1
|
An W, Liu X, Zhang X, Gao R, Chen Z, Hou Y, Du H. Catalytic Deconstruction of Commercial and End-Of-Life Polyurethane with Heterogeneous Hydrogenation Catalyst. CHEMSUSCHEM 2025; 18:e202402321. [PMID: 39748478 DOI: 10.1002/cssc.202402321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Polyurethane (PU), as a thermoset polymer, is extensively utilized in various applications, such as refrigerator foams, sponges, elastomers, shoes, etc. However, the recycling of post-consumed PU poses significant challenges due to its intricate and extensive crosslinking structures. Catalytic hydrogenation is one of the most effective methods for recycling PU waste, nevertheless, there is currently a lack for a hydrogenation catalyst that is both high-performing, recyclable, and cost-effective for breaking down post-consumed PU materials. In this work, model PU and commercial PU were efficiently hydrodegraded into aromatic amines and polyol fractions by using a commercial NiMo/Al2O3 catalyst. Notably, the results indicated that PU waste can be efficiently degraded at a pressure of 5 MPa and at a temperature of 185 °C and yielding a significant amount of a valuable chemical monomers. With the assistance of hydrogenation catalyst, the C-N and C-O bonds with low energy barriers inside the polymer are cracked and the polymer hydrogenation process becomes feasible. This study demonstrates the capability of fluidized bed hydrogenation process, employing recyclable heterogeneous catalysts for the recycling of PU waste.
Collapse
Affiliation(s)
- Wenqing An
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Ruitong Gao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Zhaojun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Yuandong Hou
- PetroChina Petrochemical Research Institute, Beijing, 102206, China
| | - Hui Du
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| |
Collapse
|
2
|
Su X, Xu C, Liao J, Liu Z, Liu D, Ye M, Li L, Xu Z, Guo S, Li J. A robust, stable, and scalable multifunctional composite foam utilizing full components of lignin and cellulose from lychee pruning waste. Int J Biol Macromol 2025; 307:141922. [PMID: 40074124 DOI: 10.1016/j.ijbiomac.2025.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Foam materials hold great promise in construction and packaging applications. However, the non-biodegradability and poor thermal stability of petroleum-based foams present serious environmental and safety concerns. It is crucial to develop sustainable, eco-friendly foam fabrication methods that balance environmental responsibility with high performance. In this study, a novel high-strength, heat-resistant, and water-stable composite foam (FPLs) made from Lignin-based waterborne polyurethanes (LWPUs) and Cellulose fibers, derived from full-component utilization of lychee pruning waste, is introduced. A eco-friendly and simple method utilizing LWPUs crosslinking to fabricate composite foams has been developed, bypassing the need for special drying and ensuring scalability. The FPLs exhibits a high compressive modulus of 455.8 kPa and a yield strength of 191.2 kPa due to the interaction between the LWPUs adhesive and the cellulose fibers. In addition, it demonstrates natural water resistance (maximum contact angle of 122°), exceptional photothermal conversion performance (reaching a peak temperature of 199.7 °C under infrared laser irradiation), superior thermal stability (no deformation up to 250 °C), and insulation performance (thermal conductivity of 0.038 W/mK), while maintaining excellent degradability and recyclability. These materials hold promise as sustainable alternatives to conventional plastic-based foams, providing a viable solution to mitigate the pervasive issue of "white pollution."
Collapse
Affiliation(s)
- Xiuru Su
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chuan Xu
- Guangzhou Customs Technology Center, Guangzhou 510000, China.
| | - Jianming Liao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhan Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Daoheng Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mengting Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Long Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhuhan Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shasha Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Zainab I, Naseem Z, Batool SR, Waqas M, Nazir A, Nazeer MA. Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:591-612. [PMID: 40297246 PMCID: PMC12035910 DOI: 10.3762/bjnano.16.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The importance of electrospun membranes for biomedical applications has increased, especially when it comes to skin regeneration and wound healing. This review presents the production and applications of electrospun membranes based on polyurethane (PU) and silk fibroin (SF) and highlights their benefits as a skin substitute. This review also highlights the electrospinning technique used to prepare nanofibers for these biomedical applications. Silk, well-known for its excellent biocompatibility, biodegradability, structural properties, and low immunogenic response, is extensively investigated by addressing its molecular structure, composition, and medical uses. PU is a candidate for potential biomedical applications because of its strength, flexibility, biocompatibility, cell-adhesive properties, and high resistance to biodegradation. PU combined with silk offers a number of enhanced properties. The study offers a comprehensive overview of the advanced developments and applications of PU/SF composites, highlighting their significant potential in wound healing. These composite membranes present promising advancements in wound healing and skin regeneration by combining the unique properties of silk and PU, opening up the possibilities for innovative treatments.
Collapse
Affiliation(s)
- Iqra Zainab
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Zohra Naseem
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Waqas
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
4
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
5
|
Hammami K, Souii A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Souissi Y, Neifar M. Experimental and Computational Insights into Polyurethane Plastic Waste Conversion to Microbial Bioplastic. Curr Microbiol 2025; 82:227. [PMID: 40178692 DOI: 10.1007/s00284-025-04218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
In this study, a seven-factor Hoke experimental design and the response surface methodology were used to optimize the fermentation conditions for the maximum polyhydroxyalkanoates (PHA) yield using polyurethane plastic waste (PUPW) as a source of carbon and energy for the microbial growth and biobased polyester production. The highest PHA yield (0.80 g/L ± 0.01) was obtained under a pH of 8; a temperature of 35 °C; a NaCl concentration of 5%; a PUPW concentration of 1%; an inoculum size of 15%, a monoculture of Pseudomonas rhizophila S211; and an incubation time of 6 days. The response values predicted by the Hoke design model at each combination of factor levels aligned with the experimental results, and the analysis of variance demonstrated the predictability and accuracy of the postulated model. In addition to the experimental evidences, P. rhizophila genome was explored to predict the PUPW-degrading enzymes and the associated protein secretion systems. Moreover, physicochemical properties, phylogenetic analysis, and 3D structure of S211 LipA2 polyurethanase were elucidated through an in-silico approach. Taken all together, integrated experimental tests and computational modeling suggest that P. rhizophila S211 has the necessary enzymatic machinery to effectively convert the non-biodegradable PUPW into PHA bioplastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied On the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", University of Monastir, 5100, Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Mohamed Neifar
- APVA-LR16ES20, Biological Department, National School of Engineers of Sfax (ENIS), University of Sfax, 3038, Sfax, Tunisia.
- Common Services Unit "Bioreactor Coupled With an Ultrafilter", ENIS, University of Sfax, 3030, Sfax, Tunisia.
| |
Collapse
|
6
|
Zhang X, Wang L, Zhang K, Zhou K, Hou K, Zhao Z, Li G, Yao Q, Sun N, Wang X. Hybrid Soft Segments Boost the Development of Ultratough Thermoplastic Elastomers with Tunable Hardness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414720. [PMID: 39828592 DOI: 10.1002/adma.202414720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/05/2025] [Indexed: 01/22/2025]
Abstract
The hardness of thermoplastic elastomers (TPEs) significantly influences their suitability for various applications, but traditionally, enhancing hardness reduces toughness. Herein a method is introduced that leverages hybrid soft segments to fine-tune the hardness of TPEs without compromising their exceptional toughness. Through the selective copolymerization of polytetramethylene ether glycols (PTMEGs) at various molecular weights, supramolecular poly(urethane-urea) TPEs are molecularly engineered to cover a wide spectrum of hardness while retaining good toughness. It is achieved through the formation of graded functional zones-densely packed for enhanced hardness and strength, and loosely packed for greater extensibility and toughness-driven by variations in PTMEG chain length and mismatched supramolecular interactions. Through the establishment and systematic investigation of a TPE library, the intricate interplay between design, structure, and performance of these materials is elucidated, refining the optimization techniques. The TPEs demonstrate exceptional mechanical properties, including a variant with a Shore hardness of 86A and a toughness of 819 MJ m-3, alongside a softer variant with a 59A hardness and a 786 MJ m-3 toughness. The innovation extends to a scalable solvent-based TPE production line, promising widespread industrial application. This advancement reimagines the potential of high-performance TPEs and composites, offering versatile materials for demanding applications.
Collapse
Affiliation(s)
- Xingxue Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kunyang Zhou
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiyang Hou
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhixun Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Guiliang Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Qing Yao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Nan Sun
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
7
|
Eyni MB, Shojaei A, Khasraghi SS. Enhancing performance of in-situ synthesized biocompatible shape memory polyurethane acrylate by cellulose nanocrystals. Int J Biol Macromol 2025; 300:140232. [PMID: 39855508 DOI: 10.1016/j.ijbiomac.2025.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
This study presents the development of biocompatible and biodegradable nanocomposites utilizing renewable cellulose nanocrystals (CNCs) in polycaprolactone (PCL)-based polyurethane acrylates (PUA) through in situ polymerization. First, CNCs were derived from cotton linter via acid hydrolysis; then functionalized with 3-methacryloxypropyltrimethoxysilane to produce silane-modified CNCs (S-CNCs). CNCs offered uniform dispersion in PUA up to 2 wt% loading, resulting in significant property enhancements, including ∼60 % increase in tensile strength and ∼25 % increase in Young's modulus. Despite the chemical interaction of S-CNCs with PUA, they tended to agglomerate beyond 0.5 wt% loading due to the promotion of chemical interactions between S-CNC particles at higher concentrations. Despite this, comparable improvements (e.g. ∼50 % in tensile strength and ∼25 % in Young's modulus) were observed at just 0.5 wt% S-CNC loading. Both neat PUA and PUA nanocomposites demonstrated exceptional shape memory properties, with shape fixity exceeding 95 % and shape recovery approaching 100 %. However, S-CNCs also halved the shape recovery time compared to neat PUA, a critical advancement for time-sensitive applications. Meanwhile, the biocompatibility of PUA was largely preserved in the presence of the nanoparticles, particularly for S-CNC.
Collapse
Affiliation(s)
- Mahbubeh Beikmohammadi Eyni
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran.
| | - Samaneh Salkhi Khasraghi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| |
Collapse
|
8
|
Zhang X, Gu Y, Luo Y. Super absorbent microsphere used for slow-release thickening. J Colloid Interface Sci 2025; 682:1195-1204. [PMID: 39671953 DOI: 10.1016/j.jcis.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Traditional linear polymer is commonly used for polymer flooding in tertiary oil recovery. However, it faces several problems, such as early injection allocation before use and viscosity reduction caused by high-speed shear. In this paper, a novel method of polymer flooding was proposed by using a super absorbent microsphere emulsion. Inverse emulsion polymerization method was adopted to obtain core polymer with acrylamide (AM), acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomers through one-pot two-step approach. In order to prepare polymer microsphere, AM and N-isopropylacrylamide (NIPAM) were used as shell monomers, which can aggregate on core polymer surface by secondary polymerization. The functional groups, morphology and heat resistance of water-absorbing core-shell microspheres was characterized by FT-IR, SEM, TEM and TGA respectively. The amount of emulsifier used and shell-core ratio were optimized by particle size analyzing and solid content calculation. It is found that the particle size distribution of super absorbent microsphere was the most concentrated with emulsifier 10 wt%. Meanwhile, the average particle size of super absorbent microsphere was about 220 nm when the shell-core mass ratio was 1:10. The resulted microsphere samples display spherical shape and possess relatively high pyrolysis temperature. After aging at 80 ℃ for 48 h, the microsphere size can enlarge 10 times than that of initial one. Moreover, the apparent viscosity of microsphere emulsion dispersion was only 1.78 mPa·s at 80 ℃, which was just seventh of that without being microencapsulated core polymer. After aging at 70 ℃ for 48 h, its viscosity increased up to 9.06 mPa·s, indicating good slow-release and thickening properties. Under a low shear rate of 0-72 s-1, the microsphere emulsion dispersion exhibited shear thinning characteristics. While under a high shear rate of 72-600 s-1, with the increase of shear rate, the microsphere emulsion dispersion revealed a shear thickening property. Compared with traditional linear polymer, super absorbent microsphere takes on excellent water absorption performance in relatively high temperature environment, namely 80 ℃. In addition, its thickening by absorbing water to reach equilibrium is relatively slow, showing a slow-release feature. Therefore, super water absorbent thickened system prepared in this paper is expected to be used in promoting oil recovery based on improved polymer flooding.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yiming Gu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yan Luo
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Pals M, Ponomarenko J, Lauberts M, Jashina L, Jurkjane V, Arshanitsa A. Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions. PLANTS (BASEL, SWITZERLAND) 2025; 14:775. [PMID: 40094745 PMCID: PMC11901723 DOI: 10.3390/plants14050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1-2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox.
Collapse
Affiliation(s)
| | | | - Maris Lauberts
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (M.P.); (J.P.); (L.J.); (V.J.); (A.A.)
| | | | | | | |
Collapse
|
10
|
Li X, Ning N, Yu B, Tian M. Recyclable Millable Polyurethane based on Enaminone Bonds With Upcycled Mechanical Performance. Macromol Rapid Commun 2025; 46:e2400858. [PMID: 39803848 DOI: 10.1002/marc.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Indexed: 03/28/2025]
Abstract
Thermoplastic polyurethane (TPU) exhibits re-processable properties, but the properties of TPU is deteriorated during the reprocessing for the oxidation and degradation of polymer chains. Meanwhile, although thermoset polyurethane exhibits excellent mechanical properties, it cannot be recycled for permanent crosslinking. Hence, it's still a challenge to obtain PU which exhibits the balance between the recyclability and mechanical properties. In this work, a new dynamic bond obtained from the reaction between enaminone and isocyanate is used to prepare re-processable millable polyurethane, and the morphology of network can be tuned via the dissociation of the cross-linked sites of PU. Interestingly, the cross-linked network can transform into a linear polymer by adding the amine which can be used when reacted with isocyanate to generate new re-crosslinked PU. This process can be carried out in a Haake mixer without any solvents. The mechanical properties of the re-crosslinked polyurethane can be tuned via the controlling of the amine and isocyanate addition, and the maximum tensile strength increase by 178.4% after processing for four times, realizing mechanical reinforcement after recycling. This kind of recycling achieves through one-step melting method in solvent-free conditions provides a feasible way to prepare recyclable PU with good mechanical performance and customizable properties.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Xing Y, Li J, Cheng J, Lu L, Xue T, Xu J, Xu X, Zhang F. 2D Polyamides Enable Self-Healing and Recyclable Elastomers with High Robustness, Toughness, and Crack Resistance via Supramolecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411040. [PMID: 39668450 DOI: 10.1002/smll.202411040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 12/14/2024]
Abstract
High-performance elastomers with exceptional mechanical properties and self-healing capabilities have garnered significant attention due to their wide range of potential applications. However, designing elastomers that strike a balance between self-healing capabilities and mechanical properties remains a considerable challenge. Inspired by biological cartilage, a highly robust, tough, and crack-resistant self-healing elastomer is presented by incorporating hydrogen-bond-rich 2D polyamide (2DPA) into a poly(urethane-urea) matrix. This integration enhances supramolecular interactions driven by multiple hydrogen bonds. The resulting elastomer exhibits impressive strength (54.6 MPa), remarkable elongation at break (705.4%), exceptional toughness (116.7 MJ m-3), outstanding crack resistance (fracture energy up to 187.2 kJ m-2), high self-healing efficiency (98.9% at 50 °C for 9 h, 97.9% at room temperature for 48 h), and excellent recyclability, capable of lifting ≈40 000 times its own weight. Furthermore, a damage-tolerant, fatigue-resistant anticorrosive coating from this elastomer, showcasing its potential for protective skin applications in underwater robotics is developed. The underlying enhancement mechanism is validated through testing of various elastomers and molecular dynamics simulations, confirming the potential of engineering 2DPA for high-performance elastomers by leveraging supramolecular interactions.
Collapse
Affiliation(s)
- Yuedong Xing
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Jiongchao Li
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Jie Cheng
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Liwei Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Tao Xue
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Jianben Xu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
- College of Chemistry and Bioengineering, Guangxi Minzu Normal University, Chongzuo, Guangxi, 532200, China
| | - Xiang Xu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Faai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| |
Collapse
|
12
|
Ros M, Lidon P, Carrascosa A, Muñoz M, Navarro MV, Orts JM, Pascual JA. Polyurethane foam degradation combining ozonization and mealworm biodegradation and its exploitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5332-5346. [PMID: 39921778 PMCID: PMC11868246 DOI: 10.1007/s11356-025-36029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
The biodegradation of polyurethane foam (PU foam) using a combination of oxidative pre-treatment (ozonization) and Tenebrio molitor (T. molitor) mealworms was conducted in this study. Different degrees of ozone oxidation (0%, 25%, and 50%) were applied to PU foam, which was subsequently fed to mealworms. The mealworms' survival and growth were then compared to mealworms receiving a normal diet (bran). Results showed that mealworms fed with non-oxidized PU foam (PUF0) exhibited a higher consumption rate (11.8%) than those fed with 25% (PUF25) and 50% (PUF50) oxidized PU foam (7.7% and 5.7%, respectively). The survival rate was similar across all the PU foam diets and the bran diet. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analyses revealed minor structural changes in the PU foam. The gut microbiota analysis showed a significant correlation between the PU foam and bran diets. Among the different oxidized PU, distinct microbial community profiles were also observed, with the genus Klebsiella consistently present across the PU foam diets. The ozone pre-treatment altered the palatability and degradation of the PU foam by mealworms, while the mealworm frass and chitin obtained could potentially be used as resources for agricultural and industrial applications that would close the circular bio-economy cycle.
Collapse
Affiliation(s)
- Margarita Ros
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain.
| | - Paula Lidon
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| | - Angel Carrascosa
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| | - Marta Muñoz
- CETEM, Materials, Adhesion and Polymers, C/ Perales S/N, Yecla, Murcia, Spain
| | | | - Jose Maria Orts
- Department of Biochemistry and Molecular Biology, Facultad de Farmacia, C/Prof., Universidad de Sevilla, García Gonzalez 2, 41012, Seville, Spain
| | - Jose Antonio Pascual
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| |
Collapse
|
13
|
Ji H, Shi X, Yang H. Recent Advances in Polyurethane for Artificial Vascular Application. Polymers (Basel) 2024; 16:3528. [PMID: 39771380 PMCID: PMC11679075 DOI: 10.3390/polym16243528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively. The PU for artificial blood vessels still requires a balance between material stability and biocompatibility to maintain its long-term stability in vivo, which needs to be further optimized. Based on the requirement of PU materials for artificial vascular applications, this paper views the development of biostable PU, bioactive PU, and bioresorbable PU. The improvement of biostable PU from the monomer structure, chemical composition, and additives are discussed to improve the long-term biostability in vivo. The surface grafting and functionalization methods of bioactive PU to reduce thrombosis and promote endothelialization for improving biocompatibility are summarized. In addition, the bioresorbable PU for tissue-engineered artificial blood vessels is discussed to balance between the degradation rate and mechanical properties. The ideal PU materials for artificial blood vessels must have good mechanical properties, stability, and biocompatibility at the same time. Finally, the application potential of PU materials in artificial vascular is prospected.
Collapse
Affiliation(s)
- Hua Ji
- Winner Institute for Innovation Research, Winner Medical Co., Ltd., Wuhan 430070, China;
| | - Xiaochen Shi
- Winner Institute for Innovation Research, Winner Medical Co., Ltd., Wuhan 430070, China;
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430070, China;
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430070, China
| |
Collapse
|
14
|
Zhang J, Jiao K, Li J, Sun P, Chen S. Insight into performance and lifetime of ecofriendly pollution barriers in landfill for emergency: A thermogravimetric analysis for novel polymer materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177072. [PMID: 39461515 DOI: 10.1016/j.scitotenv.2024.177072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The novel polymer barrier wall is an in-situ remediation technology designed to effectively control the migration of pollution and prevent the diffusion of pollutants by blocking, sealing, or altering the direction of groundwater flow. With its advantages of rapid chemical reaction (achieving 95 % strength within 15 min) and portable equipment suitable for narrow and rugged emergency sites, this innovative polymer barrier demonstrates promising prospects for practical application. Hence, ensuring the long-term durability of new materials under corrosive and high-temperature leachate conditions is crucial. In this study, a comprehensive investigation was conducted on the corrosion and thermal aging performance of novel polymer materials. Firstly, the mechanical tensile properties of the polymer materials were examined after immersion in leachates, aiming to elucidate the degradation mechanism underlying these properties. Subsequently, thermogravimetric (TG) analysis was performed on the polymer materials immersed in various leachates. And the thermal stability and oxidation stability of novel materials were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer (TG-FTIR). Based on the results obtained from thermal analysis, the service life of polymer materials under different pollutants was ultimately predicted utilizing the Arrhenius model. The findings indicate that the novel polymer materials exhibit commendable durability and pose little risk of causing secondary pollution.
Collapse
Affiliation(s)
- Jingwei Zhang
- School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Jiao
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Jia Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China.
| | - Pei Sun
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Shuoshuo Chen
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Li H, Liu R, Li X, Xu K, Cao J. Root-inspired grafting of wood surfaces with hyperbranched polymers for enhanced interfacial adhesion with impregnated decorative paper. RSC Adv 2024; 14:38706-38720. [PMID: 39654920 PMCID: PMC11626439 DOI: 10.1039/d4ra07688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
A root-like waterborne hyperbranched polymer, synthesized from diethylenetriamine (DETA) and methyl acrylate (MA) monomers, was inspired by the effect of solidifying soil with tree roots. This polymer was then blended with aqueous isocyanate SK615, known as MD-HBP-NH2, to serve as a surface modifier for blockboards. The blockboards were treated with a modifier to enhance the interfacial adhesion with melamine-formaldehyde (MF) resin-impregnated decorative paper, thereby preventing surface cracks. The polycondensation reaction temperatures of the modifiers were compared. These results indicated that a hyperbranched root-structured polymer emulsion was formed through Michael addition reactions. Following this modification, the blockboards demonstrated enhanced planeness and dimensional stability. Furthermore, the isocyanate groups reacted with the exposed hydroxyl groups, and the amino groups reacted with the aldehyde groups in the MF resin, thereby enhancing the interfacial bonding strength between the wood and the impregnated decorative paper. At a polycondensation temperature of 155 °C, optimal overall performance was attained, with the ability to penetrate the wood surface to a depth of 1.28 mm, and exhibited superior surface crack resistance. Moreover, this waterborne hyperbranched polymer modifier is eco-friendly, green, and non-toxic, with lower levels of volatile organic compounds. This presents a promising avenue for the development of eco-friendly modifiers to prevent surface cracking in wood-based panels with impregnated decorative paper.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Technology, Beijing Key Laboratory of Wooden Material Science and Application, Beijing Forestry University Haidian Beijing 100083 China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry Haidian Beijing 100091 China
| | - Xinyu Li
- Guangdong Tianyuan Huibang New Materials Co., Ltd Foshan Guangdong 523000 China
| | - Kun Xu
- Guangdong Tianyuan Huibang New Materials Co., Ltd Foshan Guangdong 523000 China
| | - Jinzhen Cao
- School of Materials Science and Technology, Beijing Key Laboratory of Wooden Material Science and Application, Beijing Forestry University Haidian Beijing 100083 China
| |
Collapse
|
16
|
Quane E, Elders N, Newman AS, van Mourik S, Williams NSJ, van den Berg KJ, Ryan AJ, Mykhaylyk OO. Synthesis, Morphology, and Particle Size Control of Acidic Aqueous Polyurethane Dispersions. Macromolecules 2024; 57:10623-10634. [PMID: 39619248 PMCID: PMC11603786 DOI: 10.1021/acs.macromol.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 04/01/2025]
Abstract
A range of charge-stabilized aqueous polyurethane (PU) dispersions comprising hard segments formed from hydrogenated methylene diphenyl diisocyanate (H12MDI) with dimethylolpropionic acid (DMPA) and ethylenediamine, and soft segments of poly(tetramethylene oxide) of different molecular weights are synthesized. Characterization of the dispersions by mass spectrometry, gel permeation chromatography, small-angle X-ray scattering, atomic force microscopy, and infrared spectroscopy shows that they are composed of PUs self-assembled into spherical particles (primary population) and supramolecular structures formed by hydrogen-bonded H12MDI and DMPA acid-rich fragments (secondary population). Analysis of the scattering patterns of the dispersions, using a structural model based on conservation of mass, reveals that the proportion of supramolecular structures increases with DMPA content. It is also found that the PU particle radius follows the predictions of the particle surface charge density model, originally developed for acrylic statistical copolymers, and is controlled by hydrophile (DMPA) content in the PU molecules, where an increase in PU acidity results in a decrease in particle size. Moreover, there is a critical fractional coverage of hydrophiles stabilizing the particle surface for a given polyether soft-segment molecular weight, which increases with the polyether molecular weight, confirming that more acid groups are required to stabilize a more hydrophobic composition.
Collapse
Affiliation(s)
- Ellen
J. Quane
- School
of Mathematical and Physical Sciences, The
University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Niels Elders
- Department
of Resin Technology, Akzo Nobel Car Refinishes
BV, Rijksstraatweg 31, Sassenheim 2171 AJ, Netherlands
| | - Anna S. Newman
- School
of Mathematical and Physical Sciences, The
University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Sophia van Mourik
- School
of Mathematical and Physical Sciences, The
University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Neal S. J. Williams
- CPI, The Coxon Building, John Walker
Road, NETPark, Sedgefield, County Durham TS21 3FE, U.K.
| | - Keimpe J. van den Berg
- Department
of Resin Technology, Akzo Nobel Car Refinishes
BV, Rijksstraatweg 31, Sassenheim 2171 AJ, Netherlands
| | - Anthony J. Ryan
- School
of Mathematical and Physical Sciences, The
University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Oleksandr O. Mykhaylyk
- School
of Mathematical and Physical Sciences, The
University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
17
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
18
|
Ni H, Zhang X, Yu J, Zhao C, Si Y. Phase-Changeable Metafabric Enables Dynamic Subambient Humidity and Thermal Regulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62654-62663. [PMID: 39474935 DOI: 10.1021/acsami.4c12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A promising approach to prevent heat- and cold-related illnesses is the integration of zero-energy input control technology into personal thermal management (PTM) systems while reducing energy consumption. However, achieving optimal wearing comfort while maintaining subambient metabolic temperatures using thermally regulating materials without an energy supply remains challenging. In this study, we provide a simple and reliable methodology to produce a phase-changeable metafabric made of thermoplastic polyurethane and phase change capsule (PCC) particles with high moisture permeability and thermal comfort. This approach skillfully incorporates spray-formed PCC particles into a three-dimensional nanofibrous aggregate, forming a stable self-entangled network structure in a single step through simultaneous humidity-assisted electrospraying and electrospinning processes. Additionally, the metafabric demonstrates prominent water resistance and superhydrophobicity, which are attributed to the integration of PCC particles and nanofibers, resulting in the formation of a microporous/nanoporous structure resembling the surface of a lotus leaf. As a result, the phase-changeable metafabric shows an active and passive thermal control performance, with a water vapor transmittance rate of 13.1 kg m-2 d-1 and a phase change enthalpy of 115.05 J g-1 even after 100 thermal cycles. Furthermore, it displays excellent waterproofing capability, characterized by a water contact angle of 158.7° and the ability to withstand a high hydrostatic pressure of 87 kPa. In addition, the metafabric exhibits a good mechanical performance, boasting a tensile strength of 10.5 MPa. Overall, the proposed economical metafabric is an exemplary candidate material for next-generation PTM systems.
Collapse
Affiliation(s)
- Haiyan Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian Province 350108, China
| | - Xuan Zhang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
19
|
Zhai M, Shou T, Yin D, Chen Z, Wu Y, Liu Y, Zhao X, Hu S, Zhang L. Bio-Based Polyurethane Composites with Adjustable Fluorescence and Ultraviolet Shielding for Anti-Counterfeiting and Ultraviolet Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62606-62616. [PMID: 39483089 DOI: 10.1021/acsami.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Polyurethane and its composites play an important role in innovative packing materials including anticounterfeiting and ultraviolet protection, however, they are mainly derived from petroleum resources that are not sustainable. In this study, a 100% biobased thermoplastic polyurethane (Bio-TPU) was synthesized using biobased poly(trimethylene ether) glycol, pentamethylene disocyanate, and 1,4-butanediol. Subsequently, biobased tannic acid (TA) was employed to prepare biobased composites. The structures and properties of Bio-TPU and its composites were systematically evaluated. The results showed that the Bio-TPU/TA composite films had excellent and controllable fluorescence and UV-shielding properties. The fluorescence colors of the Bio-TPU/TA composite films could be adjusted to blue, green, and yellow by varying the TA content and adding coupling agents. Moreover, the UV transmittance of the Bio-TPU/TA composites decreased from 79.25 to 5.43% below 400 nm with an increasing TA content, indicating an excellent ultraviolet-barrier performance. Consequently, biobased TPU/TA composite films can be utilized as innovative anticounterfeiting materials and UV-shielding protection films. This study is expected to facilitate sustainable development in the polyurethane industry and broaden the high-end applications of polyurethane such as fashion, electronics, food manufacturing, pharmaceuticals, and finance.
Collapse
Affiliation(s)
- Mengyao Zhai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Shou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dexian Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaowen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024; 10:6828-6859. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
21
|
Huang Z, Wang H, Zhang Y, Liu Z, Yin X, Liu X, Lin W, Lin X, Xu Z, Sun Y, Yi G. 'Rigid-flexible' strategy for high-strength, near-room-temperature self-healing, photo-thermally functionalised lignin-reinforced polyurethane elastomers. Int J Biol Macromol 2024; 280:136127. [PMID: 39357730 DOI: 10.1016/j.ijbiomac.2024.136127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Lignin is the most abundant and only renewable aromatic polymer in nature. Herein, a flexible matrix and the rigid lignin were rationally integrated to prepare high-strength, near-room-temperature self-healing, processable lignin-reinforced polyurethane elastomers (LZPUs). Reversible hydrogen and oxime-amino ester bonds were introduced into the matrix to provide excellent dynamic properties and abundant ligands for lignin-matrix coordination bonds. Abundant metal coordination bonds were constructed between the matrix and lignin via the introduction of Zn2+, which not only effectively enhances the dispersibility and compatibility, but also provides an excellent energy dissipation mechanism for the LZPUs. One of the prepared elastomers, LZPUs, exhibited a high strength of 40.5 MPa, which is twice that of the blank sample and 1.6 times that of the sample without Zn2+. It maintained kinetic stability at mild temperature, but it exhibited a self-healing efficiency of 91.3 % in strength and 99.8 % in elongation at break after decoupling with trace ethanol (≈ 50 μL) at 35 °C. It exhibited a self-healing efficiency of 93.6 % in strength under 1 sun irradiation (0.1 W cm-2) for 4 h. We believe this elastomer offering high mechanical properties with multi-functionality can be applied in flexible drives and photo-thermal power generation.
Collapse
Affiliation(s)
- Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Yayi Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zilong Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingshan Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyang Xu
- Kinte Material Technology Co., Ltd., Dongguan, Guangdong 523000, China
| | - Yingjuan Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
22
|
Yan X, Chen Y, Tan J, Zhang C, Xie Z, Zheng SY, Wang Q, Zhou Z, Yang J. Tough and stretchable ionic polyurethane foam for use in wearable devices. SOFT MATTER 2024; 20:8136-8143. [PMID: 39364663 DOI: 10.1039/d4sm00926f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Developing tough and conductive materials is crucial for the fields of wearable devices. However, soft materials like polyurethane (PU) are usually non-conductive, whereas conductive materials like carbon nanotubes (CNTs) are usually brittle. Besides, their composites usually face poor interfacial interactions, leading to a decline in performance in practical use. Here, we develop a stretchable PU/CNTs composite foam for use as a strain sensor. A cationic chain extender is incorporated to afford PU cationic groups and to regulate its mechanical properties, whose tensile strength is up to 12.30 MPa and breaking strain exceeds 1000%, and which shows considerable adhesion capability. Furthermore, porous PU foam is prepared via a salt-templating method and carboxylic CNTs with negative groups are loaded to afford the foam conductivity. The obtained foam shows high sensitivity to small strain (GF = 5.2) and exhibits outstanding long-term cycling performance, which is then used for diverse motion detection. The strategy illustrated here should provide new insights into the design of highly efficient PU-based sensors.
Collapse
Affiliation(s)
- Xuefeng Yan
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Yong Chen
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Cailiang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qi Wang
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co., Ltd., Jiaxing 314000, P. R. China
| | - Zhijun Zhou
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
23
|
Yu Z, Sun X, Zhu Y, Zhou E, Cheng C, Zhu J, Yang P, Zheng D, Zhang Y, Panahi-Sarmad M, Jiang F. Direct Ink Writing 3D Printing Elastomeric Polyurethane Aided by Cellulose Nanofibrils. ACS NANO 2024; 18:28142-28153. [PMID: 39353083 DOI: 10.1021/acsnano.4c07681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
3D printing of a flexible polyurethane elastomer is highly demandable for its potential to revolutionize industries ranging from footwear to soft robotics thanks to its exceptional design flexibility and elasticity performance. Nevertheless, conventional methods like fused deposition modeling (FDM) and vat photopolymerization (VPP) polyurethane 3D printing typically limit material options to thermoplastic or photocurable polyurethanes. In this research, a water-borne polyurethane ink was synthesized for direct ink writing (DIW) 3D printing through the incorporation of cellulose nanofibrils (CNFs), enabling direct printing of complex, monolithic elastomeric structures at room temperature that can maintain the designed structure. Additionally, a solvent-induced fast solidification (SIFS) method was introduced to facilitate room-temperature curing and enhance mechanical properties. The 3D-printed WPU structures demonstrated strong interfacial adhesion, exhibiting high ultimate tensile strength of up to 22 MPa and an elongation at break of 951%. The 3D-printed WPU structures also demonstrated outstanding resilience and durability, capable of enduring more than 100 cycles of compression and tension as well as withstanding vehicle crushing and heavy lifting. This method also shows suitability for 3D printing complex structures such as a vase and an octopus.
Collapse
Affiliation(s)
- Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Elaine Zhou
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Changfeng Cheng
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yifan Zhang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mahyar Panahi-Sarmad
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
24
|
Yu C, Choi J, Lee J, Lim S, Park Y, Jo SM, Ahn J, Kim SY, Chang T, Boyer C, Kwon MS. Functional Thermoplastic Polyurethane Elastomers with α, ω-Hydroxyl End-Functionalized Polyacrylates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403048. [PMID: 39171759 DOI: 10.1002/adma.202403048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Thermoplastic polyurethane (TPU) is an essential class of materials for demanding applications, from soft robotics and electronics to medical devices and batteries. However, traditional TPU development is primarily relied on specific soft segments, such as polyether, polyester, and polycarbonate polyols. Here, a novel method is introduced for developing TPU elastomers with enhanced performance and superior functionalities compared to conventional TPUs, achieved through the use of α,ω-hydroxyl end-functionalized polyacrylates. This approach involves a defect-free synthesis of α,ω-hydroxyl end-functionalized polyacrylates through visible-light-driven photoiniferter polymerization. By strategically blending these functionalized polyacrylates with conventional polyols, TPUs that exhibit exceptional toughness and notable self-healing capabilities, traits rarely found in existing TPUs are engineered. Furthermore, incorporating photo-crosslinkable acrylic monomers has enabled the creation of the first TPU with superior elastomeric properties and photopatterning capabilities. This approach paves the way for a new direction in polyurethane engineering, introducing a novel class of soft segments and unlocking the potential for a wide range of advanced applications.
Collapse
Affiliation(s)
- Changhoon Yu
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinho Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwook Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngjoo Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Min Jo
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junyoung Ahn
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - So Youn Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taihyun Chang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
25
|
Wang Y, Fu Y, Wang Q, Kong D, Wang Z, Liu J. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater Today Bio 2024; 28:101194. [PMID: 39221196 PMCID: PMC11364905 DOI: 10.1016/j.mtbio.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Valvular heart diseases (VHDs) have become one of the most prevalent heart diseases worldwide, and prosthetic valve replacement is one of the effective treatments. With the fast development of minimal invasive technology, transcatheter valves replacement has been exploring in recent years, such as transcatheter aortic valve replacement (TAVR) technology. In addition, basic research on prosthetic valves has begun to shift from traditional mechanical valves and biological valves to the development of polymeric heart valves. The polymeric heart valves (PHVs) have shown a bright future due to their advantages of longer durability, better biocompatibility and reduced cost. This review gives a brief history of the development of polymeric heart valves, provides a summary of the types of polymer materials suitable for heart leaflets and the emerging processing/preparation methods for polymeric heart valves in the basic research. Besides, we facilitate a deeper understanding of polymeric heart valve products that are currently in preclinical/clinical studies, also summary the limitations of the present researches as well as the future development trends. Hence, this review will provide a holistic understanding for researchers working in the field of prosthetic valves, and will offer ideas for the design and research of valves with better durability and biocompatibility.
Collapse
Affiliation(s)
- Yuanchi Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yulong Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, Nankai University School of Medicine, Tianjin 300071, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
26
|
Duan H, Li S, Zhao J, Yang H, Tang H, Qi D, Huang Z, Xu X, Shi L, Müller-Buschbaum P, Zhong Q. Microstructure Evolution of Reactive Polyurethane Films During In Situ Polyaddition and Film-Formation Processes. Macromol Rapid Commun 2024; 45:e2400284. [PMID: 38967216 DOI: 10.1002/marc.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.
Collapse
Affiliation(s)
- Huimin Duan
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Keqiao Research Institute of Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Shuli Li
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jinbiao Zhao
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Hao Yang
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Heyang Tang
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Keqiao Research Institute of Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Zhichao Huang
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xinxin Xu
- Zhejiang Hexin Science and Technology Co., Ltd., Jiaxing, 314003, P. R. China
| | - Lei Shi
- Zhejiang Hexin Science and Technology Co., Ltd., Jiaxing, 314003, P. R. China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Qi Zhong
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
27
|
Shi J, Zheng T, Wang Z, Wang P, Yang H, Guo J, Wang D, Guo B, Xu J. Filler effects inspired high performance polyurethane elastomer design: segment arrangement control. MATERIALS HORIZONS 2024; 11:4747-4758. [PMID: 39011906 DOI: 10.1039/d4mh00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Elastomers with high strength and toughness are in great demand. Previous research on elastomers focused mainly on the design of new chemical structures, but their complicated synthesis process and expensive monomers have restricted the practical application of these materials. Inspired by general filler effects, a strategy is proposed to remarkably enhance the mechanical properties of thermoplastic polyurethane (TPU) elastomers by designing the arrangement of hard/soft segments using traditional chemical compositions. By utilizing the synergetic effect of weak hard segments, normal TPU elastomers are upgraded into advanced elastomers. Combining experiments and simulations, it is demonstrated that a suitable sequence length can achieve considerably enhanced strength and toughness by maximizing the relative surface area of hard domains. Mixing the obtained elastomer with an ionic liquid can result in a durable ionogel sensor with balanced mechanical strength and ionic conductivity. This easy-to-implement strategy offers a new dimension for the development of high-performance elastomers.
Collapse
Affiliation(s)
- Jiaxin Shi
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Tianze Zheng
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Pujin Wang
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Hongkun Yang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinjing Guo
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Chernonosova VS, Osipova OS, Nuankai Z, Shundrina IK, Murashov IS, Larichev YV, Karpenko AA, Laktionov PP. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitroand in vivo. Biomed Mater 2024; 19:065012. [PMID: 39255825 DOI: 10.1088/1748-605x/ad792d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Bioengineered vascular grafts (VGs) have emerged as a promising alternative to the treatment of damaged or occlusive vessels. It is thought that polyurethane (PU)-based scaffolds possess suitable hemocompatibility and biomechanics comparable to those of normal blood vessels. In this study, we investigated the properties of electrospun scaffolds comprising various blends of biostable polycarbonate-based PU (Carbothane™ 3575A) and gelatin. Scaffolds were characterized by scanning electron microscopy, infra-red spectroscopy, small-angle x-ray scattering, stress-loading tests, and interactions with primary human cells and blood. Data fromin vitroexperiments demonstrated that a scaffold produced from a blend of 5% Carbothane™ 3575A and 10% gelatin has proven to be a suitable material for fabricating a small-diameter VG. A comparativein vivostudy of such VGs and expanded polytetrafluoroethylene (ePTFE) grafts implanted in the abdominal aorta of Wistar rats was performed. The data of intravital study and histological examination indicated that Carbothane-based electrospun grafts outclass ePTFE grafts and represent a promising device for preclinical studies to satisfy vascular surgery needs.
Collapse
Affiliation(s)
- Vera S Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olesia S Osipova
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Zhou Nuankai
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Inna K Shundrina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan S Murashov
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Yurii V Larichev
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey A Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Tang S, Zhang Q, Xu H, Zhu M, Nahid Pervez M, Wu B, Zhao Y. Fabric structure and polymer composition as key contributors to micro(nano)plastic contamination in face masks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135089. [PMID: 38959827 DOI: 10.1016/j.jhazmat.2024.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The surge in face mask use due to COVID-19 has raised concerns about micro(nano)plastics (MNPs) from masks. Herein, focusing on fabric structure and polymer composition, we investigated MNP generation characteristics, mechanisms, and potential risks of surgical polypropylene (PP) and fashionable polyurethane (PU) masks during their wearing and photoaging based on stereomicroscope, μ-Fourier transform infrared spectroscopy (μ-FTIR), and scanning electron microscope (SEM) techniques. Compared with new PP and PU masks (66 ± 16 MPs/PP-mask, 163 ± 83 MPs/PU-mask), single- and multiple-used masks exhibited remarkably increased MP type and abundance (600-1867 MPs/PP-mask, 607-2167 MPs/PU-mask). Disinfection exacerbated endogenous MP generation in masks, with washing (416 MPs/PP-mask, 30,708 MPs/PU-mask) being the most prominent compared to autoclaving (219 MPs/PP-mask, 553 MPs/PU-mask) and alcohol spray (162 MPs/PP-mask, 18,333 MPs/PU-mask). Photoaging led to massive generation of MPs (8.8 × 104-3.7 × 105 MPs/PP-layer, 1.0 × 105 MPs/PU-layer) and NPs (5.2 × 109-3.6 × 1013 NPs/PP-layer, 3.5 × 1012 NPs/PU-layer) from masks, presenting highly fabric structure-dependent aging modes as "fragmentation" for fine fiber-structure PP mask and "erosion" for 3D mesh-structure PU mask. The MNPs derived from PP/PU mask caused significant deformities of Zebrafish (Danio rerio) larvae. These findings underscore the potential adverse effects of masks on humans and aquatic organisms, advocating to enhance proper use and rational disposal for masks.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qun Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Haowen Xu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
30
|
Bahatibieke A, Wei S, Feng H, Zhao J, Ma M, Li J, Xie Y, Qiao K, Wang Y, Peng J, Meng H, Zheng Y. Injectable and in situ foaming shape-adaptive porous Bio-based polyurethane scaffold used for cartilage regeneration. Bioact Mater 2024; 39:1-13. [PMID: 38783924 PMCID: PMC11108820 DOI: 10.1016/j.bioactmat.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 05/25/2024] Open
Abstract
Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.
Collapse
Affiliation(s)
- Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Wei
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Han Feng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
- Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanseng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
31
|
de Carvalho Rodrigues V, Guterres IZ, Pereira Savi B, Fongaro G, Silva IT, Vitor Salmoria G. Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39190633 DOI: 10.1080/09205063.2024.2396221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.
Collapse
Affiliation(s)
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gean Vitor Salmoria
- Nimma, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
32
|
Tian H, Du Y, Luo X, Dong J, Chen S, Hu X, Zhang M, Liu Z, Abolfathi S. Understanding visible light and microbe-driven degradation mechanisms of polyurethane plastics: Pathways, property changes, and product analysis. WATER RESEARCH 2024; 259:121856. [PMID: 38875861 DOI: 10.1016/j.watres.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The accumulation of polyurethane plastics (PU-PS) in the environment is on the rise, posing potential risks to the health and function of ecosystems. However, little is known about the degradation behavior of PU-PS in the environment, especially water environment. To address this knowledge gap, we investigated and isolated a degrading strain of Streptomyces sp. B2 from the surface of polyurethane coatings. Subsequently, a photoreactor was employed to simulate the degradation process of bio-based polyurethane (BPU) and petroleum-based polyurethane (PPU) under three conditions, including single microorganism (SM), single light exposure (SL), and combined light exposure/microorganism action (ML) in aqueous solution. The results indicated that PU-PS mainly relies on biodegradation, with the highest degradation rate observed after 28 d under SM condition (BPU 5.69 %; PPU 5.25 %). SL inhibited microbial growth and degradation, with the least impact on plastic degradation. Microorganisms colonized the plastic surface, secreting relevant hydrolytic enzymes and organic acids into the culture medium, providing a negative charge. The carbon chains were broken and aged through hydrogen peroxide induction or attack by oxygen free radicals. This process promoted the formation of oxidized functional groups such as OH and CO, disrupting the polymer's structure. Consequently, localized fragmentation and erosion of the microstructure occurred, resulting in the generation of secondary microplastic (MPs) particles, weight loss of the original plastic, increased surface roughness, and enhanced hydrophilicity. Additionally, BPU exhibited greater degradability than PPU, as microorganisms could utilize the produced fatty acids, which promoted their reproduction. In contrast, PPU degradation generated a large amount of isocyanate, potentially toxic to cells and inhibiting biodegradation. This study unveils the significant role of microorganisms in plastic degradation and the underlying degradation mechanisms of BPU, providing a novel strategy for polyurethane degradation and valuable information for comprehensive assessment of the behavior and fate of MPs in the environment.
Collapse
Affiliation(s)
- Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuping Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xinyu Luo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jingjing Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Siyu Chen
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaomin Hu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Soroush Abolfathi
- School of Engineering, University of Warwick, Coventry, CV47AL, United Kingdom
| |
Collapse
|
33
|
Godlewska J, Smorawska J, Głowińska E. Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments. Molecules 2024; 29:3585. [PMID: 39124990 PMCID: PMC11314303 DOI: 10.3390/molecules29153585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Aging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging. The bio-TPUs were synthesized at an equimolar ratio of reagents using the prepolymer method with the use of bio-based poly(trimethylene ether) glycol, bio-based 1,3-propanediol, and hexamethylene diisocyanate or hexamethylene diisocyanate/partially bio-based diisocyanate mixtures. The polymerization reaction was catalyzed by dibutyltin dilaurate (DBTDL). The structural and property changes after accelerated aging under thermal and hydrothermal conditions were determined using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). Among other findings, it was observed that both the reference and aged bio-TPUs decomposed in two main stages and exhibited thermal stability up to approximately 300 °C. Based on the research conducted, it was found that accelerated aging impacts the supramolecular structure of TPUs.
Collapse
Affiliation(s)
| | | | - Ewa Głowińska
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Gabriel Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
34
|
Kim J, Fan J, Petrossian G, Zhou X, Kateb P, Gagnon-Lafrenais N, Cicoira F. Self-healing, stretchable and recyclable polyurethane-PEDOT:PSS conductive blends. MATERIALS HORIZONS 2024; 11:3548-3560. [PMID: 38869226 DOI: 10.1039/d4mh00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Future electronics call for materials with mechanical toughness, flexibility, and stretchability. Moreover, self-healing and recyclability are highly desirable to mitigate the escalating environmental threat of electronic waste (e-waste). Herein, we report a stretchable, self-healing, and recyclable material based on a mixture of the conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) with a custom-designed polyurethane (PU) and polyethylene glycol (PEG). This material showed excellent elongation at brake (∼350%), high toughness (∼24.6 MJ m-3), moderate electrical conductivity (∼10 S cm-1), and outstanding mechanical and electrical healing efficiencies. In addition, it demonstrated exceptional recyclability with no significant loss in the mechanical and electrical properties after being recycled 20 times. Based on these properties, as a proof of principle for sustainable electronic devices, we demonstrated that electrocardiogram (ECG) electrodes and pressure sensors based on this material could be recycled without significant performance loss. The development of multifunctional electronic materials that are self-healing and fully recyclable is a promising step toward sustainable electronics, offering a potential solution to the e-waste challenge.
Collapse
Affiliation(s)
- Jinsil Kim
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Gayaneh Petrossian
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Pierre Kateb
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Noemy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| |
Collapse
|
35
|
Cao Y, Zhang P, Chen S, Huang Y, Li J, Du H, Zhang W, Chen X, Yu D. ZnO/PUF composites with a large capacity for phosphate adsorption: adsorption behavior and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34235-4. [PMID: 39066944 DOI: 10.1007/s11356-024-34235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
Phosphate is present in all kinds of industrial wastewater; how to remove it to meet the strict total phosphorus discharge standards is a challenge. This study used a one-step foaming technique to fill polyurethane foam (PUF) with ZnO, taking advantage of PUF's excellent features like its porous network, lightweight, hydrophilicity, and abundance of binding sites to create ZnO/PUF composites with high adsorption capacity and exceptional separation properties. The adsorption isotherms, kinetics, starting pH, and matrix impacts of ZnO/PUF composites on phosphate were examined in batch studies. The results showed that the composites had good adsorption performance for phosphate with a saturated adsorption capacity of 460.25 mg/g. The quasi-secondary kinetic and Langmuir models could better describe the adsorption process, which belonged to the chemical adsorption of monomolecular layers. The composites' ability to treat phosphates in complicated waters was shown by their ability to retain a high adsorption capacity in the pH range of 3-6. In column experiments, the composite also maintains a good affinity for phosphate during dynamic adsorption. Multiple characterizations indicate that the adsorption mechanism is a combined effect of ligand exchange and electrostatic interactions. Therefore, this study provides valuable insights for practical phosphorus-containing wastewater treatment.
Collapse
Affiliation(s)
- Yang Cao
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Peicong Zhang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China.
- State Key Laboratory of Geo-Hazard Prevention and Earth Environment Protection, Chengdu, 610059, Sichuan, P.R. China.
| | - Suying Chen
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Yi Huang
- State Key Laboratory of Geo-Hazard Prevention and Earth Environment Protection, Chengdu, 610059, Sichuan, P.R. China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Junfeng Li
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Haiying Du
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Wentao Zhang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Xianfei Chen
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Daming Yu
- Panzhihua Pangang Group Ming Company, Panzhihua, 617000, Sichuan, P.R. China
| |
Collapse
|
36
|
Staszczak M, Urbański L, Gradys A, Cristea M, Pieczyska EA. Nucleation, Development and Healing of Micro-Cracks in Shape Memory Polyurethane Subjected to Subsequent Tension Cycles. Polymers (Basel) 2024; 16:1930. [PMID: 39000785 PMCID: PMC11244466 DOI: 10.3390/polym16131930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Thermoresponsive shape memory polymers (SMPs) have garnered increasing interest for their exceptional ability to retain a temporary shape and recover the original configuration through temperature changes, making them promising in various applications. The SMP shape change and recovery that happen due to a combination of mechanical loading and appropriate temperatures are related to its particular microstructure. The deformation process leads to the formation and growth of micro-cracks in the SMP structure, whereas the subsequent heating over its glass transition temperature Tg leads to the recovery of its original shape and properties. These processes also affect the SMP microstructure. In addition to the observed macroscopic shape recovery, the healing of micro-crazes and micro-cracks that have nucleated and developed during the loading occurs. Therefore, our study delves into the microscopic aspect, specifically addressing the healing of micro-cracks in the cyclic loading process. The proposed research concerns a thermoplastic polyurethane shape memory polymer (PU-SMP) MM4520 with a Tg of 45 °C. The objective of the study is to investigate the effect of the number of tensile loading-unloading cycles and thermal shape recovery on the evolution of the PU-SMP microstructure. To this end, comprehensive research starting from structural characterization of the initial state and at various stages of the PU-SMP mechanical loading was conducted. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) were used. Moreover, the shape memory behavior in the thermomechanical loading program was investigated. The obtained average shape fixity value was 99%, while the shape recovery was 92%, which confirmed good shape memory properties of the PU-SMP. Our findings reveal that even during a single loading-unloading tension cycle, crazes and cracks nucleate on the surface of the PU-SMP specimen, whereas the subsequent temperature-induced shape recovery process carried out at the temperature above Tg enables the healing of micro-cracks. Interestingly, the surface of the specimen after three and five loading-unloading cycles did not exhibit crazes and cracks, although some traces of cracks were visible. The traces disappeared after exposing the material to heating at Tg + 20 °C (65 °C) for 30 min. The crack closure phenomenon during deformation, even without heating over Tg, occurred within three and five subsequent cycles of loading-unloading. Notably, in the case of eight loading-unloading cycles, cracks appeared on the surface of the PU-SMP and were healed only after thermal recovery at the particular temperature over Tg. Upon reaching a critical number of cycles, the proper amount of energy required for crack propagation was attained, resulting in wide-open cracks on the material's surface. It is worth noting that WAXS analysis did not indicate strong signs of typical highly ordered structures in the PU-SMP specimens in their initial state and after the loading history; however, some orientation after the cyclic deformation was observed.
Collapse
Affiliation(s)
- Maria Staszczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.); (A.G.)
| | - Leszek Urbański
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.); (A.G.)
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.); (A.G.)
| | - Mariana Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iași, Romania;
| | - Elżbieta Alicja Pieczyska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.); (A.G.)
| |
Collapse
|
37
|
Hussain M, Khan SM, Shafiq M, Abbas N, Sajjad U, Hamid K. Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon 2024; 10:e32713. [PMID: 39027458 PMCID: PMC11254538 DOI: 10.1016/j.heliyon.2024.e32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Mg-based and Zn-based biodegradable materials have the potential to become the next-generation implant materials to treat bone diseases, because of their desired degradation and mechanical properties. This article reviews the status of these implant materials. The required properties of biodegradable materials such as biodegradability, mechanical properties, and biocompatibility for performance evaluation were briefly discussed. The influence of fabrication techniques, microstructure, alloying elements, and post-processing techniques on the properties of Mg and Zn-based materials was addressed. The degradation mechanism by dissolution, oxidation, and interaction with human body cells was discussed. The biocompatibility of Mg and Zn-based biodegradable materials was analyzed. The significance of in vitro and in vivo biocompatibility testing was highlighted, emphasizing the superiority of in vivo results over cell line studies. This article identifies the many Mg and Zn-based biodegradable materials and summarizes the key findings.
Collapse
Affiliation(s)
- Muzamil Hussain
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Shafiq
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Khalid Hamid
- Process and Power Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
38
|
Tomon TRB, Omisol CJM, Aguinid BJM, Sabulbero KXL, Alguno AC, Malaluan RM, Lubguban AA. A novel naturally superoleophilic coconut oil-based foam with inherent hydrophobic properties for oil and grease sorption. Sci Rep 2024; 14:14223. [PMID: 38902271 PMCID: PMC11190217 DOI: 10.1038/s41598-024-64178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Absorption methods using polyurethane foams (PUFs) have recently gained popularity in treating oil spills. However, conventional petroleum-based PUFs lack selectivity and are commonly surface-modified using complicated processes that require toxic and harmful solvents to enhance their hydrophobicity and oil sorption capacities. In this paper, a novel naturally superoleophilic foam with inherent hydrophobic properties has been developed through the conventional one-shot foaming method with the integration of coconut oil-based polyol. This bio-based polyol was explicitly handpicked as it is chiefly saturated, highly abundant, and inexpensive. The foam is characterized by an oil sorption capacity range of 14.89-24.65 g g-1 for different types of oil, equivalent to 578-871 times its weight. Its hydrophobic behavior is expressed through a water contact angle of ~ 139°. The foam also showcased excellent chemical stability and high recyclability without a significant loss in absorption capacity after 20 cycles. The incorporation of the coconut oil-based polyol is also shown to improve the morphological, mechanical, and thermal behavior of the foam. It can be inferred from these findings that this novel material holds great potential for revolutionizing sorbents, pioneering a more sustainable and eco-friendly functional material produced via a facile method.
Collapse
Affiliation(s)
- Tomas Ralph B Tomon
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Christine Joy M Omisol
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Blessy Joy M Aguinid
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Karyl Xyrra L Sabulbero
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Arnold C Alguno
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
- Department of Physics, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Roberto M Malaluan
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
- Department of Chemical Engineering and Technology, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Arnold A Lubguban
- Center for Sustainable Polymers, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines.
- Department of Chemical Engineering and Technology, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines.
| |
Collapse
|
39
|
Salih A, Hamandi F, Goswami T. Advancements in Finite Element Modeling for Cardiac Device Leads and 3D Heart Models. Bioengineering (Basel) 2024; 11:564. [PMID: 38927800 PMCID: PMC11201100 DOI: 10.3390/bioengineering11060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The human heart's remarkable vitality necessitates a deep understanding of its mechanics, particularly concerning cardiac device leads. This paper presents advancements in finite element modeling for cardiac leads and 3D heart models, leveraging computational simulations to assess lead behavior over time. Through detailed modeling and meshing techniques, we accurately captured the complex interactions between leads and heart tissue. Material properties were assigned based on ASTM (American Society for Testing and Materials) standards and in vivo exposure data, ensuring realistic simulations. Our results demonstrate close agreement between experimental and simulated data for silicone insulation in pacemaker leads, with a mean force tolerance of 19.6 N ± 3.6 N, an ultimate tensile strength (UTS) of 6.3 MPa ± 1.15 MPa, and a percentage elongation of 125% ± 18.8%, highlighting the effectiveness of simulation in predicting lead performance. Similarly, for polyurethane insulation in ICD leads, we found a mean force of 65.87 N ± 7.1 N, a UTS of 10.7 MPa ± 1.15 MPa, and a percentage elongation of 259.3% ± 21.4%. Additionally, for polyurethane insulation in CRT leads, we observed a mean force of 53.3 N ± 2.06 N, a UTS of 22.11 MPa ± 0.85 MPa, and a percentage elongation of 251.6% ± 13.2%. Correlation analysis revealed strong relationships between mechanical properties, further validating the simulation models. Classification models constructed using both experimental and simulated data exhibited high discriminative ability, underscoring the reliability of simulation in analyzing lead behavior. These findings contribute to the ongoing efforts to improve cardiac device lead design and optimize patient outcomes.
Collapse
Affiliation(s)
- Anmar Salih
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Farah Hamandi
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Tarun Goswami
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA;
- Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Miami Valley Hospital, Dayton, OH 45409, USA
| |
Collapse
|
40
|
Tan M, Wang F, Yang J, Zhong Z, Chen G, Chen Z. Hydroxyl silicone oil grafting onto a rough thermoplastic polyurethane surface created durable super-hydrophobicity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1359-1378. [PMID: 38490948 DOI: 10.1080/09205063.2024.2329453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.
Collapse
Affiliation(s)
- Miaomiao Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinlan Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhengpeng Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
41
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
42
|
Salam LB. Metagenomic investigations into the microbial consortia, degradation pathways, and enzyme systems involved in the biodegradation of plastics in a tropical lentic pond sediment. World J Microbiol Biotechnol 2024; 40:172. [PMID: 38630153 DOI: 10.1007/s11274-024-03972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The exploitation of exciting features of plastics for diverse applications has resulted in significant plastic waste generation, which negatively impacts environmental compartments, metabolic processes, and the well-being of aquatic ecosystems biota. A shotgun metagenomic approach was deployed to investigate the microbial consortia, degradation pathways, and enzyme systems involved in the degradation of plastics in a tropical lentic pond sediment (APS). Functional annotation of the APS proteome (ORFs) using the PlasticDB database revealed annotation of 1015 proteins of enzymes such as depolymerase, esterase, lipase, hydrolase, nitrobenzylesterase, chitinase, carboxylesterase, polyesterase, oxidoreductase, polyamidase, PETase, MHETase, laccase, alkane monooxygenase, among others involved in the depolymerization of the plastic polymers. It also revealed that polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polyethylene terephthalate (PET), and nylon have the highest number of annotated enzymes. Further annotation using the KEGG GhostKOALA revealed that except for terephthalate, all the other degradation products of the plastic polymers depolymerization such as glyoxylate, adipate, succinate, 1,4-butanediol, ethylene glycol, lactate, and acetaldehyde were further metabolized to intermediates of the tricarboxylic acid cycle. Taxonomic characterization of the annotated proteins using the AAI Profiler and BLASTP revealed that Pseudomonadota members dominate most plastic types, followed by Actinomycetota and Acidobacteriota. The study reveals novel plastic degraders from diverse phyla hitherto not reported to be involved in plastic degradation. This suggests that plastic pollution in aquatic environments is prevalent with well-adapted degrading communities and could be the silver lining in mitigating the impacts of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Lateef B Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
43
|
Šimunović L, Čekalović Agović S, Marić AJ, Bačić I, Klarić E, Uribe F, Meštrović S. Color and Chemical Stability of 3D-Printed and Thermoformed Polyurethane-Based Aligners. Polymers (Basel) 2024; 16:1067. [PMID: 38674987 PMCID: PMC11054520 DOI: 10.3390/polym16081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The significant rise in the use of clear aligners for orthodontic treatment is attributed to their aesthetic appeal, enhancing patient appearance and self-confidence. The aim of this study is to evaluate the aligners' response to common staining agents (coffee, black tea, Coca-Cola, and Red Bull) in color and chemical stability. Polyurethane-based thermoformed and 3D-printed aligners from four brands were exposed to common beverages to assess color change using a VITA Easyshade compact colorimeter after 24 h, 48 h, 72 h, and 7 days, as well as chemical stability using ATR-FTIR spectroscopy. The brand, beverage, and manufacturing method significantly influence color stability. ATR-FTIR analysis revealed compositional differences, with variations in response to beverage exposure affecting the integrity of polymer bonds. Color change analysis showed coffee as the most potent staining agent, particularly affecting Tera Harz TC85 aligners, while ClearCorrect aligners exhibited the least susceptibility. 3D-printed aligners showed a greater color change compared to thermoformed ones. Aligners with a PETG outer layer are more resistant to stains and chemical alterations than those made of polyurethane. Additionally, 3D-printed polyurethane aligners stain more than thermoformed ones. Therefore, PETG-layered aligners are a more reliable choice for maintaining the aesthetic integrity of aligners.
Collapse
Affiliation(s)
- Luka Šimunović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | | | - Antun Jakob Marić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Bačić
- Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia;
| | - Eva Klarić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Flavio Uribe
- Department of Orthodontics, School of Dental Medicine, University of Connecticut, Farmington, CT 06030, USA;
| | - Senka Meštrović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
44
|
Zhang ML, Zhang GP, Ma HS, Pan YZ, Liao XL. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:519-534. [PMID: 38265701 DOI: 10.1080/09205063.2024.2301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.
Collapse
Affiliation(s)
- Mao-Lan Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Gui-Ping Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hong-Shuo Ma
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yu-Zhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao-Ling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
45
|
Pierrard A, Melo SF, Thijssen Q, Van Vlierberghe S, Lancellotti P, Oury C, Detrembleur C, Jérôme C. Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants. Biomacromolecules 2024; 25:1810-1824. [PMID: 38360581 DOI: 10.1021/acs.biomac.3c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.
Collapse
Affiliation(s)
- Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Sofia F Melo
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Faculty of Medicine, University of Liège, Avenue Hippocrate 15, Quartier Hôpital, 4000 Liège, Belgium
| | - Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Department of Cardiology - Centre Hospitalier Universitaire (CHU) of Liège, University of Liège Hospital, 4000 Liège, Belgium
| | - Cécile Oury
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| |
Collapse
|
46
|
Albergamo V, Wohlleben W, Plata DL. Tracking Dynamic Chemical Reactivity Networks with High-Resolution Mass Spectrometry: A Case of Microplastic-Derived Dissolved Organic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4314-4325. [PMID: 38373233 DOI: 10.1021/acs.est.3c08134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Chemical degradation testing often involves monitoring the loss of a chemical or the evolution of a single diagnostic product through time. Here, we demonstrate a novel approach to tracing complex degradation networks using mass-spectrometry-based methods and open cheminformatics tools. Ester- and ether-based thermoplastic polyurethane (TPU_Ester and TPU_Ether) microplastics (350 μm) and microplastics-derived dissolved organic carbon (MP-DOC) were photoweathered in a simulated marine environment and subsequently analyzed by liquid chromatography coupled to high-resolution mass spectrometry. We formula-annotated 1342 and 2344 unique features in the MP-DOC of TPU_Ester and TPU_Ether, respectively. From these, we extracted 199 and 568 plausible parent-transformation product pairs via matching of features (a) with complementary increasing and decreasing trends (Spearman's correlation coefficient between normalized intensity and time), (b) spectral similarities of at least three accurate mass MS2 fragments, and (c) at least 3 ppm agreement between the theoretical and measured change in m/z between the parent-transformation product formula. Molecular network analysis revealed that both chain scission and cross-linking reactions occur dynamically rather than degradation proceeding in a monotonic progression to smaller or more oxygenated structures. Network nodes with the highest degree of centrality were tentatively identified using in silico fragmentation and can be prioritized for toxicity screening or other physicochemical properties of interest. This work has important implications for chemical transformation tracking in complex mixtures and may someday enable improved elucidation of environmental transformation rules (i.e., structure-reactivity relationships) and fate modeling.
Collapse
Affiliation(s)
- Vittorio Albergamo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056 Ludwigshafen, Germany
| | - Desirée L Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Li J, Huang C, Ye J. Pollutant transport behavior through polymer cutoff wall: Laboratory test and analytical model investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133367. [PMID: 38159521 DOI: 10.1016/j.jhazmat.2023.133367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Polymer cutoff wall has emerged as a new and promising technology for anti-seepage and anti-pollution in geotechnical engineering. With notable advantages such as rapid sealing, high efficiency, and environmental friendliness, this technology has garnered significant attention. This study presents a systematic investigation into the transport characteristics of pollutants in polymer materials, with a specific focus on the transport mechanisms through polymer cutoff wall. The research investigates various factors that influence the pollutant transport characteristics in polymer materials. The objective is to analyze the pollutant transport behavior and obtain the transport parameters. Moreover, the study develops and solves a one-dimensional transport model incorporating partition-diffusion-partition mechanisms, aiming to determines the long-term service performance of polymer wall. These findings contribute to a better understanding of pollutant transport through polymer walls, which is crucial for the future advancement and utilization of this technology.
Collapse
Affiliation(s)
- Jia Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Chuhao Huang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jing Ye
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
48
|
Shou T, Wu Y, Yin D, Hu S, Wu S, Zhao X, Zhang L. In-situ self-crosslinking strategy for super-tough polylactic acid/ bio-based polyurethane blends. Int J Biol Macromol 2024; 261:129757. [PMID: 38281538 DOI: 10.1016/j.ijbiomac.2024.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
As a bio-based degradable plastic, polylactic acid (PLA) is highly commercialized, but its inherent brittleness limits its widespread use. In-situ polymerization techniques are effective in improving the toughness of PLA. However, the enhancement of the toughening effect in polyurethanes (PUs) through in-situ self-crosslinking still requires improvement and heavily relies on petroleum-derived feedstocks in certain approaches. In this paper, 1,3-polypropanediol (PO3G) of bio-based origin rather than conventional polyols like polyethylene glycol (PEG) and poly propylene glycol (PPG) was used. PLA/PO3G-PU blends were prepared via an in-situ self-crosslinking strategy. With a notch impact and tensile strength of 55.95 kJ/m2 and 47.77 MPa (a retention rate of 68.9 % compared with pure PLA), respectively, PLA/PO3G-PU blends achieved a better balance between stiffness and toughness. This work provides a new option for PLA to achieve a stiffness-toughness balance and get rid of dependence on petrochemical resources.
Collapse
Affiliation(s)
- Tao Shou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaowen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexian Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China; Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
49
|
Puszka A, Sikora JW, Nurzyńska A. Influence of the Type of Soft Segment on the Selected Properties of Polyurethane Materials for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:840. [PMID: 38399091 PMCID: PMC10890063 DOI: 10.3390/ma17040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
This work presents the synthesis and characterization of new TPUs obtained by melt polyaddition using 1,1'-methanediylbis(4-isocyanatocyclohexane) (HMDI, Desmodur W®), a new unconventional chain extender, i.e., (methanediyldibenze-ne-4,1-diyl)dimethanediol, and five types of soft segments differing in structure and molar masses. The structure of the obtained polymers was determined (by using the Fourier transform infrared spectroscopy and X-ray diffraction methods), and the physicochemical (reduced viscosity, density), optical (UV-VIS), processing (MFR) and thermal (DSC and TGA-FTIR) as well as surface, antibacterial and cytotoxic properties were determined. Based on the results obtained, it can be stated that the type of soft segment used significantly affects the properties of the obtained polymers. The most favorable properties for use in medicine were demonstrated by materials based on a polycarbonate soft segment.
Collapse
Affiliation(s)
- Andrzej Puszka
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Gliniana Street 33, 20-614 Lublin, Poland
| | - Janusz W. Sikora
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin, Poland;
| | - Aleksandra Nurzyńska
- Chair and Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland;
| |
Collapse
|
50
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|