1
|
Nath J, Dewan M, Ghosh A, Ray SS, Orasugh JT, Lahiri B, Chattopadhyay D, Adhikari A. Chitosan-based adsorbents for remediation of toxic dyes from wastewater: A review on adsorption mechanism, reusability, machine learning based modeling and future perspectives. Int J Biol Macromol 2025; 311:143388. [PMID: 40280518 DOI: 10.1016/j.ijbiomac.2025.143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The disposal of recalcitrant dyes in aquatic environments from various industrial sectors is a threat to both the plant and animal kingdom. The presence of dyes in various water bodies undermines the availability of uncontaminated drinking water and may result in serious health-related issues and diseases. Therefore, it is of utmost importance to get rid of these harmful dyes from the aquatic environment. Hence various treatment techniques came to the fore, but they have their corresponding advantages and disadvantages. Several researchers have reported the adsorption of dyes with carbon-based composites, polymeric materials, and metal-based nanoparticles. However, the one with biocompatible materials or biopolymers deserves special attention as they are benign from an environmental viewpoint. We have chosen chitosan as our material of interest and elaborated on the positive aspects of chitosan as an excellent candidate for dye adsorption. Although a plethora of review articles has been disseminated in the past to underscore the utilization of chitosan-based adsorbents in the extraction of dyes, this manuscript endeavors to furnish a thorough examination of the complete adsorption process, encompassing its parameters and kinetics, thus facilitating a reader lacking foundational knowledge in this field to attain a more comprehensible understanding of the subject matter. This review also integrates a comprehensive overview of optimization methodologies for dye adsorption and examines relevant patents-an area that, to the best of our knowledge, has not been thoroughly addressed in previous review articles. Conclusively, it can be stated that chitosan can efficiently adsorb dye from wastewater showing good performance even after five cycles of adsorption/desorption. Moreover, several software programs can be used for optimizing maximum dye adsorption capacity of chitosan which shows well alignment with experimental results, thus making it suitable for real-life applications.
Collapse
Affiliation(s)
- Jyotishka Nath
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Mitali Dewan
- Department of Chemistry, Shahid Matangini Hazra Government General Degree College for Women, Chakshrikrishnapur, Kulberia, P.O: Kulberia, Dist: Purba Medinipur, 721649, West Bengal, India
| | - Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Basudev Lahiri
- Indian Institute of Technology Kharagpur, Department of Electronics & Electrical Communication Engineering at Indian Institute of Technology, Kharagpur, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Arpita Adhikari
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
2
|
Muhammad H, Tuzen M, Siddiqui A, Umar AR. Effective adsorption of Congo red azo dye from different water and wastewater by using porous Fe 3O 4-bentonite@chitosan nanocomposite: A multivariate optimization. Int J Biol Macromol 2025; 310:143439. [PMID: 40280521 DOI: 10.1016/j.ijbiomac.2025.143439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
In this study, a novel Fe3O4-Chitosan@Bentonite (Fe3O4-CS/Bent) nanocomposite was synthesized via a green and scalable co-precipitation method for the efficient adsorption of toxic azo dye Congo Red (CR) from wastewater. To analyze the physicochemical changes in nanocomposite before and after CR adsorption SEM-EDS, FTIR, XRD, BET, and VSM were employed. The results revealed that Fe3O4-CS/Bent nanocomposite shows significantly enhanced surface area, pore volume, and adsorption capacity compared to pure Fe3O4 NPs, making it highly effective for environmental remediation. Despite its lower magnetization due to non-magnetic additives, it retains superparamagnetic properties that facilitate efficient magnetic separation in water treatment. Furthermore, the mesoporous Fe3O4-CS/Bent nanocomposite can adsorb CR through electrostatic interactions, hydrogen bondings, and surface interaction under carefully optimized adsorption conditions (pH 5, adsorbent amount of 9 mg, and contact time of 25 min) via multivariate analyses. Subsequently, the adsorption process followed a pseudo-2nd order and Langmuir model, yielding a maximum adsorption capacity of 169 mg/g with 96 % removal efficiency, suggesting a monolayer chemisorption process on a relatively heterogeneous surface. The rate constant was determined to be 0.02 g/g-min suggesting a moderate adsorption rate. Thermodynamic analysis indicated adsorption of CR is spontaneous, exothermic, and feasible at moderate temperatures. Furthermore, Fe3O4-CS/Bent exhibits outstanding removal efficiencies in recovery experiments, with 98.6-101.4 % recovery across drinking, tap, canal, and wastewater samples. The adsorbent demonstrated excellent reusability, maintaining over 70 % efficiency after 8th regeneration cycle. These findings establish that Fe3O4-CS/Bent nanocomposite is found to be cost-effective environmentally friendly adsorbent for water treatment methods.
Collapse
Affiliation(s)
- Haji Muhammad
- Tokat Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkiye; Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan.; Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkiye.
| | - Asma Siddiqui
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan
| | - Abdul Rehman Umar
- Institute of Supramolecular Science and Engineering (ISIS) - UMR 7006 University of Strasbourg CNRS, 8 Allee Gaspard Monge, Strasbourg F-67000, France
| |
Collapse
|
3
|
Senapati D, Swain J, Priyadarshini A, Hajra S, Kim HJ, Samantaray R, Sinha JK, Sahu R. Photocatalytic removal of congo red dye using ZIF-8@BiVO4: impact of catalyst design and operational parameters. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2025; 36:667. [DOI: 10.1007/s10854-025-14610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/18/2025] [Indexed: 05/04/2025]
|
4
|
Rubangakene NO, Safo K, Shokry H. Enhanced decontamination of cationic and anionic dye from aqueous solutions using Hybrid ultrasonicated eggshell biochar nanomaterial: Statistical optimization model, techno-economic and sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12304-12327. [PMID: 40293609 DOI: 10.1007/s11356-025-36369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
This study explored the synthesis of a green hybrid ultrasonicated eggshell biochar adsorbent (HUEBA) for the decontamination of cationic methylene blue (MB) and anionic methyl orange (MO). The hybrid material's morphological structure and physicochemical properties were examined using SEM, TEM, BET, FTIR, XRD, and point of zero charge techniques. Batch adsorption studies in decontamination of dye pollutants at varying dosages, pH, concentrations, temperatures, and time were performed. The produced material demonstrated outstanding performance against the sorption of MB and MO, achieving 85.49 and 53.45%, respectively, at an equilibration time of 2 h. Response surface methodology (RSM) optimization demonstrated satisfactory predictability for MB removal efficiency, with the importance of the model's validity confirmed through analysis of variance (p < 0.05) and R2 value of 0.99. Optimized conditions (236 mg/100 mL adsorbent dosage and 233 min adsorption time) resulted in over 99.9% decontamination of the initial 61 mg/L of MB dye. The validation of the sorption process with numerical isotherm models demonstrated Langmuir recorded a better fit than Freundlich at R2 of 0.9888 and 0.9939 mg/g with MB and MO, respectively. Moreover, the monolayer sorption capacities were 99.80 and 73.53 mg/g. The kinetics studies fitted the pseudo-second order and Elovich model against both dyes, revealing chemisorption processes. The thermodynamic studies exhibited exothermic, spontaneous, favourable and random for the sorption of both dye pollutants. The postulated mechanism of decontamination of MB and MO revealed electrostatic interaction, π-π electron stacking and hydrogen bridging. Hence, it is an outstanding material for decontaminating organic pollutants from wastewater systems.
Collapse
Affiliation(s)
- Norbert Onen Rubangakene
- Environmental Engineering Department, University of Science and Technology (E-JUST, New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Kingsley Safo
- Chemical and Petrochemical Engineering Department, University of Science and Technology (E-JUST, New Borg El-Arab City 21934, Alexandria, Egypt
| | - Hassan Shokry
- Environmental Engineering Department, University of Science and Technology (E-JUST, New Borg El-Arab City 21934, Alexandria, Egypt
| |
Collapse
|
5
|
Zhang X, Yang X, Xie F, Chen X, Zhang Y, Zhang Q. Magnetic Biochar Prepared with Rosa roxburghii Residue as Adsorbents for Congo Red Removal. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1306. [PMID: 40141589 PMCID: PMC11943761 DOI: 10.3390/ma18061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
In this work, magnetic biochars (MBCs) were produced with the chemical coprecipitation method. The resulting materials were dried at 50 °C for 12 h and characterized via SEM-EDS, XRD, FT-IR, BET, TGA, and VSM techniques to evaluate their efficacy in removing Congo red (CR). The effects of solution pH, CR concentration, MBC1:1 mass, and a variety of ions on the adsorption performance were systematically examined. According to the experimental results, for 200 mL of 50 mg/L CR, the highest adsorption capacity of 20 mg MBC1:1 was 172.88 mg/g in a 2 h period at pH 7. Additionally, the pseudo-second-order (PSO) model-based kinetic analysis exhibited that the process of adsorption adhered to this model. Furthermore, the interaction between MBC1:1 and CR was best described by Langmuir multilayer adsorption, according to isotherm analysis. All of these theoretical and practical findings point to the great potential of MBC1:1 as adsorbents for the applications of wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| | - Xueqin Yang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Feiran Xie
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Xianglan Chen
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Yutao Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| | - Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| |
Collapse
|
6
|
Hu S, Lu H, Xie W, Cao S, Shi J, Guo Y, Zhu X, Xu Z, Gao H. Oxidative degradation of sulfamethazine by manganese oxide supported biochar activated periodate: Effect and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117700. [PMID: 39793289 DOI: 10.1016/j.ecoenv.2025.117700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
In this study, manganese oxide supported biochar (MBC) was used as a catalyst of periodate (PI) for the oxidative degradation of sulfonamide antibiotic sulfamethazine (SMZ). The degradation rate of 10 mg/L SMZ reached 99 % in 60 min in the MBC/PI system, and the optimal condition was pH 3.5, 0.12 g/L of MBC, and 0.17 mM of PI. Combined with quenching experiment and electron paramagnetic resonance (EPR) characterization, it was determined that the reactive oxygen species (ROS) participating in the reaction include iodate radical (IO3∙), singlet oxygen (1O2), and hydroxyl radical (∙OH). ROS, Mn(III) and electron transfer are three crucial SMZ removal mechanisms in MBC activated PI system, and the conversion process of reactive species was deduced. The manganese redox cycles, oxygen-containing functional groups on MBC surface, and BC-O-Mn(II) complex participated in reactive species production. The loading of manganese oxide increases the number of oxygen-containing functional group on the surface of BC, and BC-O-Mn(II) complex formation resulted in the higher catalytic activity compared with BC. Ten SMZ oxidative products and four transformation pathways was identified. This study provided an efficient and practical method to remove sulfonamide antibiotics and revealed its theoretical mechanism.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hao Lu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Wenyi Xie
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Shaohua Cao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Jiaqi Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China.
| | - Yang Guo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Xin Zhu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Han Gao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China.
| |
Collapse
|
7
|
Kim JY, Kim HB, Kwon D, Tsang YF, Nam IH, Kwon EE. Establishment of circular economy by utilising textile industry waste as an adsorbent for textile dye removal. ENVIRONMENTAL RESEARCH 2024; 262:119987. [PMID: 39270961 DOI: 10.1016/j.envres.2024.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study explored the use of waste from the textile industry (silkworm byproducts) as a promising raw feedstock for the production of carbon-based adsorbents (biochar). The silk excreta biochar generated at 600 and 700 °C (referred to as SEB-600 and SEB-700, respectively) were evaluated in terms of their efficacy in adsorbing cationic (methylene blue) and anionic (Congo red) textile dyes. Although the functional groups on the surfaces of SEB-600 and SEB-700 were not significantly different, the specific surface area of SEB-700 was greater than that of SEB-600. The dye adsorption capacity of SEB-700 was higher than that of SEB-600. The adsorption of methylene blue and Congo red on SEB-700 followed Freundlich isotherms (R2 ≥ 0.963) and pseudo-second-order kinetics (R2 = 0.999), indicating chemisorption with multilayer characteristics. The mechanism for the adsorption of methylene blue on SEB-700 may involve interactions with the negatively charged functional groups on the surface and the mesopores of SEB-700. For the adsorption of Congo red, the mesopores in the biochar and the electrostatic interaction between biochar (positively charged because of the dye solution pH < pHzpc) and the anionic dye could affect adsorption. The maximum adsorption capacities of SEB-700 for methylene blue and Congo red were determined to be 168.23 and 185.32 mg g-1, respectively. Utilising the waste generated from the textile industry to remove pollutants will build a sustainable loop in the industry by minimising waste generation and pollutant emissions.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hye-Bin Kim
- Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju, 55365, Republic of Korea
| | - Dohee Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong
| | - In-Hyun Nam
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Ali QA, Ali MF, Mohammed SJ, M-Ridha MJ. Utilising date palm fibres as a permeable reactive barrier to remove methylene blue dye from groundwater: a batch and continuous adsorption study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1112. [PMID: 39466462 DOI: 10.1007/s10661-024-13262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
This study aimed to utilise cheap and abundantly available date palm fibre (DPF) wastes for the remediation of methylene blue (MLB) dye-contaminated groundwater. The DPF adsorbents were first prepared, followed by various characterisation analyses, including surface morphology, functional groups, and material structure. Subsequently, the DPF adsorbents were applied in the batch and continuous adsorption studies to assess the MLB dye removal from aqueous environments. The batch adsorption study achieved 98% maximum removal efficiency with a contact time, adsorbents dosage, initial pH, temperature, particle size, initial dye concentration, and agitation speed of 105 min, 3 g/L, 7.0, 45 °C, 0.075 mm, 50 mg/L, and 150 rpm, respectively. Langmuir was the best-fitted isotherm model depending on a higher correlation coefficient (R2 = 0.985), with a maximum monolayer dye adsorption capacity (qmax) of 54.204 mg/g. Additionally, the second order was the best-fitted kinetic model (R2 = 0.990), indicating that MLB dye was removed through chemisorption. Besides, the positive enthalpy change (ΔH°) and negative Gibb's free energy (ΔG°) values verified the endothermic process and spontaneous adsorption. According to the impact analysis of initial dye concentrations and flow rates on the permeable reactive barrier (PRB) performance in the continuous adsorption study using the Thomas, Belter, and Yan models, the experimental results and predicted breakthrough curves reflected an excellent agreement (R2 ≥ 0.8767) and a sum of squared errors (SSE) ≤ 0.4834. In short, the results demonstrated DPF as an effective adsorbent material in PRB technology.
Collapse
Affiliation(s)
- Qahtan Adnan Ali
- Department of Environment and Pollution Techniques Engineering, Technical Engineering College/Kirkuk, Northern Technical University, 36001, Kirkuk, Iraq
- Renewable Energy Research Center-Kirkuk, Northern Technical University, 36001, Kirkuk, Iraq
| | - Muna Faeq Ali
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Sabah J Mohammed
- Department of Environmental, North Refineries Company (NRC), Ministry of Oil, Baiji, Salahuldeen, Iraq.
| | - Mohanad J M-Ridha
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
9
|
El-Habacha M, Lagdali S, Dabagh A, Mahmoudy G, Assouani A, Benjelloun M, Miyah Y, Iaich S, Chiban M, Zerbet M. High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study. ENVIRONMENTAL RESEARCH 2024; 259:119542. [PMID: 38969319 DOI: 10.1016/j.envres.2024.119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Wastewater textile dye treatment is a challenge that requires the development of eco-friendly technology to avoid the alarming problems associated with water scarcity and health-environment. This study investigated the potential of phengite clay as naturally low-cost abundant clay from Tamgroute, Morocco (TMG) that was activated with a 0.1 M NaOH base (TMGB) after calcination at 850 °C for 3 h (TMGC) before its application in the Congo red (CR) anionic dye from the aqueous solution. The effect of various key operational parameters: adsorbent dose, contact time, dye concentration, pH, temperature, and the effect of salts, was studied by a series of adsorption experiments in a batch system, which affected the adsorption performance of TMG, TMGC, and TMGB for CR dye removal. In addition, the properties of adsorption kinetics, isotherms, and thermodynamics were also studied. Experimental results showed that optimal adsorption occurred at an acidic pH. At a CR concentration of 100 mg L-1, equilibrium elimination rates were 68%, 38%, and 92% for TMG, TMGC, and TMGB, respectively. The adsorption process is rapid, follows pseudo-second-order kinetics, and is best described by a Temkin and Langmuir isotherm. The thermodynamic parameters indicated that the adsorption of CR onto TMGB is endothermic and spontaneous. The experimental values of CR adsorption on TMGB are consistent with the predictions of the response surface methodology. These led to a maximum removal rate of 99.97% under the following conditions: pH = 2, TMGB dose of 7 g L-1, and CR concentration of 50 mg L-1. The adsorbent TMGB's relatively low preparation cost of around $2.629 g-1 and its ability to regenerate in more than 6 thermal calcination cycles with a CR removal rate of around 56.98%, stimulate its use for textile effluent treatment on a pilot industrial scale.
Collapse
Affiliation(s)
- Mohamed El-Habacha
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco.
| | - Salek Lagdali
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdelkader Dabagh
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Guellaa Mahmoudy
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdallah Assouani
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah Fez, Morocco
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Soulaiman Iaich
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco; Research Team of Energy and Sustainable Development, Higher School of Technology Guelmim, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Zerbet
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
10
|
Tian S, Shi X, Wang S, He Y, Zheng B, Deng X, Zhou Z, Wu W, Xin K, Tang L. Recyclable Fe 3O 4@UiO-66-PDA core-shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J Colloid Interface Sci 2024; 665:465-476. [PMID: 38537592 DOI: 10.1016/j.jcis.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.
Collapse
Affiliation(s)
- Shuangqin Tian
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China; Honghe Prefecture Nationality Senior High School, Honghe 661200, Yunnan Province, PR China.
| | - Shujie Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Yi He
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Bifang Zheng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| |
Collapse
|
11
|
Park SY, Shin H, Youn HJ. Facile crosslinking methods for water-durable oven-dried cellulose nanofibril foams and their application as dye adsorbents. Int J Biol Macromol 2024; 267:131432. [PMID: 38583849 DOI: 10.1016/j.ijbiomac.2024.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The potential applications of cellulose nanofibril-based foam materials can be expanded by their enhanced water durability. This study proposes two crosslinking methods to improve the water durability of the oven-dried carboxymethylated cellulose nanofibril (CMCNF) foam. The first method involves the addition of a crosslinker, polyamideamine epichlorohydrin. The second method is the self-crosslinking of CMCNFs via heat treatment at 140 °C for less than an hour, which is a simple way to crosslink CMCNF-based materials. Both crosslinking methods resulted in excellent water durability and wet resilience of the foams, which also exhibited high water absorbency. Furthermore, neither method affected the structural nor mechanical properties of the oven-dried CMCNF foams. In particular, self-crosslinking by heat treatment proved to be as effective as using a crosslinking agent. Compared to the freeze-dried foam, the oven-dried foam exhibited slower methylene blue (MB) dye adsorption but a higher maximum adsorption capacity (238-250 mg/g), attributed to the closed pore structure and a larger specific surface area. In addition, the isotherm and reusability of the foam for MB adsorption were investigated. These crosslinking processes expanded the potential use of oven-dried CMCNF foams as adsorbents for cationic dyes.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Heenae Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Jung Youn
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Hegde V, Uthappa UT, Mane P, Ji SM, Suneetha M, Wang B, Altalhi T, Subrahmanya TM, Kurkuri MD. Design of low-cost natural casein biopolymer based adsorbent for efficient adsorption of multiple anionic dyes and diclofenac sodium from aqueous solutions. CHEMOSPHERE 2024; 353:141571. [PMID: 38423148 DOI: 10.1016/j.chemosphere.2024.141571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The treatment of various organic pollutants from industrial wastewater using bio-based materials has gained significant attention owing to their excellent properties such as low-cost, eco-friendly, non-toxic, and biodegradability. In this perspective, casein (Cn), a protein-based biopolymer, was extracted from the cow milk as a low-cost adsorbent, and the adsorption performances were determined for the pristine Cn. The adsorbent was employed for the removal of two different classes of targeted pollutant anionic dyes such as Congo red (CR), Eriochrome Black T (EBT), Eosin Y (EY), and pharmaceutical waste i.e., diclofenac sodium (DS) and displayed better adsorption performances with the maximum adsorption capacity of 85.54, 31.72, 70.42 and 358.42 mg g-1 respectively. The interactions between Cn and pollutants are mainly ascribed to the electrostatic interaction, hydrogen bonding, hydrophobic interaction, and π-π interactions. Furthermore, to validate with realistic application the adsorbent proved with an excellent removal efficiency of 91.43% for fabric whitener i.e., Ujala Supreme®. These obtained results suggest that the Cn could be the potential adsorbent to effectively eliminate toxic pollutants from the aqueous solutions.
Collapse
Affiliation(s)
- Vinayak Hegde
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru-562112, Karnataka, India
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
| | - PadmajaV Mane
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru-562112, Karnataka, India
| | - Seong Min Ji
- School of Chemical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - T M Subrahmanya
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru-562112, Karnataka, India.
| |
Collapse
|
13
|
Chai Z, Liu B, Lv P, Bai Y, Wang J, Su W, Song X, Yu G, Xu G. Microwave synthesis of amino-functionalized MCM-41 from coal gasification fine slag for efficient bidirectional adsorption of anionic and cationic dyes. CHEMOSPHERE 2024; 351:141229. [PMID: 38272133 DOI: 10.1016/j.chemosphere.2024.141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Coal based solid waste has been recognized as a sustainable raw material for the preparation of high added value materials for wastewater treatment. In this paper, a preparation route was designed for the rapid, efficient, and low-cost preparation of MCM-41 zeolite using coal gasification fine slag as raw material. Functionalization modification of MCM-41 was carried out by grafting amino groups on its surface to improve its application performance. Moreover, the prepared functionalized material is used for bidirectional adsorption of anionic and cationic dyes. The experimental results indicate that MCM-41 zeolite with highly ordered pore structure was rapidly prepared using the advantages of fast heating and strong permeability of microwave synthesis method, with a specific surface area of up to 862.03 m2/g. Amine functionalized MCM-41 exhibits strong adsorption capacity for both cationic and anionic dyes, with maximum adsorption capacities for methylene blue and Congo red being 292.40 mg/g and 354.61 mg/g, respectively. The study of adsorption kinetics and adsorption mechanism indicate that the adsorption process is mainly controlled through chemical adsorption, including electrostatic attraction, hydrogen bonding, and π-π interactions. The results of this study will provide useful references for the use of coal based solid waste to prepare functional materials for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Zhen Chai
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Peng Lv
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Yonghui Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Jiaofei Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Weiguang Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xudong Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Guangsuo Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai, 200237, China
| | - Guangyu Xu
- Shandong Yankuangguotuo Science & Engineering Co., Ltd., Zoucheng, 273500, China
| |
Collapse
|
14
|
Radoor S, Kandel DR, Park K, Jayakumar A, Karayil J, Lee J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. CHEMOSPHERE 2024; 350:140990. [PMID: 38141681 DOI: 10.1016/j.chemosphere.2023.140990] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Methylene blue (MB), a common dye in the textile industry, has a multitude of detrimental consequences on humans and the environment. Accordingly, it is necessary to remove dyes from water to guarantee our health and sustainable ecosystem. In this study, we developed polyvinyl alcohol (PVA)-based hydrogel adsorbents with high adsorption capacity by adding three types of carrageenan (kappa, iota, and lambda) to remove MB from water. Thanks to the functional groups, the PVA/carrageenan membranes dramatically increased the removal efficiency (kappa, 98.8%; iota, 97.0%; lambda, 95.4%) compared to the pure PVA membrane (6.3%). Among the three types of PVA/carrageenan membranes, the PVA/kappa-carrageenan membrane exhibited the best adsorption capacity of 147.8 mg/g. This result implies that steric hindrance was considerably significant, given that kappa carrageenan has only one sulfate group in the repeating unit, whereas iota and lambda carrageenan composite PVA membranes possess two and three sulfate groups. Apart from the maximum adsorption capacity, this study addressed a variety of characteristics of PVA/carrageenan membranes such as the effects of initial MB concentration, kappa carrageenan weight percentage, contact time, adsorbent dosage, and temperature on the adsorption performance. In addition, the kinetic and thermodynamic studies were also carried out. Lastly, the reusability of the PVA/carrageenan membrane was verified by the 98% removal efficiency maintained after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
15
|
Anvari S, Hosseini M, Jahanshahi M, Banisheykholeslami F. Design of chitosan/boehmite biocomposite for the removal of anionic and nonionic dyes from aqueous solutions: Adsorption isotherms, kinetics, and thermodynamics studies. Int J Biol Macromol 2024; 259:129219. [PMID: 38184037 DOI: 10.1016/j.ijbiomac.2024.129219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
This study introduces a chitosan/boehmite biocomposite as an efficient adsorbent for removing anionic Congo Red (CR) and non-ionic Bromothymol Blue (BTB) from water. Boehmite nanoparticles were synthesized using the Sol-gel method and then attached to chitosan particles using sodium tripolyphosphate through co-precipitation method. Characterized through FTIR, FE-SEM, BET, and XRD, the biosorbent displayed structural integrity with optimized pH conditions of 3 for CR and 4 for BTB, achieving over 90 % adsorption within 30 min. Pseudo second order kinetics model and Langmuir isotherm revealed monolayer sorption with capacities of 64.93 mg/g for CR and 90.90 mg/g for BTB. Thermodynamics indicated a spontaneous and exothermic process, with physisorption as the primary mechanism. The biosorbent demonstrated excellent performance and recyclability over five cycles, highlighting its potential for eco-friendly dye removal in contaminated waters.
Collapse
Affiliation(s)
- Sina Anvari
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Morteza Hosseini
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | |
Collapse
|
16
|
Gong J, Jiang H, Li X, Cheng H, Wang Z, Cai J, Li M, Wang P, Wang H, Hu X, Hu X. Highly efficient activation of periodate by a manganese-modified biochar to rapidly degrade methylene blue. ENVIRONMENTAL RESEARCH 2024; 241:117657. [PMID: 37980988 DOI: 10.1016/j.envres.2023.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.
Collapse
Affiliation(s)
- Jiamin Gong
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Honghui Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xiang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Ziqi Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Jingju Cai
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xi Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| |
Collapse
|
17
|
Huang W, Xu Y, Chen N, Cheng G, Ke H. Removal of cationic dyes from aqueous solution using polyacrylic acid modified hemp stem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5568-5581. [PMID: 38127237 DOI: 10.1007/s11356-023-31627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Water pollution caused by dyes is a pressing environmental challenge due to their persistence and difficulty in degradation. Herein, an anionic adsorbent (HS-PAANa) was synthesized by grafting polyacrylic acid (PAA) onto the agricultural waste-hemp stem (HS). The obtained HS-PAANa adsorbent exhibited rapid adsorption kinetics, high adsorption capacity, and a favorable preference for cationic dyes, such as methylene blue (MB) and crystal violet (CV). The experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm, demonstrating the efficiency of HS-PAANa in dye removal. Notably, the optimal adsorption capacities of HS-PAANa for MB and CV were found to be 1296.65 mg/g and 1451.43 mg/g, respectively. In the cationic/anionic dyes (MB/MO) binary systems, HS-PAANa exhibited enhanced selective adsorption of cationic dyes (MB), indicating its potential for targeted removal of specific dyes from mixed solutions. Moreover, HS-PAANa adsorption shows an excellent recyclability, after five cycles, HS-PAANa still maintained MB and CV removal rates of 93.85% and 95.08%, respectively. Therefore, the bioadsorbent HS-PAANa exhibits high potential as a highly efficient adsorbent for the effective treatment of cationic pollutants in wastewater.
Collapse
Affiliation(s)
- Wentao Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Yuping Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Niansheng Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China.
| |
Collapse
|
18
|
Gopalakrishnan S, Kannan P, Balasubramani K, Rajamohan N, Rajasimman M. Sustainable remediation of toxic congo red dye pollution using bio based carbon nanocomposite: Modelling and performance evaluation. CHEMOSPHERE 2023; 343:140206. [PMID: 37734504 DOI: 10.1016/j.chemosphere.2023.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Remediation of synthetic dyes found in aqueous environment poses a serious challenge for treatment due to their resistance to chemical and biological degradation. This research study investigated the application of Chitosan-ZnO-Seaweed bio nanocomposite in the remediation of congo red. The novel bionanocomposite was characterised by FTIR, SEM, TEM, EDS and XRD studies. The FTIR spectra and SEM images indicated the adsorption of congo red onto the synthesized bionanocomposite. The batch wise experimental studies were done to explore the influence of process variables on removal of congo red from synthetic wastewater and to determine optimized conditions. Under optimized conditions of pH 3, temperature 40 °C, initial congo red concentration 50 mg/L, bionanocomposite quantity 0.03 g/L and interaction period 30 min, the bionanocomposite removed 95.64% of congo red. Thermodynamic studies were carried out and the parameters, ΔH° and ΔS° were found to be 38.386 kJ/mol and 0.1451 kJ/mol. K, respectively. The isotherm and kinetic study showed that monolayer Langmuir model was obeyed (R2 = 0.968) and the experimental value of congo red adsorption correlated well with pseudo second order model (R2 = 0.9938) respectively. The maximum adsorption capacity was found to be 303.03 mg/g. Protonated amino group of chitosan, hydroxyl group of seaweed accounts for congo red adsorption along with zinc oxide.
Collapse
Affiliation(s)
- Sarojini Gopalakrishnan
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India.
| | - Pownsamy Kannan
- Department of Chemistry, V.S.B. College of Engineering Technical Campus, Coimbatore, India
| | - Kuppusamy Balasubramani
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Valley Campus, Coimbatore, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | | |
Collapse
|
19
|
Alardhi SM, Salih HG, Ali NS, Khalbas AH, Salih IK, Saady NMC, Zendehboudi S, Albayati TM, Harharah HN. Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Sci Rep 2023; 13:21063. [PMID: 38030694 PMCID: PMC10687264 DOI: 10.1038/s41598-023-47319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Adsorbents synthesized by activation and nanoparticle surface modifications are expensive and might pose health and ecological risks. Therefore, the interest in raw waste biomass materials as adsorbents is growing. In batch studies, an inexpensive and effective adsorbent is developed from raw olive stone (OS) to remove methylene blue (MB) from an aqueous solution. The OS adsorbent is characterized using scanning electron microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Brunauer-Emmett-Teller (BET) surface area. Four isotherms are used to fit equilibrium adsorption data, and four kinetic models are used to simulate kinetic adsorption behavior. The obtained BET surface area is 0.9 m2 g-1, and the SEM analysis reveals significant pores in the OS sample that might facilitate the uptake of heavy compounds. The Langmuir and Temkin isotherm models best represent the adsorbtion of MB on the OS, with a maximum monolayer adsorption capacity of 44.5 mg g-1. The best dye color removal efficiency by the OS is 93.65% from an aqueous solution of 20 ppm at the OS doses of 0.2 g for 90 min contact time. The OS adsorbent serves in five successive adsorption cycles after a simple filtration-washing-drying process, maintaining MB removal efficiency of 91, 85, 80, and 78% in cycles 2, 3, 4, and 5, respectively. The pseudo second-order model is the best model to represent the adsorption process dynamics. Indeed, the pseudo second-order and the Elovich models are the most appropriate kinetic models, according to the correlation coefficient (R2) values (1.0 and 0.935, respectively) derived from the four kinetic models. The parameters of the surface adsorption are also predicted based on the mass transfer models of intra-particle diffusion and Bangham and Burt. According to the thermodynamic analysis, dye adsorption by the OS is endothermic and spontaneous. As a result, the OS material offers an efficient adsorbent for MB removal from wastewater that is less expensive, more ecologically friendly, and economically viable.
Collapse
Affiliation(s)
- Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| | - Hussein G Salih
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Nisreen S Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Ali H Khalbas
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq.
| | - Hamed N Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Semwal N, Mahar D, Chatti M, Dandapat A, Chandra Arya M. "Adsorptive removal of Congo Red dye from its aqueous solution by Ag-Cu-CeO 2 nanocomposites: Adsorption kinetics, isotherms, and thermodynamics". Heliyon 2023; 9:e22027. [PMID: 38034618 PMCID: PMC10682134 DOI: 10.1016/j.heliyon.2023.e22027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Eliminating synthetic dyes and organic contaminants from water is crucial for safeguarding human health and preserving the environment. In this study, we explored the effectiveness of Ag-Cu-CeO2 nanocomposites as adsorbents to remove Congo Red dye from water. Three compositions of Ag-Cu-CeO2 nanocomposites (10:20:70, 15:15:70, and 20:10:70) have been synthesized by the aqueous coprecipitation method. A comprehensive analysis was performed by different techniques including X-ray diffraction, Fourier transform infrared spectroscopy, BET surface area determination, Thermogravimetric analysis, Scanning electron microscopy, and TEM. The synthesized nanocomposites have a dimension of 5 ± 1 nm and a high surface area (51.832-78.361 m2g-1). Among these, the nanocomposite with composition 15:15:70 showed the highest adsorption capacity of 4.71 mg/g adsorption (96.83 % removal) from the 0.8 × 10-4 M (55.6 mg/l) Congo Red solution at pH values of 2 at 20 °C with contact time of 3h. The adsorption data is best fitted in the Freundlich adsorption isotherm and pseudo-second-order kinetic model. The negative values of enthalpy variation (-27.57, -26.43, and -16.73 kJ/mol) demonstrated that the adsorption was spontaneous and exothermic. The cycling run showed a mere 12 % deactivation after five cycles of use thus indicating that Ag-Cu-CeO2 nanocomposites hold great potential as effective and eco-friendly adsorbents to remove Congo Red from water.
Collapse
Affiliation(s)
- Nitish Semwal
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| | - Divya Mahar
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| | - Manjunath Chatti
- Australian Centre for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Mahesh Chandra Arya
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| |
Collapse
|
21
|
Swain J, Priyadarshini A, Hajra S, Panda S, Panda J, Samantaray R, Yamauchi Y, Han M, Kim HJ, Sahu R. Photocatalytic dye degradation by BaTiO3/zeolitic imidazolate framework composite. JOURNAL OF ALLOYS AND COMPOUNDS 2023; 965:171438. [DOI: 10.1016/j.jallcom.2023.171438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
22
|
Liu Z, Hu Y, Zhang J, Guan Y, Zhang L, Ye P, Zhang T, Huang X, Wang M, Gao H. Enhanced adsorption of Congo red from urea/calcium chloride co-modified biochar: Performance, mechanisms and toxicity assessment. BIORESOURCE TECHNOLOGY 2023; 388:129783. [PMID: 37722546 DOI: 10.1016/j.biortech.2023.129783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Adsorbents with excellent physicochemical properties and green synthetic routes are desired for efficient removal of Congo red (CR) wastewater. Hence, a novel approach was proposed within this work. Biochar NCBC obtained from Medulla Tetrapanacis was synthesized through co-modification with urea/calcium chloride. NCBC exhibited an enormous surface area (750.09 m2/g) and a micro-mesoporous composite structure. Higher nitrogen content was detected on the surface of NCBC (8.17%) compared to that of urea directly modified biochar (4.63%). Nitrogen observed on the surface of NCBC was presented as graphitic N, pyrrolic N, amine N as well as pyridinic N. Kinetic and isothermal investigations revealed the active sites on NCBC to be homogeneous and bind to CR mainly by chemisorption. Calculated maximum sorption of CR on NCBC was 2512.82 mg/g basing on Langmuir model. Moreover, the practicality of NCBC was further proved by the cultivation of Nelumbo nucifera Gaertn. and Penicillium.
Collapse
Affiliation(s)
- Zepeng Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yueyao Hu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jie Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Golden Chemical Co., Ltd, Nanjing 210000, China
| | - Ying Guan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Liping Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Ping Ye
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Tongtong Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xingyu Huang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Meng Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hui Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
23
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
24
|
Sharma A, Sharma S, Kumar N, Diery WA, Moujaes EA, Tahir M, Singh P. Co +2, Ni +2 and Cu +2 incorporated Bi 2O 3 nano photocatalysts: Synthesis, DFT analysis of band gap modification, adsorption and photodegradation analysis of rhodamine B and Triclopyr. ENVIRONMENTAL RESEARCH 2023; 233:116478. [PMID: 37348633 DOI: 10.1016/j.envres.2023.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
This study deals with the fabrication of metal ion (M = Co+2, Ni+2, and Cu+2) doped- Bi2O3 photocatalysts by solution combustion method. All the synthesized materials were characterized and analysed with the help of XRD, FESEM, EDX, HRTEM, UVDRS, Zeta potential, PL, and LCMS techniques for the structural, morphological, surface charge, optical and degradation pathways characteristics. Synthesized compounds were used for the decontamination (adsorption and degradation) of two organic pollutants namely Rhodamine B and Triclopyr. Adsorption aspects of the pollutants were studied in terms of different isotherm, kinetic and thermodynamic models. Adsorption phenomenon was best fitted with the Freundlich (R2 = 0.992) and Langmuir isotherm (R2 = 0.999) models along with pseudo second order model of kinetics for RhB and TC, respectively. Moreover, the thermodynamic parameters indicated exothermic and endothermic adsorption (ΔH ° (-7.19 kJ/mol) for RhB) and (ΔH ° (52.335 kJ/mol) for TC), respectively. Evaluated negative values of ΔG ° indicated spontaneous adsorption with most favourable at 298 K and 318 K for both the pollutants (RhB and TC) respectively. Modification with metal ions significantly improved the removal efficiency of pure Bi2O3 photocatalyst and followed the trend Co+2/Bi2O3 > Ni+2/Bi2O3 > Cu+2/Bi2O3 > Bi2O3. DFT calculations demonstrate that amongst the doped materials, only Co+2/Bi2O3 is characterized by an indirect band gap; which exhibited efficacious photocatalytic activity. Besides, the highest degradation efficiency was obtained in the case of Co+2/Bi2O3 (2 mol %); being 99.80% for RhB in 30 min and 98.50% for TC in 60 min, respectively. The doped nanostructures lead to higher absorption of visible light and more separation of light-induced charged carriers. Effect of pH of the reaction medium and role of reactive oxygen species was also examined. Finally, a probable mechanism of charge transfer and degradation of the pollutants was also presented.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Shankar Sharma
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| | - W A Diery
- Physics Department, Faculty of Science, King AbdulAziz University, 21589, Jeddah, Saudi Arabia
| | - Elie A Moujaes
- Physics Department, Federal University of Rondônia, Porto Velho, 76801-974, Brazil
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
25
|
Sachin, Singh N, Shah K, Pramanik BK. Synthesis and application of manganese-doped zinc oxide as a potential adsorbent for removal of Congo red dye from wastewater. ENVIRONMENTAL RESEARCH 2023; 233:116484. [PMID: 37369305 DOI: 10.1016/j.envres.2023.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Synthetic dyes are considered toxic compounds and as such are not easily removed by conventional water treatment processes. This study demonstrated the synthesis of pure and manganese- (Mn), silver- (Ag), and iron- (Fe) doped zinc oxide (ZnO) nanoparticles via the wet chemical route. In particular, it investigated the batch adsorption studies and physiochemical properties of synthesized pure and doped ZnO materials for removing toxic congo red (CR) dye. X-ray diffraction (XRD), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) confirmed the synthesis of the pure and doped ZnO materials. The batch adsorption investigation revealed adsorption efficiencies of 99.4% for CR dye at an optimal dose of 0.03 g/30 ml for Mn-doped ZnO at a solution pH of 2. The adsorption capacity of each of the synthesized materials was found to be in order Mn-doped ZnO (232.5 mg/g) > Ag-doped ZnO (222.2 mg/g) > pure ZnO (212.7 mg/g) > Fe-doped ZnO (208.3 mg/g). Both pseudo-second-order kinetics model and the Langmuir isotherm model accurately explained the adsorption behaviors of CR dye. As such, Van der Waal interactions, H-bonding, and electrostatic interaction were found to be the adsorption mechanisms responsible for dye removal. In addition, the desorption-regeneration investigation indicated the successful reuse of the exhausted Mn-doped ZnO material for five cycles of CR dye adsorption with an efficiency of 83.1%. Overall, this study has demonstrated that Mn-doped ZnO could be considered a viable adsorbent for the cleanup of dye-contaminated water.
Collapse
Affiliation(s)
- Sachin
- BND Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Nahar Singh
- BND Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | | |
Collapse
|
26
|
Bazrafshan E, Ahmadi Azqhandi MH, Foroughi M, Gholami Z. β-cyclodextrin grafted multi-walled carbon nanotubes/chitosan (MWCNT/Cs/CD) nanocomposite for treatment of methylene blue-containing aqueous solutions. ENVIRONMENTAL RESEARCH 2023; 231:116208. [PMID: 37263469 DOI: 10.1016/j.envres.2023.116208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
β-cyclodextrin (CD) was grafted with multi-walled carbon nanotubes/chitosan (MWCNTs/Cs) to obtain MWCNTs/Cs/CD nanocomposite (NC) for methylene blue (MB) adsorption from aqueous media. TEM, XRD, TGA, Raman spectra, and BET & BJH analyses were utilized to characterize and confirm the successful synthesis of as-prepared NC. MB capture was investigated by considering the parameters of pH (1.9-9.0), temperature (∼16-63 °C), sonication time (∼5-15 min), MB concentration (∼1.2-48 mg/L), and NC dose (0.03-0.26 mg). The obtained responses were then modelled using CCD, generalized regression neural network (GRNN), and least squares support vector machine (LS-SVM), of which the latter found to provide most reliable and accurate results (RMSE = 0.0235, MAE = 0.020, AAD = 0.0047, and R2 = 0.999). Moreover, the genetic algorithm-based optimization results showed that under the respective values of 7.05, 45.5 °C, 10 min, 23 mg/L, 0.12 g, MWCNTs/Cs/CD NC would be able to remove 96.75% of MB with an adsorption capacity of 603 mg/g, through different mechanisms mainly electrostatic interactions. Following from Dubinin-Radushkevich (D-R) isotherm (qs = 460.66 ± 8.9 and R2 > 0.99) and intraparticle diffusion kinetic (R2 = 0.75-0.90) models indicated a chemical adsorption mechanism. Besides, thermodynamic parameters (ΔH◦ = -66.9 kJ/mol, ΔG◦ = between -3.77 kJ/mol and -8.52 kJ/mol, and ΔS◦ = 237.1818 J/mol K) confirmed an endothermic and spontaneous nature for the adsorption. These findings along with appropriate recyclability (five times), turn the as prepared NC to a promising material in removing MB from aqueous solutions.
Collapse
Affiliation(s)
- Edris Bazrafshan
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | | | - Maryam Foroughi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| | - Zahra Gholami
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, 6373193719, Iran
| |
Collapse
|
27
|
Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, Wilson LD, ALOthman ZA. Food-grade algae modified Schiff base-chitosan benzaldehyde composite for cationic methyl violet 2B dye removal: RSM statistical parametric optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:459-471. [PMID: 37583281 DOI: 10.1080/15226514.2023.2246596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.
Collapse
Affiliation(s)
- Hasan M Agha
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Norrizah Jaafar Sidik
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Shafiq Aazmi
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Aouan B, Alehyen S, Fadil M, El Alouani M, Saufi H, El Herradi EH, El Makhoukhi F, Taibi M. Development and optimization of geopolymer adsorbent for water treatment: Application of mixture design approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117853. [PMID: 37015145 DOI: 10.1016/j.jenvman.2023.117853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The current paper refers to the study of a new approach to optimizing the adsorptive properties of geopolymers by varying the aluminosilicate precursors from kaolin (K), metakaolin (MK), and coal fly ash (CFA) as internal synthesis factors. The simplex-augmented-centroid mixture design was applied to identify the optimal formulation from the three aluminosilicate precursors to develop a geopolymer (GP) with a distinctive structure that positively affects its dye adsorption efficiency. The variously formulated GP samples were tested for the removal of both methylene blue (MB-dye) and crystal violet dye (CV-dye) from an aqueous solution. The mathematical-statistical analysis of the experimental readings suggested that the generated special cubic models were significant, and thus the chosen approach was adequate for determining the optimum blending proportion. The optimization tools indicated that the optimal mixture from the three aluminosilicate precursors for developing a GP with high adsorption efficiency was 58% MK, 42% K, and 0% CFA. The optimized geopolymer (GPO) was synthesized and then analyzed using a variety of physicochemical techniques, which revealed the presence of an amorphous N-A-S-H gel-rich porous structure as an influencing property on the geopolymer's organic dye adsorption efficiency. The dependence of the adsorption mechanism of both MB-dye and CV-dye by GPO on the adsorbent dosage, contact time, initial dye concentration, temperature, and solution pH was evaluated. The isothermic and kinetic experimental readings for MB and CV-dyes adsorption by GPO were well fitted to the pseudo-second-order and Freundlich models, with an exothermic, favorable, and spontaneous adsorption reaction thermodynamically. The experimental studies in the lab scale on GPO produce comparable results. From these results, it has been concluded that the accuracy and feasibility of the mixture design simulation succeeded in optimizing and developing a geopolymeric sorbent material with great potential as an excellent economical agent for removing cationic dyes from aqueous media. This point represents an added value compared to traditional non-optimized geopolymer absorbents. Besides, this geopolymer material represents a significant application possibility for water treatment and remediation of hazardous dye pollutants.
Collapse
Affiliation(s)
- Badr Aouan
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco.
| | - Saliha Alehyen
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco
| | - Mouhcine Fadil
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco
| | - Marouane El Alouani
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco
| | - Hamid Saufi
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco
| | - El Hassania El Herradi
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco
| | - Fadoua El Makhoukhi
- Centre National pour La Recherche Scientifique et Technique (CNRST-UATRS), Rabat, Morocco
| | - M'hamed Taibi
- Mohammed V University in Rabat, Centre des Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco
| |
Collapse
|
29
|
Karić N, Vukčević M, Maletić M, Dimitrijević S, Ristić M, Grujić AP, Trivunac K. Physico-chemical, structural, and adsorption properties of amino-modified starch derivatives for the removal of (in)organic pollutants from aqueous solutions. Int J Biol Macromol 2023; 241:124527. [PMID: 37086770 DOI: 10.1016/j.ijbiomac.2023.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
In this study, an environmentally sustainable process of crystal violet, congo red, methylene blue, brilliant green, Pb2+, Cd2+, and Zn2+ ions adsorption from aqueous solutions onto amino-modified starch derivatives was investigated. The degree of substitution, elemental analysis, swelling capacity, solubility, and FTIR, XRD, and SEM techniques were used to characterize the adsorbents. The influence of pH, contact time, temperature, and initial concentration has been studied to optimize the adsorption conditions. The amino-modified starch was the most effective in removing crystal violet (CV) (65.31-80.46 %) and Pb2+ (67.44-80.33 %) within the optimal adsorption conditions (pH 5, 10 mg dm-3, 25 °C, 180 min). The adsorption of CV could be described by both Langmuir and Freundlich adsorption isotherms, while the adsorption of Pb2+ ions was better described by the Langmuir isotherm. The pseudo-second order model can be used to describe the adsorption kinetics of CV and Pb2+ on all tested samples. The thermodynamic study indicated that the adsorption of CV was exothermic, while the Pb2+ adsorption was endothermic. The simultaneous removal of CV and Pb2+ from the binary mixture has shown their competitive behavior. Thus, the amino-modified starch is a promising eco-friendly adsorbent for the removal of dyes and heavy metals from polluted water.
Collapse
Affiliation(s)
- Nataša Karić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Marija Vukčević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Marina Maletić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | | | - Mirjana Ristić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Perić Grujić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Katarina Trivunac
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
30
|
Salama A, El-Sakhawy M. Synthesis and adsorption performance of functionalized chitosan and carboxyethylsilanetriol hybrids. BMC Chem 2023; 17:33. [PMID: 37029397 PMCID: PMC10080773 DOI: 10.1186/s13065-023-00943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
A novel adsorbent from cationic chitosan derivative and anionic silica precursor was fabricated to remove methylene blue (MB). The hybrid material was prepared from N-guanidinium chitosan acetate (GChi) and carboxyethylsilanetriol sodium salt by a simple ionic interaction followed by sol-gel approach. Multiple characterization methods were used to analyze the morphology and the structure of the well-prepared functionalized material. Batch experiments were conducted to optimize the various operational parameters. The Langmuir isotherm was used to fit the data, and it predicted monolayer adsorption with a maximum capacity of 334 mg g-1. A pseudo-second-order equation fit the adsorption process well. Chitosan/silica hybrids containing carboxylic groups are efficient and cost-effective adsorbents for cationic dyes adsorption from aqueous solutions.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
31
|
Kasbaji M, Mennani M, Grimi N, Oubenali M, Mbarki M, Zakhem HEL, Moubarik A. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int J Biol Macromol 2023; 239:124288. [PMID: 37023876 DOI: 10.1016/j.ijbiomac.2023.124288] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
This work describes the preparation of new eco-friendly adsorbents with a simple method. Gel beads of coffee grounds cellulose (CGC) and sodium alginate (SA) were prepared for wastewater treatment. Upon their synthesis, the physicochemical properties, performances and efficiency were analyzed by means of various structural and morphological characterizations. Kinetic and thermodynamic adsorption approaches evaluated the removal capacity of these beads which reached equilibrium in 20 min for Methylene Blue (MB) and Congo Red (CR). Also, the kinetics shows that the results can be explained by the pseudo-second-order model (PSO). Furthermore, the isotherm assessments showed that Langmuir-Freundlich can fit the adsorption data of both contaminants. Accordingly, the maximum adsorption capacities reached by the Langmuir-Freundlich model are 400.50 and 411.45 mg/g for MB and CR, respectively. It is interesting to note that the bio-adsorption capabilities of MB and CR on bead hydrogels decreased with temperature. Besides, the results of the thermodynamic study evidenced that the bio-adsorption processes are favorable, spontaneous and exothermic. The CGC/SA gel beads are therefore outstanding bio-adsorbents, offering a great adsorptive performance and regenerative abilities.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco; Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mehdi Mennani
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco
| | - Nabil Grimi
- Sorbonne University, University of Technology of Compiegne, Integrated Transformations of Renewable Matter Laboratory (UTC/ESCOM, EA 4297 TIMR), Royally Research Centre, CS 60 319, 60 203 Compiegne Cedex, France
| | - Mustapha Oubenali
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
| | - Mohamed Mbarki
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
| | - Henri E L Zakhem
- Chemical Engineering Department, University of Balamand, POBox 33, Amioun EL KOURA, Lebanon
| | - Amine Moubarik
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco.
| |
Collapse
|
32
|
Liu Z, Shi W, Lei Y, Xie Z. Novel polyamide/silica/chitosan covalent hybrid: One-step BIC/sol-gel preparation at room temperature and dual applications in Hg2+ electrochemical probing and dye adsorption. Carbohydr Polym 2023; 312:120808. [PMID: 37059540 DOI: 10.1016/j.carbpol.2023.120808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Room-temperature preparation of polymer-based covalent hybrids, which with multiple functional characteristics, is instrumental to overcome the performance shortcomings of single-polymer materials and broaden their applications thus. Herein, by introducing chitosan (CS) as a starting substrate into benzoxazine-isocyanide chemistry (BIC)/sol-gel reaction system, a novel polyamide (PA)/SiO2/CS covalent hybrid (PA-Si-CS) was successfully prepared in-situ at 30 °C. PA-Si-CS's chemical structure and elementary properties were characterized here. The introduction of CS combining with the presence of diverse N, O-containing segments (amide, phenol -OH, Si-OH, etc.) in PA-Si-CS provided its synergistic adsorption for Hg2+ and anionic dye Congo red (CR). The capture of PA-Si-CS for Hg2+ was rationally applied to the "enrichment"-type electrochemical probing of Hg2+. Relevant detection range, detection limit, interference, and probing mechanism were systematically analyzed. Compared with the experimental results of control electrodes, the electrode modified with PA-Si-CS (PA-Si-CS/GCE) showed a significantly enhanced electrochemical response to Hg2+, with a detection limit up to ~2.2 × 10-8 mol/L. In addition, PA-Si-CS also exhibited the specific adsorption for CR. Systematic analyses of dye adsorption selectivity, kinetics, isothermal models, thermodynamics, and adsorption mechanism told that PA-Si-CS can be used as an efficient CR adsorbent, with a maximum adsorption capacity of ~348 mg/g.
Collapse
Affiliation(s)
- Ziqiang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Wei Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China.
| | - Yilin Lei
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Zhengfeng Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
33
|
Samadi Kazemi M, Sobhani A. CuMn2O4/chitosan micro/nanocomposite: Green synthesis, methylene blue removal, and study of kinetic adsorption, adsorption isotherm experiments, mechanism and adsorbent capacity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
34
|
Iqbal Z, Tanweer MS, Alam M. Reduced Graphene Oxide-Modified Spinel Cobalt Ferrite Nanocomposite: Synthesis, Characterization, and Its Superior Adsorption Performance for Dyes and Heavy Metals. ACS OMEGA 2023; 8:6376-6390. [PMID: 36844590 PMCID: PMC9948210 DOI: 10.1021/acsomega.2c06636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
This work is dedicated to the synthesis, characterization, and adsorption performance of reduced graphene oxide-modified spinel cobalt ferrite nanoparticles. The as-synthesized reduced graphene oxide cobalt ferrite (RGCF) nanocomposite has been characterized using FTIR spectroscopy, FESEM coupled with EDXS, XRD, HRTEM, zeta potential, and vibrating sample magnetometer (VSM) measurements. FESEM proves the particle size in the range of 10 nm. FESEM, EDX, TEM, FTIR, and XPS analyses provide the proof of successful incorporation of rGO sheets with cobalt ferrite nanoparticles. The crystallinity and spinel phase of cobalt ferrite nanoparticles have been shown by XRD results. The saturation magnetization (M s) was measured as 23.62 emu/g, proving the superparamagnetic behavior of RGCF. The adsorption abilities of the synthesized nanocomposite have been tested using cationic crystal violet (CV) and brilliant green (BG) and anionic methyl orange (MO) and Congo red (CR) dyes. The adsorption trend for MO, CR, BG, and As(V) follows RGCF > rGO > CF at neutral pH. Adsorption studies have been accomplished by optimizing parameters like pH (2-8), adsorbent dose (1-3 mg/25 mL), initial concentration (10-200 mg/L), and contact time at constant room temperature (RT). To further investigate the sorption behavior, isotherm, kinetics, and thermodynamic studies have been conducted. Langmuir isotherm and pseudo-second-order kinetic models suited better for the adsorption of dyes and heavy metals. The maximum adsorption capacities (q m) obtained have been found as 1666.7, 1000, 416.6, and 222.2 mg/g for MO, CR, BG, and As, respectively, with operational parameters such as T = 298.15 K; RGCF dose: 1 mg for MO and 1.5 mg each for CR, BG, and As. Thus, the RGCF nanocomposite was found to be an excellent adsorbent for the removal of dyes and heavy metals.
Collapse
|
35
|
Zhong ZR, Jiang HL, Shi N, Lv HW, Liu ZJ, He FA. A novel tetrafluoroterephthalonitrile-crosslinked quercetin/chitosan adsorbent and its adsorption properties for dyes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
36
|
Wei W, Wu H, Chen Y, Zhong K, Feng L. Application of new chitosan 2,4-dihydroxyacetophenone Schiff base @SrFe 12O 19 nanocomposite for remove of Pb(II) ion from aqueous solution. Int J Biol Macromol 2023; 226:336-344. [PMID: 36502945 DOI: 10.1016/j.ijbiomac.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
A new chitosan 2,4-dihydroxyacetophenone Schiff base @SrFe12O19 (Cs-SB@SrFe12O19) nanocomposite was successfully prepared by one-pot reaction and fully characterized for its functional groups, morphology, elemental analysis and thermal behavior by FT-IR, XRD, VSM, DSC, TGA, zeta potential, FE-SEM and EDS techniques. The VSM result showed that Cs-SB@SrFe12O19 has Ms of 11.81 emu/g and Hc of 5488 Oe, known as hard magnetic material. Finally, the as-prepared sample utilized as a new sorbent for the removal of Pb(II) ions from aqueous solution by using batch adsorption experiments. The adsorption of Pb(II) was carried out at different pH, contact time and initial dose of Cs-SB@SrFe12O19. The maximum adsorption capacity was found to be 132 mg/g (99 %) at pH 5 and the contact time of 120 min. Finally, the kinetic studies reveals that the adsorption process of Cs-SB@SrFe12O19 followed by the pseudo second order kinetics model. Also, the sample showed excellent recyclable efficiency up to 5 cycles.
Collapse
Affiliation(s)
- Wei Wei
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Houfan Wu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Yuning Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
37
|
Ashraf I, Singh NB, Agarwal A. Iron-rich coal fly ash-polydopamine-silver nanocomposite (IRCFA-PDA-Ag NPs): tailored material for remediation of methylene blue dye from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:322. [PMID: 36690821 DOI: 10.1007/s10661-023-10931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Water pollution has become one of the most acute environmental problems. One of the pollutants coming to water bodies from industries are dyes, which are harmful to human health, living organisms, and the esthetic appearance of water. Most dyes are toxic, carcinogenic, rarely biodegradable, and highly soluble in water. Therefore, industrial wastewater treatment has become important. Adsorption technique of removal of dyes from water is simple, efficient, and inexpensive as compared to other techniques. Adsorption efficiency depends on the type and surface area of adsorbents. Iron-rich coal fly ash (IRCFA)-Polydopamine (PDA)@ Silver (Ag) nanocomposite was prepared by separating the iron-rich part (IRCFA) from coal fly ash and coated with polydopamine. IRCFA was mixed with 10 mM tris buffer solution containing 1 g dopamine. The prepared IRCFA-PDA was added to an aqueous solution of silver nitrate, heated at 60 °C, and then 30 mL of flower waste extract was added to this solution. Solid IRCFA-PDA@Ag was obtained, and the prepared nanocomposite was used for the removal of methylene blue (MB) dye from water. The nanocomposite used was prepared by a cost-effective method and has high reusability, separability, and fast regeneration ability. The mechanism of removal of MB dye has been discussed in detail.
Collapse
Affiliation(s)
- Iqra Ashraf
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India
| | - Nakshatra B Singh
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India
| | - Anupam Agarwal
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India.
| |
Collapse
|
38
|
Tran ML, Tran TTV, Juang RS, Nguyen CH. Graphene oxide crosslinked chitosan composites for enhanced adsorption of cationic dye from aqueous solutions. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Cai T, Chen H, Yao L, Peng H. 3D Hierarchical Porous and N-Doped Carbonized Microspheres Derived from Chitin for Remarkable Adsorption of Congo Red in Aqueous Solution. Int J Mol Sci 2022; 24:ijms24010684. [PMID: 36614127 PMCID: PMC9821205 DOI: 10.3390/ijms24010684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
A novel adsorbent of N-doped carbonized microspheres were developed from chitin (N-doped CM-chitin) for adsorption of Congo red (CR). The N-doped CM-chitin showed spherical shape and consisted of carbon nanofibers with 3D hierarchical architecture. There were many micro/nano-pores existing in N-doped CM-chitin with high surface area (455.703 m2 g-1). The N element was uniformly distributed on the carbon nanofibers and formed with oxidize-N graphitic-N, pyrrolic-N, and pyridinic-N. The N-doped CM-chitin showed excellent adsorption capability for CR and the maximum adsorption amount was approximate 954.47 mg g-1. The π-π/n-π interaction, hydrogen-bond interactions, and pore filling adsorption might be the adsorption mechanisms. The adsorption of N-doped CM-chitin was considered as a spontaneous endothermic adsorption process, and which well conformed to the pseudo-second-order kinetic and Langmuir isotherm model. The N-doped CM-chitin exhibited an effective adsorption performance for dynamic CR water with good reusability. Therefore, this work provides new insights into the fabrication of a novel N-doped adsorbent from low-cost and waste biomasses.
Collapse
Affiliation(s)
- Taimei Cai
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Huijie Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lihua Yao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hailong Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
40
|
Bir R, Tanweer MS, Singh M, Alam M. Multifunctional Ternary NLP/ZnO@l-cysteine- grafted-PANI Bionanocomposites for the Selective Removal of Anionic and Cationic Dyes from Synthetic and Real Water Samples. ACS OMEGA 2022; 7:44836-44850. [PMID: 36530240 PMCID: PMC9753193 DOI: 10.1021/acsomega.2c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The development of competent adsorbents based on agro-waste materials with multifunctional groups and porosity for the removal of toxic dyes from aqueous solutions is still a challenge. Herein, a bionanocomposite made up of neem leaf powder (NLP), zinc oxide (ZnO), and amino acid (l-cysteine)-functionalized polyaniline (PANI), namely, NLP/ZnO@l-cysteine-grafted-PANI (NZC-g-PANI), has been prepared by an in situ polymerization method. The as-prepared bionanocomposite was tested for the adsorptive removal of three anionic dyes, namely, methyl orange (MO), amido black 10B (AB 10B), and eriochrome black T (EBT), as well as three cationic dyes, namely, brilliant green (BG), crystal violet (CV), and methylene blue (MB), from synthetic aqueous medium. The morphological and structural characteristics of the NZC-g-PANI nanocomposite were examined with the help of HR field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopy. FTIR and Raman studies show that the formulated NZC-g-PANI have an ample number of functional moieties such as carboxyl (-COOH), hydroxyl (-OH), amines (-NH2), and imines (-N=), thus demonstrating outstanding dye removal capacity. C-S linkage helps to attach l-cysteine with polyaniline. Moreover, the predominance of chemisorption via ionic/pi-pi interaction and hydrogen bonding between the NZC-g-PANI nanocomposite and dyes (BG and MO) has been realized by FTIR and fitting of kinetics data to the PSO model. For both BG and MO dyes, the biosorption isotherm was precisely accounted for by the Langmuir isotherm with q max values of up to 218.27 mg g-1 for BG at pH 6 and 558.34 mg g-1 for MO at pH 1. Additionally, thermodynamic studies revealed the endothermic and spontaneous nature of adsorption. NZC-g-PANI showed six successive regeneration cycles for cationic (MO: from 96.3 to 90.4%) and anionic (BG: from 94.7 to 88.7%) dyes. Also, batch adsorption operations were validated to demonstrate dye biosorption from real wastewater, such as tap water, river water, and laundry wastewater. Overall, this study indicates that the prepared NZC-g-PANI biosorbent could be used as an effective adsorbent for the removal of various types of anionic as well as cationic dyes from different aqueous solutions.
Collapse
Affiliation(s)
- Ritu Bir
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Mohd Saquib Tanweer
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| | - Meenakshi Singh
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Masood Alam
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
41
|
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen DH, Nguyen DTC, Tran TV. Facile synthesis of CoFe 2O 4@MIL-53(Al) nanocomposite for fast dye removal: Adsorption models, optimization and recyclability. ENVIRONMENTAL RESEARCH 2022; 215:114269. [PMID: 36103925 DOI: 10.1016/j.envres.2022.114269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The global occurrence of textile dyes pollution has recently emerged, posing a serious threat to ecological systems. To abate dye contamination, we here developed a novel magnetic porous CoFe2O4@MIL-53(Al) nanocomposite by incorporating magnetic CoFe2O4 nanoparticles with MIL-53(Al) metal-organic framework. This nanocomposite possessed a surface area of 197.144 m2 g-1 and a pore volume of 0.413 cm3 g-1. The effect of contact time (5-120 min), concentration (5-50 mg L-1), dosage (0.1-1.0 g L-1), and pH (2-10) on Congo red adsorption was clarified. CoFe2O4@MIL-53(Al) could remove 95.85% of Cong red dye from water with an accelerated kinetic rate of 0.6544 min-1 within 10 min. The kinetic and isotherm models showed the predominance of Bangham and Temkin. According to Langmuir, the maximum uptake capacities of CoFe2O4@MIL-53(Al), CoFe2O4, and MIL-53(Al) adsorbents were 43.768, 17.982, and 15.295 mg g-1, respectively. CoFe2O4@MIL-53(Al) was selected to optimize Cong red treatment using Box-Behnken experimental design. The outcomes showed that CoFe2O4@MIL-53(Al) achieved the highest experimental uptake capacity of 35.919 mg g-1 at concentration (29.966 mg L-1), time (14.926 min), and dosage (0.486 g L-1). CoFe2O4@MIL-53(Al) could treat dye mixture (methylene blue, methyl orange, Congo red, malachite green, and crystal violet) with an outstanding removal efficiency of 81.24% for 30 min, and could be reused up to five cycles. Therefore, novel recyclable and stable CoFe2O4@MIL-53(Al) is recommended to integrate well with real dye treatments systems.
Collapse
Affiliation(s)
- Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
42
|
Hnamte M, Pulikkal AK. Clay-polymer nanocomposites for water and wastewater treatment: A comprehensive review. CHEMOSPHERE 2022; 307:135869. [PMID: 35948093 DOI: 10.1016/j.chemosphere.2022.135869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
A majority of water pollution or contamination occurs through the discharge of effluents from industries. Wastewater treatment is crucial to protect our water sources from harmful pollutants. Therefore, a number of efforts have been made to tackle this issue by employing different techniques. Clay minerals and polymers are among these materials used extensively in wastewater treatment. While both have their own drawbacks, it is fascinating to discover that they complement each other to overcome most of their limitations. As a result, clay-polymer nanocomposites (CPNs) have been found to be highly efficient in the adsorption of pollutants from water and show promising results to be a long-term candidate for this purpose. In this paper, we discuss about different types of clay and polymers used in the preparation of CPNs. The work also focuses on the different types of clay-polymer nanocomposites, their synthesis and factors affecting their performance such as pH, temperature, contact time, pollutant concentration and adsorbent dose. In addition, the maximum adsorption capacity, mechanism and kinetics of adsorption are highlighted to assess the performance of CPNs. Various studies indicate that CPNs are only a few steps away from becoming one of the best options for wastewater treatment due to their multiple desirable properties.
Collapse
Affiliation(s)
- Malsawmdawngkima Hnamte
- Department of Chemistry, National Institute of Technology Mizoram, Chaltlang, Aizawl, 796012, India
| | - Ajmal Koya Pulikkal
- Department of Chemistry, National Institute of Technology Mizoram, Chaltlang, Aizawl, 796012, India.
| |
Collapse
|
43
|
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Hotan Alsohaimi I, Alhumaimess MS, Abdullah Alqadami A, Tharwi Alshammari G, Fawzy Al-Olaimi R, Abdeltawab AA, El-Sayed MY, Hassan HM. Adsorptive performance of Aminonaphthalenesulfonic acid modified magnetic-graphene oxide for methylene blue dye: mechanism, isotherm and thermodynamic studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Rezaee R, Faraji A, Ashouri F. Dendritic Magnetic Polymeric Core-Shell and Cobalt-wastewater as an Efficient Peroxymonosulfate Activator for Degradation of Tetracycline Antibiotic and Methylene Blue Dye. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Narayan M, Sadasivam R, Packirisamy G, Pichiah S. Electrospun polyacrylonitrile-Moringa Olifera based nanofibrous bio-sorbent for remediation of Congo red dye. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115294. [PMID: 35751229 DOI: 10.1016/j.jenvman.2022.115294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The integration of polymers with biomaterials offers promising and effective nanomaterials with intrinsic and extrinsic properties that are utilized in several applications. The present work reported the development of Polyacrylonitrile (PAN) supported biosorbent (Moringa oleifera, (MO)) which was utilized for the removal of Congo red (CR) dye from aqueous solution. MO loaded polyacrylonitrile (PAN/MO) nanofibrous biosorbent was prepared by solvent homogenization method followed by electrospinning for the deposition of nanofibers. The developed nanofibrous biosorbent was investigated by several analytical techniques such as FESEM, TEM, XRD, FTIR, and XPS to study the material properties along with their control counterparts. The adsorption experiments such as the effect of contact time, effect of concentration, effect of pH, and reusability studies were performed. The adsorption capacity of the nanofibrous biosorbent is ∼52 mg g-1, which is significant as bulk sorbent when compared with other activated carbon in powder form. The adsorption capacities vary with an increase in the dye concentration and obtained ∼88% of dye removal. The adsorption data are validated using the empirical pseudo-first-order, pseudo-second-order kinetic models, and the mechanism involved in the adsorption phenomena was investigated by Langmuir and Freundlich isotherm models, respectively. The biosorbent follows the pseudo-second-order kinetics and Freundlich isotherm, which involves in multilayer adsorption phenomena. In a nutshell, the present work corroborated the importance of bio-based natural sorbent available in nature which can be effectively engineered with polymeric materials for obtaining novel hybrid materials to explore their inherent properties for various applications.
Collapse
Affiliation(s)
- Madhulika Narayan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Saravanan Pichiah
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
47
|
Abdulhameed AS, Jawad AH, Kashi E, Radzun KA, ALOthman ZA, Wilson LD. Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
48
|
Zhao Y, Wang L, Zhu L, Gao F, Xu X, Yang J. Removal of p-Nitrophenol from simulated sewage using steel slag: Capability and mechanism. ENVIRONMENTAL RESEARCH 2022; 212:113450. [PMID: 35598802 DOI: 10.1016/j.envres.2022.113450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The steel slag was investigated for the removal of p-nitrophenol (4-NP) from simulated sewage by batch adsorption and fixed-bed column absorption experiments. The results showed that the maximum adsorption capacity was 109.66 mg/g at 298 K, pH of 7, initial concentration 100 mg/L, and dose 0.8 g/L. The adsorption process fitted the Langmuir isothermal adsorption model and followed pseudo-second-order kinetic models, the activation energy of adsorption (Ea) was 10.78 kJ/mol, which indicated that the adsorption was single-molecule layer physical adsorption. The regeneration efficiency was still maintained at 84.20% after five adsorption-desorption cycles. The column adsorption experiments showed that the adsorption capacity of the Thomas model reached 13.69 mg/g and the semi-penetrating time of the Yoon-Nelson model was 205 min at 298 K. Fe3O4 was identified as the main adsorption site by adsorption energy calculation, XRD and XPS analysis. The FT-IR, Zeta potential, and ionic strength analysis indicated that the adsorption mechanism was hydrogen bonding interaction and electrostatic interaction. This work proved that steel slag could be utilized as a potential adsorbent for phenol-containing wastewater treatment.
Collapse
Affiliation(s)
- Yibo Zhao
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Lin Wang
- Shanghai Baosteel New Building Materials Technology Co., LTD, Mohe Road 301, Shanghai, 201900, PR China
| | - Linchao Zhu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Fei Gao
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Xinru Xu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Jingyi Yang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China.
| |
Collapse
|
49
|
Hassan HM, El-Aassar M, El-Hashemy MA, Betiha MA, Alzaid M, Alqhobisi AN, Alzarea LA, Alsohaimi IH. Sulfanilic acid-functionalized magnetic GO as a robust adsorbent for the efficient adsorption of methylene blue from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Imgharn A, Aarab N, Hsini A, Naciri Y, Elhoudi M, Haki MA, Laabd M, Lakhmiri R, Albourine A. Application of calcium alginate-PANI@sawdust wood hydrogel bio-beads for the removal of orange G dye from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60259-60268. [PMID: 35419690 DOI: 10.1007/s11356-022-20162-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
This work aims to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate bio-beads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), and Fourier transforms infrared (FT-IR) spectroscopy and used to remove orange G dye from aqueous water. Batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions, and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm perfectly fit the entire experimental data. Additionally, the prepared composite exhibited an excellent regeneration capacity and reusability for OG dye removal. The results revealed that the as-prepared Alg-PANI@SD bio-beads have the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.
Collapse
Affiliation(s)
- Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- National Higher School of Chemistry (NHSC), University Ibn Tofail, BP. 133, 14000, Kenitra, Morocco
- Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Science, Ibn Tofail University, BP 133, 14000, Kenitra, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohammed Elhoudi
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ait Haki
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Resource Development, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|