.
Collapse
Affiliation(s)
- Harshit Kumar
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Sayar Mandal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Reena Yadav
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Suhasi Gupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Hemraj Meena
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Mayur Kadu
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Rajni Kudawla
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Punjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - John H Ipsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, Odense, 5230 M, Denmark.
| | - Tripta Bhatia
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
8
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
9
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
10
|
He M, Jin Y, Liu M, Yang G, Zhou R, Zhao J, Wu C. Metaproteomic investigation of enzyme profile in daqu used for the production of Nongxiangxing baijiu. Int J Food Microbiol 2023; 400:110250. [PMID: 37247555 DOI: 10.1016/j.ijfoodmicro.2023.110250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Enzymes and microbiota in daqu are essential for the brewing of Nongxiangxing baijiu. Uncover the key enzymes and functional strains in daqu is beneficial to improve the flavor and quality of Nongxiangxing baijiu. In this study, metaproteome technology was employed to determine the enzyme profiles in Nongxiangxing daqu, and strains with high saccharification activity were screened and identified. 933 proteins were identified in daqu, of which 463 belonged to enzymes, including 140 oxidoreductases, 98 transferases, 91 hydrolases, 49 ligases, 41 lyases and 27 isomerases, and hydrolase is the enzyme with the highest abundance in baijiu brewing. Among hydrolases, a total of 36 carbohydrate metabolism-related enzymes (CMEs) were identified, and 12 of them were key enzymes related to glycoside hydrolysis. Four major glycoside hydrolysis enzymes glucoamylase (EC 3.2.1.3), glucan 1,4-alpha-glucosidase (EC 3.2.1.3), glucanase (EC 3.2.1.-) and β-glucosidase (EC 3.2.1.21) were revealed, and their sources were Byssochlamys spectabilis, Lichtheimia ramosa and Thermoascus aurantiacus, respectively. Then, strains Aspergillus A2, A3, A7, Lichtheimia L1, L4, L5, and Saccharomycopsis S2, S4, S6 with high saccharifying enzyme-producing capacity were screened through culture-dependent approach. Resents presented in this study can further reveal the enzyme profiles and identify the main functional strains in daqu, which can provide theoretical support for the brewing of Nongxiangxing baijiu.
Collapse
Affiliation(s)
- Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | | | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Liao M, Dong R, Li L, Liu X, Wang Y, Bai Y, Luo H, Yao B, Huang H, Tu T. High Production of Maltooligosaccharides in the Starch Liquefaction Process: A Study on the Hyperthermophilic Mechanism of α-Amylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6480-6489. [PMID: 36959740 DOI: 10.1021/acs.jafc.3c00665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The efficient production of high-value-added bioproducts from starchy substances requires α-amylases with hyperthermophilic properties for industrial starch liquefaction. In this study, two hyperthermophilic α-amylases with significant differences in thermostability, PfAmy and TeAmy, were comparatively studied through structural analysis, domain swapping, and site-directed mutagenesis, finding that three residues, His152, Cys166, and His168, located in domain B were the main contributors to hyperthermostability. The effects of these three residues were strongly synergistic, causing the optimum temperature for the mutant K152H/A166C/E168H of TeAmy to shift to 95-100 °C and stabilize at 90 °C without Ca2+. Compared to PfAmy and TeAmy, the mutant K152H/A166C/E168H, respectively, exhibited 1.7- and 2.5-times higher starch hydrolysis activity at 105 °C and pH 5.5 (10411 ± 70 U/mg) and released 1.1- and 1.7-times more maltooligosaccharides from 1% starch. This work has interpreted the hyperthermophilic mechanism of α-amylase and thereby providing a potential candidate for the efficient industrial conversion of starch to bioproducts.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lanxue Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Yuan S, Yan R, Lin B, Li R, Ye X. Improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. Biochem Biophys Res Commun 2023; 653:69-75. [PMID: 36857902 DOI: 10.1016/j.bbrc.2023.02.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
The medium-temperature alpha-amylase of Bacillus amyloliquefaciens is widely used in the food and washing process. Enhancing the thermostability of alpha-amylases and investigating the mechanism of stability are important for enzyme industry development. The optimal temperature and pH of the wild-type BAA and mutant MuBAA (D28E/V118A/S187D/K370 N) were all 60 °C and 6.0, respectively. The mutant MuBAA showed better thermostability at 50 °C and 60 °C, with a specific activity of 206.61 U/mg, which was 99.1% greater than that of the wild-type. By analyzing predicted structures, the improving thermostability of the mutant MuBAA was mainly related to enhanced stabilization of a loop region in domain B via more calcium-binding sites and intramolecular interactions around Asp187. Furthermore, additional intramolecular interactions around sites 28 and 370 in domain A were also beneficial for improving thermostability. Additionally, the decrease of steric hindrance at the active cavity increased the specific activity of the mutant MuBAA. Improving the thermostability of BAA has theoretical reference values for the modification of alpha-amylases.
Collapse
Affiliation(s)
- Susu Yuan
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Renxiang Yan
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Biyu Lin
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Renkuan Li
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiuyun Ye
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Cui JN, Hu W, Liu YX, Li YL, Hu JH, Liu ZY, Chen JH. Isolation and Screening of High-Yielding α-Amylase Mutants of Bacillus subtilis by Heavy Ion Mutagenesis. Appl Biochem Biotechnol 2023; 195:68-85. [PMID: 35969299 DOI: 10.1007/s12010-022-04097-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
To improve fermentative production of α-amylase, heavy-ion mutagenesis technology was used to irradiate Bacillus subtilis (B. subtilis) to obtain the high yielding mutants in this study. After continuous cultivation for 12 generations, eight mutants exhibited positive mutation rate with greater H/C. The α-amylase production was stable and obviously exceeded that by the parent strain, which shows that the mutants have a good genetic stability. Among the mutants, the α-amylase activity of B. subtilis KC-180-2 was 72.26 U·mL-1, which was 82.34% higher than that of the original strain. After optimization of fermentation conditions and media, the α-amylase activity of B. subtilis KC-180-2 reached a maximum of 156.83 U·mL-1 at 36 h in a bioreactor. In addition, the optimized fermentation temperature of B. subtilis KC-180-2 was increased to 49℃, indicating B. subtilis KC-180-2 possesses high-temperature resistance, which has great application prospects for industrial fermentation for α-amylase production.
Collapse
Affiliation(s)
- Jin-Na Cui
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Inner Mongolia University of Technology, Hohhot, China.,Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-Fermentation Industry, Inner Mongolia University of Technology, Hohhot, China.,College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Wei Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yan-Xin Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Inner Mongolia University of Technology, Hohhot, China
| | - Yong-Li Li
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Inner Mongolia University of Technology, Hohhot, China.,Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-Fermentation Industry, Inner Mongolia University of Technology, Hohhot, China.,College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Jian-Hua Hu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Inner Mongolia University of Technology, Hohhot, China.,Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-Fermentation Industry, Inner Mongolia University of Technology, Hohhot, China.,College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Zhan-Ying Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Inner Mongolia University of Technology, Hohhot, China. .,Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-Fermentation Industry, Inner Mongolia University of Technology, Hohhot, China. .,College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China.
| | - Ji-Hong Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
14
|
Cheng ZH, Wu J, Liu JQ, Min D, Liu DF, Li WW, Yu HQ. Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences. Nucleic Acids Res 2022; 50:7739-7750. [PMID: 35776123 PMCID: PMC9303307 DOI: 10.1093/nar/gkac554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023] Open
Abstract
Genomic integration techniques offer opportunities for generation of engineered microorganisms with improved or even entirely new functions but are currently limited by inability for efficient insertion of long genetic payloads due to multiplexing. Herein, using Shewanella oneidensis MR-1 as a model, we developed an optimized CRISPR-associated transposase from cyanobacteria Scytonema hofmanni (ShCAST system), which enables programmable, RNA-guided transposition of ultra-long DNA sequences (30 kb) onto bacterial chromosomes at ∼100% efficiency in a single orientation. In this system, a crRNA (CRISPR RNA) was used to target multicopy loci like insertion-sequence elements or combining I-SceI endonuclease, thereby allowing efficient single-step multiplexed or iterative DNA insertions. The engineered strain exhibited drastically improved substrate diversity and extracellular electron transfer ability, verifying the success of this system. Our work greatly expands the application range and flexibility of genetic engineering techniques and may be readily extended to other bacteria for better controlling various microbial processes.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Wu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Xia Y, Zhu M, Du Y, Wu Z, Gomi K, Zhang W. Metaproteomics reveals protein composition of multiple saccharifying enzymes in nongxiangxing daqu and jiangxiangxing daqu under different thermophilic temperatures. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Min Zhu
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Yake Du
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Zhengyun Wu
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology Graduate School of Agricultural Science Tohoku University Sendai Miyagi 981‐8555 Japan
| | - Wenxue Zhang
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
- School of Liquor‐Making Engineering Sichuan University Jinjiang College 1 Jinjiang Road Meishan Sichuan 620860 China
| |
Collapse
|
16
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Abdalla M, Jiang B, Dai Y, Chen J, Hassanin HAM, Zhang T. Permeabilized whole-cell biocatalyst containing co-expressed two enzymes facilitates the synthesis of maltoheptaose (G7) from starch. Enzyme Microb Technol 2022; 159:110057. [DOI: 10.1016/j.enzmictec.2022.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
|
18
|
Ahmad A, Rahamtullah, Mishra R. Structural and functional adaptation in extremophilic microbial α-amylases. Biophys Rev 2022; 14:499-515. [PMID: 35528036 PMCID: PMC9043155 DOI: 10.1007/s12551-022-00931-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining stable native conformation of a protein under a given ecological condition is the prerequisite for survival of organisms. Extremophilic bacteria and archaea have evolved to adapt under extreme conditions of temperature, pH, salt, and pressure. Molecular adaptations of proteins under these conditions are essential for their survival. These organisms have the capability to maintain stable, native conformations of proteins under extreme conditions. The enzymes produced by the extremophiles are also known as extremozyme, which are used in several industries. Stability and functionality of extremozymes under varying temperature, pH, and solvent conditions are the most desirable requirement of industry. α-Amylase is one of the most important enzymes used in food, pharmaceutical, textile, and detergent industries. This enzyme is produced by diverse microorganisms including various extremophiles. Therefore, understanding its stability is important from fundamental as well as an applied point of view. Each class of extremophiles has a distinctive set of dominant non-covalent interactions which are important for their stability. Static information obtained by comparative analysis of amino acid sequence and atomic resolution structure provides information on the prevalence of particular amino acids or a group of non-covalent interactions. Protein folding studies give the information about thermodynamic and kinetic stability in order to understand dynamic aspect of molecular adaptations. In this review, we have summarized information on amino acid sequence, structure, stability, and adaptability of α-amylases from different classes of extremophiles.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| |
Collapse
|
19
|
Wang K, Lv R, Sun S, Dong F, Liu M, Liu J, Nie X. Nanobiocatalyst consisting of immobilized α-amylase on montmorillonite exhibiting enhanced enzymatic performance based on the allosteric effect. Colloids Surf B Biointerfaces 2021; 211:112290. [PMID: 34929483 DOI: 10.1016/j.colsurfb.2021.112290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023]
Abstract
Enzyme immobilization on nanostructured substrates is an emerging method for the efficient development of nanobiocatalysts to enhance enzymatic performance. In this study, a novel α-amylase nanobiocatalytic system was constructed based on the allosteric activation of the enzyme and its immobilization on a natural nanostructured mineral montmorillonite. The strategy of allosteric modulation and immobilization, equipped the immobilized α-amylase with higher catalytic activity and greater stability (compared to those of free α-amylase) over a broad range of pH values (4.5-9.0) and temperatures (30-80 °C). Kinetic experiments revealed that although the immobilized α-amylase possessed a considerably lower affinity for its substrate, its catalytic activity was higher than that of free α-amylase, likely owing to allosteric modulation. Thus, this study demonstrates a convenient and environmentally benign immobilization strategy to construct a nanobiocatalytic α-amylase system that exploits the phenomenon of allosteric activation of the enzyme and lays the foundation for further industrial applications.
Collapse
Affiliation(s)
- Ke Wang
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Rui Lv
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Shiyong Sun
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Faqin Dong
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Mingxue Liu
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jin Liu
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiaoqin Nie
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
20
|
Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Hwang IC, Kim SH, Kang DK. Complete genome sequence of Lactobacillus plantarum SK156, a candidate vehicle for mucosal vaccine delivery. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 62:956-958. [PMID: 33987576 PMCID: PMC7721571 DOI: 10.5187/jast.2020.62.6.956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022]
Abstract
Lactobacillus plantarum SK156 was isolated from traditional
Korean food. The genome of SK156 strain consists of a circular chromosome
(3,231,383 bp) with guanine (G) + cytosine (C) content of 44.56%. Among the
predicted 2,991 protein-coding genes, the genome included genes encoding for
α-amylase, which hydrolyzes α-bonds of polysaccharides. Genomic
sequencing of L. plantarum SK156 will give information on the
mechanism involved in the enzymatic degradation of polysaccharides and its
application for improving feed efficiency.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
22
|
Enhanced extracellular Bacillus stearothermophilus α-amylase production in Bacillus subtilis by balancing the entire secretion process in an optimal strain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
|
24
|
Kurt SB, Ayyala RS, Sahiner N. Versatile poly(maltose) micro/nanoparticles with tunable surface functionality as a biomaterial. J Appl Polym Sci 2021. [DOI: 10.1002/app.49906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saliha B. Kurt
- Department of Chemistry & Nanoscience and Technology Research and Application Center Canakkale Onsekiz Mart University Terzioglu Campus Canakkale Turkey
| | - Ramesh S. Ayyala
- Department of Ophthalmology, Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application Center Canakkale Onsekiz Mart University Terzioglu Campus Canakkale Turkey
- Department of Ophthalmology, Morsani College of Medicine University of South Florida Tampa Florida USA
| |
Collapse
|
25
|
A Novel Digestive α-Amylase from Blue Crab ( Portunus segnis) Viscera: Purification, Biochemical Characterization and Application for the Improvement of Antioxidant Potential of Oat Flour. Int J Mol Sci 2021; 22:ijms22031070. [PMID: 33499004 PMCID: PMC7865747 DOI: 10.3390/ijms22031070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study reports on the purification and characterization of a digestive α-amylase from blue crab (Portunussegnis) viscera designated Blue Crab Amylase (BCA). The enzyme was purified to homogeneity by ultrafiltration, Sephadex G-100 gel filtration and Sepharose mono Q anion exchange chromatography, with the final purification fold of 424.02, specific activity of 1390.8 U mg−1 and 27.8% recovery. BCA, showing a molecular weight of approximately 45 kDa, possesses desirable biotechnological features, such as optimal temperature of 50 °C, interesting thermal stability which is enhanced in the presence of starch, high stability towards surfactants (Tween 20, Tween 80 and Triton X-100), high specific activity, quite high storage and broad pH range stability. The enzyme displayed Km and Vmax values, of 7.5 ± 0.25 mg mL−1 and 2000 ± 23 μmol min−1 mg−1 for potato starch, respectively. It hydrolyzed various carbohydrates and produced maltose, maltotriose and maltotetraose as the major end products of starch hydrolysis. In addition, the purified enzyme was successfully utilized for the improvement of the antioxidant potential of oat flour, which could be extended to other cereals. Interestingly, besides its suitability for application in different industrial sectors, especially food industries, the biochemical properties of BCA from the blue crab viscera provide novel features with other marine-derived enzymes and better understanding of the biodegradability of carbohydrates in marine environments, particularly in invasive alien crustaceans.
Collapse
|
26
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
27
|
Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02513-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Burhanoğlu T, Sürmeli Y, Şanlı-Mohamed G. Identification and characterization of novel thermostable α-amylase from Geobacillus sp. GS33. Int J Biol Macromol 2020; 164:578-585. [PMID: 32693140 DOI: 10.1016/j.ijbiomac.2020.07.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/29/2023]
Abstract
In this study, the heterologous expression and biochemical characterization of a thermostable α-amylase from Geobacillus sp. GS33 was investigated. The recombinant α-amylase was overexpressed in Escherichia coli BL21 (λDE) and purified via anion exchange and size-exclusion chromatography. The purified α-amylase had a molecular weight of about 60 kDa, and was active in a broad range of pH 3-10 and temperature (40-90 °C) with maximum activity at pH 7-8 and 60 °C. The enzyme retained 50% residual activity at 65 °C, but only 20% at 85 °C after 16 h. At pH 9 and pH 7, the residual activity at 65 °C was 50% and 30%, respectively. The enzyme was remarkably activated by Co2+, Ca2+, Mg2+, PMSF, DTT, and Triton X-100, but partially inhibited by Cu2+, methanol, hexane, ethanol, acetone, SDS, and Tween 20. A molecular phylogeny analysis showed that the enzyme's amino acid sequence had the closest connection with an α-amylase from Geobacillus thermoleovorans subsp. stromboliensis nov. 3D-structure-based amino acid sequence alignments revealed that the three catalytic residues (D217, E246, D314) and the four Ca2+ ion coordination residues (N143, E177, D186, H221) were conserved in α-amylase from Geobacillus sp. GS33. The temperature stability and neutral pH optimum suggest that the enzyme may be useful for industrial applications.
Collapse
Affiliation(s)
- Tülin Burhanoğlu
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430 İzmir, Turkey; Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430 İzmir, Turkey; Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430 İzmir, Turkey; Department of Chemistry, İzmir Institute of Technology, 35430 İzmir, Turkey.
| |
Collapse
|
29
|
de Barros Ranke FF, Shinya TY, de Figueiredo FC, Fernández Núñez EG, Cabral H, de Oliva Neto P. Ethanol from rice byproduct using amylases secreted by Rhizopus microsporus var. oligosporus. Enzyme partial purification and characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110591. [PMID: 32392142 DOI: 10.1016/j.jenvman.2020.110591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
A three-stage bioethanol bioprocess was developed. Firstly, amylases were obtained from Rhizopus microsporus var. oligosporus using wheat bran in solid-state fermentation. Secondly, amylases hydrolyzed a rice byproduct to make a glucose-rich solution, and this sugar was finally metabolized by Saccharomyces cerevisiae to produce bioethanol. Besides, the secreted enzymes were also partially purified and characterized. The amylase activity (AA) in the crude extract was 358 U/g substrate, and the partially purified enzyme showed the best activity in the 4.0-5.5 pH range. A wide pH stability range (3.5-8.5) was confirmed. The amylase was thermostable up to 60 °C. The ion Mn+2 (10 mM) improved by 60% the AA. There was a 54.9% yield in the conversion of rice residues into reducing sugars in 10 h. The glucose-rich solution was undergone fermentation by S. cerevisiae and showed high ethanol efficiency, 95.8% of the theoretical value. These results suggested a promising technology for bioethanol production.
Collapse
Affiliation(s)
- Fabiane Fernanda de Barros Ranke
- Laboratório de Biotecnologia Industrial - Instituto de Pesquisa em Bioenergia (IPBEN), Departamento de Biotecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Assis, Avenida Dom Antônio, 2100, 19806-900, Assis, SP, Brazil
| | - Thais Yumi Shinya
- Universidade Estadual do Piauí, Campus Heróis do Jenipapo, Campo Maior, PI, Brazil
| | - Franciane Cristina de Figueiredo
- Laboratório de Biotecnologia Industrial - Instituto de Pesquisa em Bioenergia (IPBEN), Departamento de Biotecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Assis, Avenida Dom Antônio, 2100, 19806-900, Assis, SP, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo (USP), Rua Arlindo Bettio,1000, Vila Guaraciaba, 03828-000, São Paulo, SP, Brazil.
| | - Hamilton Cabral
- Laboratório de Tecnologia Enzimática Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Pedro de Oliva Neto
- Laboratório de Biotecnologia Industrial - Instituto de Pesquisa em Bioenergia (IPBEN), Departamento de Biotecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Assis, Avenida Dom Antônio, 2100, 19806-900, Assis, SP, Brazil
| |
Collapse
|
30
|
A detailed in silico analysis of the amylolytic family GH126 and its possible relatedness to family GH76. Carbohydr Res 2020; 494:108082. [PMID: 32634753 DOI: 10.1016/j.carres.2020.108082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/21/2022]
Abstract
The glycoside hydrolase (GH) family 126 was established based on the X-ray structure determination of the amylolytic enzyme CPF_2247 from Clostridium perfringens genome. Its original identification as a putative carbohydrate-active enzyme was based on its low, yet significant sequence identity to members of the family GH8, which are inverting endo-β-1,4-glucanases. As the family GH8 forms the clan GH-M with GH48, the CPF_2247 protein also exhibits similarities with members of the family GH48. The original screening of the CPF_2247 on carbohydrate substrates demonstrated its activity on glycogen and amylose, thus classifying this protein as an "α-amylase". It should be pointed out, however, there are apparent inconsistencies concerning the exact enzyme specificity of the "amylase" CPF_2247, since it exhibits both the endo- and exo-fashion of action. The family GH126 currently counts ~1000 amino acid sequences solely from Bacteria; all belonging to the phylum Firmicutes. The present study delivers the first detailed bioinformatics study of 117 selected amino acid sequences from the family GH126, featuring the insightful sequence-structure comparison with the aim to define seven conserved sequence regions and elucidate the evolutionary relationships within the family. In addition, a comparative structural analysis of the GH126 members with representatives of other GH families adopting the same (α/α)6-barrel catalytic domain fold indicates the possible sharing a catalytic residue between the families GH126 and GH76.
Collapse
|
31
|
Zeng J, Guo J, Tu Y, Yuan L. Functional study of C-terminal domain of the thermoacidophilic raw starch-hydrolyzing α-amylase Gt-amy. Food Sci Biotechnol 2020; 29:409-418. [PMID: 32257525 DOI: 10.1007/s10068-019-00673-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022] Open
Abstract
Since the thermoacidophilic raw-starch hydrolyzing α-amylase Gt-amy can effectively hydrolyze corn starch under starch liquefaction conditions, it has potential for many industrial applications. To identify the raw starch-binding domain of Gt-amy, a C-terminal domain (CTD)-truncated mutant (Gt-amy-T) was constructed, and its enzymatic properties were compared with Gt-amy. In comparison to CTD of Gt-amy, which could effectively bind corn starch, the Gt-amy-T could not bind to and hydrolyze corn starch under similar conditions. In addition, Gt-amy-T showed significantly lower thermal activity and thermal stability. Using soluble starch as the substrate, the k cat of Gt-amy-T at 80 °C was approximately 77.9% of that of Gt-amy. The half-life of Gt-amy at 80 °C was 3 h, while that of Gt-amy-T was 2 h. These results reveal that the CTD plays a vital role in raw starch binding and degradation by Gt-amy and helps Gt-amy maintain thermal activity and stability.
Collapse
Affiliation(s)
- Jing Zeng
- 1Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang, 330096 Jiangxi Province China
| | - Jianjun Guo
- 1Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang, 330096 Jiangxi Province China
| | - Yikun Tu
- 2School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Lin Yuan
- 1Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang, 330096 Jiangxi Province China
| |
Collapse
|
32
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
33
|
Low molecular weight alkaline thermostable α-amylase from Geobacillus sp. nov. Heliyon 2019; 5:e02171. [PMID: 31388592 PMCID: PMC6667821 DOI: 10.1016/j.heliyon.2019.e02171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/30/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023] Open
Abstract
Industrial demands for enzymes that are stable in a broad range of conditions are increasing. Such enzymes, one of which is α-amylase, could be produced by extremophiles. This study reports a thermostable α-amylase produced by a newly isolated Geobacillus sp. nov. from a geothermal area. The phylogenetic analysis of the 16S rRNA gene showed that the isolate formed a separate branch with 95% homology to Geobacillus sp. After precipitation using ammonium sulphate followed by ion-exchange chromatography, the enzyme produced a specific activity of 25.1 (U/mg) with a purity of 6.5-fold of the crude extract. The molecular weight of the enzyme was approximately 12.2 kDa. The optimum activity was observed at 75 °C and pH 8. The activity increased in the presence of Ba2+ and Fe2+ but decreased in the presence of K+ and Mg2+. Ca2+ and Mn2+ increased the activity slightly. The activity completely diminished with the addition of Cu2+. EDTA and PMSF also sharply reduced enzyme activity. Although the stability was moderate, the low molecular weight could be an important feature for its future applications.
Collapse
|
34
|
Khan A, Rahman UU, Siddiqui S, Irfan M, Shah AA, Badshah M, Hasan F, Khan S. Preparation and characterization of resistant starch type III from enzymatically hydrolyzed maize flour. Mol Biol Rep 2019; 46:4565-4580. [PMID: 31243724 DOI: 10.1007/s11033-019-04913-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Polysaccharides including resistant starch are categorized as dietary fiber and are used as an important prebiotic. Similar to soluble fibers, resistant starch also has a number of physiological effects that have been shown to be beneficial for health. Starch hydrolyzing enzymes, most importantly amylases, play essential roles in the production of resistant starch. This study aimed to develop α-amylase-treated maize flour with slow digestibility and unique physicochemical characteristics compared to native maize flour. In the current study, resistant starch type III from maize flour was prepared using α-amylase obtained from indigenously isolated Bacillus licheniformis. The α-amylase gene from B. licheniformis was amplified and cloned into the pET-24(a) vector, expressed in E. coli BL21 (DE3) cells and purified by metal ion affinity chromatography. The purified enzyme enhanced the yield of resistant starch 16-fold in maize flour. Scanning electron microscopy revealed that the granular structure of maize flour was disrupted into a dense network with irregular structure, and X-ray diffractograms confirmed the transformation from an amorphous to a crystalline structure upon α-amylase treatment. Thermogravimetric analysis revealed increased amylose content of α-amylase-treated maize flour. Moreover, α-amylase-treated maize flour resulted in a significant enhancement of the desired properties of maize flour, such as resistant starch content, amylose, milk absorption capacity, and iodine and fatty acid complexing ability, and a reduction in swelling power, water binding, oil absorption capacity, and in vitro digestibility compared to untreated maize flour. Resistant starch type III showed low digestibility and increased complexing ability with iodine and fatty acid and therefore could be a safe and beneficial alternative as a coating material for the delivery of active, sensitive ingredients to the colon.
Collapse
Affiliation(s)
- Anum Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ubaid Ur Rahman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samiya Siddiqui
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Irfan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
35
|
Wang X, Kan G, Shi C, Xie Q, Ju Y, Wang R, Qiao Y, Ren X. Purification and characterization of a novel wild-type α-amylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175. Protein Expr Purif 2019; 164:105444. [PMID: 31200017 DOI: 10.1016/j.pep.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
A novel wild-type α-amylase named wtAmy175 from Pseudoalteromonas sp. M175 strain was purified through ammonium sulphate precipitation, DEAE cellulose, and Sephadex G-75 sequentially (25.83-fold, 7.67%-yield) for biochemical characterization. SDS-PAGE and zymographic activity staining of purified enzyme showed a single band with a predicted molecular mass of about 61 kDa. The optimum temperature and pH for enzyme activity were 30 °C and 7.5, respectively. Additionally, the enzyme exhibited high activity and remarkable stability in 0-10 mM SDS. The values of Km and Vmax for soluble starch as substrate were 2.47 mg/ml and 0.103 mg/ml/min, respectively. Analysis of hydrolysis products of soluble starch and maltooligosaccharides showed that wtAmy175 cleaved the interior and the terminal α-1,4-glycosidic linkage in starch, and had transglycosylation activity. The result of fluorescence spectroscopy showed that wtAmy175 had strong binding affinity with soluble starch. In brief, this study discovered the first wild-type α-amylase so far with several distinctive properties of cold activity, SDS-resistance, and the mixed activity of α-amylase and α-glucosidase, suggesting that wtAmy175 possess high adaptive capability to endure harsh industrial conditions and would be an excellent candidate in detergent and textile industries.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China.
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Qiuju Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Ruiqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Yongping Qiao
- Wendeng Osteopath Hospital, Wendeng, 264400, PR China
| | - Xiulian Ren
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China.
| |
Collapse
|
36
|
Directed evolution of α-amylase from Bacillus licheniformis to enhance its acid-stable performance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00262-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
El-Sayed AKA, Abou-Dobara MI, El-Fallal AA, Omar NF. Heterologous expression, purification, immobilization and characterization of recombinant α-amylase AmyLa from Laceyella sp. DS3. Int J Biol Macromol 2019; 132:1274-1281. [PMID: 30953727 DOI: 10.1016/j.ijbiomac.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
AmyLa α-amylase gene from Laceyella sp. DS3 was heterologously expressed in E. coli BL21. E. coli BL21 maximally expressed AmyLa after 4 h of adding 0.02 mM IPTG at 37 °C. The recombinant AmyLa α-amylase was purified 2.19-fold through gel filtration and ion exchange chromatography. We immobilized the purified recombinant AmyLa α-amylase on four carriers; chitosan had the best efficiency. The recombinant free and the immobilized AmyLa α-amylase showed optimum activity in the pH ranges of 6.0-7.0 and 4.0-7.0, respectively and possessed an optimum temperature of 55 °C. The free enzyme had activation energy, Km, and Vmax of 291.5 kJ, 1.5 mg/ml, and 6.06 mg/min, respectively. The immobilized enzyme had activation energy, Km, and Vmax of 309.74 kJ, 6.67 mg/ml, and 50 mg/min, respectively. The immobilized enzyme was calcium-independent and insensitive (relative to the free enzyme) to metals. It could also be reused for seven cycles.
Collapse
Affiliation(s)
- Ahmed K A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt
| | | | - Amira A El-Fallal
- Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt.
| |
Collapse
|
38
|
Zhao F, Song Q, Wang B, Du R, Han Y, Zhou Z. Secretion of the recombination α-amylase in Escherichia coli and purification by the gram-positive enhancer matrix (GEM) particles. Int J Biol Macromol 2019; 123:91-96. [PMID: 30423395 DOI: 10.1016/j.ijbiomac.2018.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
α-Amylases are important enzymes in industry. A recombinant α-amylase with a secretion signal peptide and an AcmA tag was expressed in Escherichia coli to improve the yield. The induction concentrations were optimized, and the temperature had a significant influence on soluble expression and secretion. A visible band could be obtained when the induction was conducted at 16 °C. The gram-positive enhancer matrix (GEM) particles could separate and purify the recombinant α-amylase with the AcmA tag, and no visible band could be seen in the culture even after the culture was concentrated ten times. The solution and concentration of the recombinant α-amylase could be adjusted by GEM particles. The recombinant untagged α-amylase was obtained after digestion. The α-amylase was characterized. The recombinant α-amylase was a thermophilic enzyme with a broad pH tolerance. In addition, the enzyme activity of the recombinant α-amylase was independent of Ca2+. The recombinant α-amylase contained the OmpA signal peptide and the AcmA tag and was expressed and purified quickly and easily.
Collapse
Affiliation(s)
- Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
39
|
Li B, Zhang N, Feng Q, Li H, Wang D, Ma L, Liu S, Chen C, Wu W, Jiao L. The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity. Int J Biol Macromol 2019; 123:713-722. [DOI: 10.1016/j.ijbiomac.2018.11.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023]
|
40
|
Fang W, Xue S, Deng P, Zhang X, Wang X, Xiao Y, Fang Z. AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:95. [PMID: 31044008 PMCID: PMC6477751 DOI: 10.1186/s13068-019-1432-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/12/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch is an inexpensive and renewable raw material for numerous industrial applications. However, most starch-based products are not cost-efficient due to high-energy input needed in traditional enzymatic starch conversion processes. Therefore, α-amylase with high efficiency to directly hydrolyze high concentration raw starches at a relatively lower temperature will have a profound impact on the efficient application of starch. RESULTS A novel raw starch digesting α-amylase (named AmyZ1) was screened and cloned from a deep-sea bacterium Pontibacillus sp. ZY. Phylogenetic analysis showed that AmyZ1 was a member of subfamily 5 of glycoside hydrolase family 13. When expressed in Escherichia coli, the recombinant AmyZ1 showed high activity at pH 6.0-7.5 and 25-50 °C. Its optimal pH and temperature were 7.0 and 35 °C, respectively. Similar to most α-amylases, AmyZ1 activity was enhanced (2.4-fold) by 1.0 mM Ca2+. Its half-life time at 35 °C was also extended from about 10 min to 100 min. In comparison, AmyZ1 showed a broad substrate specificity toward raw starches, including those derived from rice, corn, and wheat. The specific activity of AmyZ1 towards raw rice starch was 12,621 ± 196 U/mg, much higher than other reported raw starch hydrolases. When used in raw starch hydrolyzing process, AmyZ1 hydrolyzed 52%, 47% and 38% of 30% (w/v) rice, corn, and wheat starch after 4 h incubation. It can also hydrolyze marine raw starch derived from Chlorella pyrenoidosa, resulting in 50.9 mg/g DW (dry weight of the biomass) of reducing sugars after 4 h incubation at 35 °C. Furthermore, when hydrolyzing raw corn starch using the combination of AmyZ1 and commercial glucoamylase, the hydrolysis rate reached 75% after 4.5 h reaction, notably higher than that obtained in existing starch-processing industries. CONCLUSIONS As a novel raw starch-digesting α-amylase with high specific activity, AmyZ1 efficiently hydrolyzed raw starches derived from both terrestrial and marine environments at near ambient temperature, suggesting its application potential in starch-based industrial processes.
Collapse
Affiliation(s)
- Wei Fang
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Saisai Xue
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Pengjun Deng
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Xiaotang Wang
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199 USA
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| |
Collapse
|
41
|
Enhanced acidic adaptation of Bacillus subtilis Ca-independent alpha-amylase by rational engineering of pKa values. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Du R, Zhao F, Qiao X, Song Q, Ye G, Wang Y, Wang B, Han Y, Zhou Z. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1. Prep Biochem Biotechnol 2018; 48:768-774. [PMID: 30303444 DOI: 10.1080/10826068.2018.1504221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Strain Bacillus amyloliquefaciens BH1 was evaluated for the generation of α-amylase. Culture conditions and medium components were optimized by a statistical approach for the optimal generation of α-amylase with response surface methodology (RSM) method. The Plackett-Burman (PB) design was executed to select the fermentation variables and Central composite design (CCD) for optimizing significant factors influencing production. The optimum levels for highest generation of α-amylase activity (198.26 ± 3.54 U/mL) were measured. A 1.69-fold improve generation was acquired in comparison with the non-optimized. Partial characterization of the α-amylase indicated optimal pH and temperature at 7.0 and 40 °C, respectively. Crude α-amylase maintained a constant pH range 5.0-8.0 and 30-70 °C. The α-amylase was independent of Ca2+, and the activity was inhibited by Fe3+, Co2+, Cu2+, and Hg2+. The thermo and pH stability of the α-amylase indicate its extensive application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Renpeng Du
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Fangkun Zhao
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Xiaoxiao Qiao
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Qiaozhi Song
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Guangbin Ye
- b YoujiangMedical University for Nationalities , Guangxi , Baise , PR China
| | - Yu Wang
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Binbin Wang
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Ye Han
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Zhijiang Zhou
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| |
Collapse
|
43
|
Sahnoun M, Jemli S, Trabelsi S, Bejar S. Modifing Aspergillus Oryzae S2 amylase substrate specificity and thermostability through its tetramerisation using biochemical and in silico studies and stabilization. Int J Biol Macromol 2018; 117:483-492. [DOI: 10.1016/j.ijbiomac.2018.05.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
|
44
|
Functional change of Bacillus acidocaldarius α-amylase chemically modified with periodate oxidized polysaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Mesbah NM, Wiegel J. Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase AmyD8. Catal Letters 2018. [DOI: 10.1007/s10562-018-2493-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Yin H, Zhang L, Yang Z, Li S, Nie X, Wang Y, Yang C. Contribution of domain B to the catalytic properties of a Flavobacteriaceae α-amylase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Molecular Cloning and Characterization of a Novel α-Amylase from Antarctic Sea Ice Bacterium Pseudoalteromonas sp. M175 and Its Primary Application in Detergent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3258383. [PMID: 30050926 PMCID: PMC6040283 DOI: 10.1155/2018/3258383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022]
Abstract
A novel cold-adapted and salt-tolerant α-amylase gene (amy175) from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 was successfully cloned and expressed. The open reading frame (ORF) of amy175 had 1722 bp encoding a protein of 573 amino acids residues. Multiple alignments indicated Amy175 had seven highly conserved sequences and the putative catalytic triad (Asp244, Glu286, and Asp372). It was the first identified member of GH13_36 subfamily which contained QPDLN in the CSR V. The recombinant enzyme (Amy175) was purified to homogeneity with a molecular mass of about 62 kDa on SDS-PAGE. It had a mixed enzyme specificity of α-amylase and α-glucosidase. Amy175 displayed highest activity at pH 8.0 and 25°C and exhibited extreme salt-resistance with the maximum activity at 1 M NaCl. Amy175 was strongly stimulated by Mg2+, Ni2+, K+, 1 mM Ca2+, 1 mM Ba2+, 1 mM Pb2+, 1 mM sodium dodecyl sulphate (SDS), and 10% dimethyl sulfoxide (DMSO) but was significantly inhibited by Cu2+, Mn2+, Hg2+, 10 mM β-mercaptoethanol (β-ME), and 10% Tween 80. Amy175 demonstrated excellent resistance towards all the tested commercial detergents, and wash performance analysis displayed that the addition of Amy175 improved the stain removal efficiency. This study demonstrated that Amy175 would be proposed as a novel α-amylase source for industrial application in the future.
Collapse
|
48
|
Du R, Song Q, Zhang Q, Zhao F, Kim RC, Zhou Z, Han Y. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol 2018; 115:1151-1156. [PMID: 29729336 DOI: 10.1016/j.ijbiomac.2018.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/08/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
Abstract
In the present study, a novel α-amylase produced by Bacillus amyloliquefaciens BH072 was purified and characterized. The molecular weight of purified α-amylase was approximately 68 kDa, determined by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and ten amino acid of N-terminal was NSGLNGYLTH. The kinetic parameters Km and Vmax were 4.27 ± 0.21 mg/mL and 987.34 ± 23.34 U/mg, respectively. Purified α-amylase showed maximal activity at pH 7 and 60 °C. Enzyme remained stable in pH range 6.0-7.0 and 50-80 °C. The activity of the α-amylase was Ca2+ independent and stability in the presence of surfactant, oxidizing and bleaching agents. The β-mercaptoethanol and EDTA greatly enhanced and reduced α-amylase activity, respectively. This enzyme has high hydrolysis rate toward corn, wheat and potato starch and hydrolyzes soluble starch to glucose, maltose, maltotriose and maltotetraose, indicating that the α-amylase represents a promising candidate for applications in the food industry.
Collapse
Affiliation(s)
- Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaoge Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rak-Chon Kim
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Han Dok Su Pyongyang University of Light Industry, Pyongyang 999093, Democratic People's Republic of Korea
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
49
|
Hleap JS, Blouin C. The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach. PLoS One 2018; 13:e0196135. [PMID: 29698417 PMCID: PMC5919626 DOI: 10.1371/journal.pone.0196135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases) is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape.
Collapse
Affiliation(s)
- Jose Sergio Hleap
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- SQUALUS Foundation, Cali, Colombia
- * E-mail:
| | - Christian Blouin
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
50
|
Trincone A. Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications. Molecules 2018; 23:E901. [PMID: 29652849 PMCID: PMC6017418 DOI: 10.3390/molecules23040901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
After generating much interest in the past as an aid in solving structural problems for complex molecules such as polysaccharides, carbohydrate-hydrolyzing enzymes of marine origin still appear as interesting biocatalysts for a range of useful applications in strong interdisciplinary fields such as green chemistry and similar domains. The multifaceted fields in which these enzymes are of interest and the scarce number of original articles in literature prompted us to provide the specialized analysis here reported. General considerations from modern (2016-2017 interval time) review articles are at start of this manuscript; then it is subsequently organized in sections according to particular biopolymers and original research articles are discussed. Literature sources like the Science Direct database with an optimized W/in search, and the Espacenet patent database were used.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|