1
|
Calazans Neto JV, Valente MLDC, Reis ACD. Effect of pores on cell adhesion to additively manufactured titanium implants: A systematic review. J Prosthet Dent 2025; 133:990-997. [PMID: 37353409 DOI: 10.1016/j.prosdent.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
STATEMENT OF PROBLEM Titanium dental implants produced by additive manufacturing have pores that, depending on their size and quantity, may improve osteogenic cell adhesion without impairing mechanical properties. A systematic review of in vitro studies on this topic is lacking. PURPOSE The purpose of this systematic review was to answer the question "What is the influence of pores on osteogenic cell adhesion on titanium surfaces produced by additive manufacturing?". MATERIAL AND METHODS The study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 standards and registered in the Open Science Framework (OSF) (osf.io/baw59). A manual search of published articles without language or time restrictions was conducted in November 2022 in the electronic databases PubMed, Scopus, ScienceDirect, Embase, and in the nonpeer-reviewed literature via Google Scholar. RESULTS A total of 1338 initial results were found, and after removing duplicates and applying eligibility criteria, 13 articles were included in this review that, according to the Joanna Briggs Institute (JBI) tool, presented a low risk of bias. Pores with larger diameters provide greater a surface area that favors cell filopodia adhesion and has interconnection that optimizes the transport of nutrients and oxygen and bone cell activity. CONCLUSIONS The presence of pores on the surface of titanium produced by additive manufacturing increases the adhesion, migration, proliferation, and viability of osteogenic cells.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Mariana Lima da Costa Valente
- Post-Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil.
| |
Collapse
|
2
|
da Costa Valente ML, Uehara LM, Lisboa Batalha R, Bolfarini C, Trevisan RLB, Fernandes RR, Beloti MM, Dos Reis AC. Current Perspectives on Additive Manufacturing and Titanium Surface Nanotopography in Bone Formation. J Biomed Mater Res B Appl Biomater 2025; 113:e35554. [PMID: 40062797 DOI: 10.1002/jbm.b.35554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 05/13/2025]
Abstract
This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
Collapse
Affiliation(s)
- Mariana Lima da Costa Valente
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Lívia Maiumi Uehara
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Rodolfo Lisboa Batalha
- Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade, Portugal
| | - Claudemiro Bolfarini
- Materials Engineering Department, Federal University of São Carlos, São Carlos, Brazil
| | | | - Roger Rodrigo Fernandes
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Schettini A, Pesun IJ, França R. Assessment of mechanical properties and microstructure of Co-Cr dental alloys manufactured by casting, milling, and 3D printing. J Prosthet Dent 2025; 133:906.e1-906.e7. [PMID: 39741083 DOI: 10.1016/j.prosdent.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
STATEMENT OF PROBLEM The mechanical properties and microstructure of cobalt chromium (Co-Cr) alloys should be considered when choosing the best alloy for each clinical situation. More information is needed on the digital manufacturing methods of metals in dentistry, such as computer numerical control (CNC), and direct laser metal sintering (DMLS). PURPOSE The aim of this study was to investigate the effect of the 3 different Co-Cr manufacturing processes on the mechanical properties and microstructure of Co-Cr dental alloys. MATERIAL AND METHODS Dumbbell-shaped specimens (n=6) were fabricated using casting (CAST), CNC, and DMLS techniques. Tensile, 3-point bend, and microhardness testing were performed, and the microstructure evaluated through scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis. The ANOVA test followed by post hoc Tukey tests were used for statistical analysis (α=.05). RESULTS DMLS showed the greatest values for 0.2% yield strength (908.0 ±13.1 MPa), tensile strength (1123.7 ±6.5 MPa), flexural strength (2273.0 ±43.2 MPa), and microhardness (438.2 ±44.9 HV), followed by CAST and CNC. No statistical differences were found for elongation between CNC and DMLS or DMLS and CAST (P>.05). No statistical differences were found in elastic modulus among all groups (P>.05). EDX revealed a slightly different chemical composition among the groups. XRD showed face-centered cubic as the dominant phase and a small amount of hexagonal close-packed structure in all groups. A peak of σ phase was identified in the CAST group. CONCLUSIONS The mechanical properties and microstructures of Co-Cr dental alloys were significantly influenced by the fabrication method used. DMLS and CNC milling produced better products that traditional methods, leading to the improved durability and reliability of dental prostheses. These advancements underscore the importance of selecting appropriate fabrication methods to optimize clinical outcomes and patient satisfaction.
Collapse
Affiliation(s)
- Ana Schettini
- Graduate student, Graduate Prosthodontics, Department of Restorative Dentistry, Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Igor J Pesun
- Associate Professor and Director, Graduate Prosthodontics, Department of Restorative Dentistry, Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rodrigo França
- Associate Professor, Dental Biomaterials Research Laboratory, Department of Restorative Dentistry, Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
Németh A, Vitai V, Kelemen K, Teutsch B, Szabó B, Gerber G, Varga G, Fazekas R, Hegyi P, Borbély J. Comparison of fit and trueness of single-unit and short-span fixed dental restorations fabricated by additive and subtractive manufacturing-A systematic review and meta-analysis. J Dent 2025; 153:105527. [PMID: 39706323 DOI: 10.1016/j.jdent.2024.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES Numerous studies have been conducted on the adaptation of dental restorations fabricated by additive (AM) and subtractive manufacturing (SM); however, the results are conflicting. This systematic review and meta-analysis aimed to evaluate the fit and trueness of fixed restorations made by AM compared to SM. DATA Studies investigating internal fit, marginal fit, and trueness of fixed prostheses were involved. SOURCES The protocol was registered in PROSPERO (registration number CRD42022323090). An electronic search was performed with a predefined search query across four medical databases on the 6th of September 2023. STUDY SELECTION A total of 57 eligible studies were included and sub-grouped by material type (metals, ceramics, acrylic resins, composites). The outcomes were specified as internal fit, marginal fit, and trueness expressed in micrometer (µm). Further subgrouping was based on measurement area: axial, occlusal, and marginal. When we analyzed marginal fit, there were no statistically significant differences between the two techniques in any of the subgroups. The measurement of internal fit metal and ceramic restorations provided no significant differences. However, milled acrylic resin restorations showed a significantly higher occlusal gap compared to 3D printed prostheses with 39.12 µm (95 % CI: 12.44; 65.79). In the case of trueness, a statistically significant difference was observed between ceramic AM and SM restorations with -47.76 µm (95 % CI: -95.51; -0.00). QUIN and GRADE Pro tools were used to evaluate the risk of bias and certainty of evidence. CONCLUSION Fixed restorations manufactured with additive manufacturing are valid alternatives to subtractive manufacturing in the digital workflow. CLINICAL SIGNIFICANCE Additive manufacturing is an accurate and cost-effective manufacturing method of digital workflow, especially for metal and resin fixed restorations. Once the challenges in ceramics manufacturing are addressed, AM will show more significant promise in the field.
Collapse
Affiliation(s)
- Anna Németh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Viktória Vitai
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Kata Kelemen
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Bence Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Gerber
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Réka Fazekas
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Restorative Dentistry and Endodontics, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest 1083, Hungary
| | - Judit Borbély
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Wei H, Huang S, Liu Y, Li D. Molding Quality and Biological Evaluation of a Two-Stage Titanium Alloy Dental Implant Based on Combined 3D Printing and Subtracting Manufacturing. ACS OMEGA 2024; 9:51591-51603. [PMID: 39758616 PMCID: PMC11696423 DOI: 10.1021/acsomega.4c09131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Metal 3D printing has been used in the manufacturing of dental implants. Its technical advantages include high material utilization and the capacity to form arbitrarily complex structures. However, 3D printing alone is insufficient for manufacturing two-stage titanium implants due to the limited precision in printing titanium alloy parts. In this study, 3D printing was employed to create the implant structure, subsequently complemented by mechanical processing to refine the implant abutment connection and neck. Additionally, the mechanical properties of 3D-printed titanium alloy implants were evaluated through tensile and dynamic fatigue testing. The MTT assay was employed to assess the cytotoxicity of 3D-printed titanium alloy dental implants. The impact of bone union and osteogenesis from 3D-printed titanium alloy dental implants was investigated through in vivo experimentation. The results demonstrated that combining 3D printing with subsequent machining constitutes a viable method for the manufacture of two-stage titanium dental implants. Test results for mechanical properties indicated that heat-treated 3D-printed titanium alloy dental implants possess significant tensile strength and fatigue resistance and are capable of withstanding the robust chewing forces in the oral cavity. In vitro findings revealed that sandblasted and acid-etched 3D-printed titanium alloy exhibited negligible cytotoxicity, with osteoblast differentiation of hMSCs being more pronounced compared with the control group. In vivo studies indicated that no significant differences were observed in bone volume fraction, bone-implant contact rate, and unscrewing torque between 3D-printed titanium alloy dental implants and commercial SLA surface implants at both 1 and 3 months postimplantation.
Collapse
Affiliation(s)
| | | | - Yi Liu
- State Key Laboratory
of Oral
& Maxillofacial Reconstruction and Regeneration & National
Clinical Research Center for Oral Diseases & Shaanxi Engineering
Research Center for Dental Materials and Advanced Manufacture, Department
of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi, P. R. China
| | - Dehua Li
- State Key Laboratory
of Oral
& Maxillofacial Reconstruction and Regeneration & National
Clinical Research Center for Oral Diseases & Shaanxi Engineering
Research Center for Dental Materials and Advanced Manufacture, Department
of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi, P. R. China
| |
Collapse
|
6
|
de Carvalho Formiga M, Fuller R, Ardelean LC, Shibli JA. Immediate Loading Full-Arch 3D-Printed Implant-Supported Fixed Rehabilitation: A Case Report with 24-Month Follow-Up. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1614. [PMID: 39459400 PMCID: PMC11509520 DOI: 10.3390/medicina60101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Implant-supported immediate loading full-arch rehabilitation has been documented in the literature. More recently, computed surgical guides have frequently been used since they facilitate planning and performing surgical treatment without the need to raise a flap, thus reducing trauma and morbidity. This case report describes an immediate full-arch, fixed rehabilitation with full loading placed on four commercially available 3D-printed implants, with a 24-month follow-up. The implants were placed with the help of a digitally planned 3D-printed surgical guide. The provisional fixed prosthesis installed immediately was replaced after 3 months. At the time, the soft and hard tissue around the implants appeared stable, without signs of inflammation. The same situation was observed at the 24-month follow-up. Three-dimensional-printed implants seem to be a promising choice in this case. However, further clinical studies with longer follow-up periods are necessary to confirm their efficacy.
Collapse
Affiliation(s)
- Márcio de Carvalho Formiga
- Post-Graduation Program in Oral Implantology, University of the Itajaí Valley, Km 207 BR 101, São José 88103-800, SC, Brazil; (M.d.C.F.); (R.F.)
| | - Renato Fuller
- Post-Graduation Program in Oral Implantology, University of the Itajaí Valley, Km 207 BR 101, São José 88103-800, SC, Brazil; (M.d.C.F.); (R.F.)
| | - Lavinia Cosmina Ardelean
- Academic Department of Technology of Materials and Devices in Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq, 300041 Timisoara, Romania
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, 1 Tereza Cristina Sq., Guarulhos 07023-070, SP, Brazil;
| |
Collapse
|
7
|
Pradíes G, Morón-Conejo B, Martínez-Rus F, Salido MP, Berrendero S. Current applications of 3D printing in dental implantology: A scoping review mapping the evidence. Clin Oral Implants Res 2024; 35:1011-1032. [PMID: 37929684 DOI: 10.1111/clr.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This scoping review aimed to identify the available evidence in the use of 3D printing technology in dental implantology. Due to the broad scope of the subject and its application in implantology, three main areas of focus were identified: (1) customized dental implants, (2) manufacturing workflow for surgical implant guides, and (3) related implant-supported prostheses factors, which include the metallic primary frameworks, secondary ceramic or polymer superstructures, and 3D implant analog models. MATERIALS AND METHODS Online databases (Medline, Cochrane, Embase, and CINAHL) were used to identify the studies published up to February 2023 in English. Two experienced reviewers performed independently the screening and selection among the 1737 studies identified. The articles evaluated the additive manufacturing (AM) technology, materials, printing, and post-processing parameters regarding dental implantology. RESULTS The 132 full-text studies that met the inclusion criteria were examined. Thirteen studies of customized dental implants, 22 studies about the workflow for surgical implant guides, and 30 studies of related implant-supported prostheses factors were included. CONCLUSIONS (1) The clinical evidence about AM titanium and zirconia implants is scarce. Early data on survival rates, osseointegration, and mechanical properties are being reported. (2) 3D printing is a proven manufacturing technology to produce surgical implant guides. Adherence to the manufacturer's instructions is crucial and the best accuracy was achieved using MultiJet printer. (3) The quality of 3D printed prosthetic structures and superstructures is improving remarkably, especially on metallic alloys. However, better marginal fit and mechanical properties can be achieved with milling technology for metals and ceramics.
Collapse
Affiliation(s)
- Guillermo Pradíes
- Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - Belén Morón-Conejo
- Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - Francisco Martínez-Rus
- Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - María Paz Salido
- Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - Santiago Berrendero
- Department of Conservative and Prosthetic Dentistry, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Ma H, Kou Y, Hu H, Wu Y, Tang Z. An Investigative Study on the Oral Health Condition of Individuals Undergoing 3D-Printed Customized Dental Implantation. J Funct Biomater 2024; 15:156. [PMID: 38921530 PMCID: PMC11204886 DOI: 10.3390/jfb15060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The advent of three-dimensional (3D) printing technology has revolutionized the field of dentistry, enabling the precise fabrication of dental implants. By utilizing 3D printing, dentists can devise implant plans prior to surgery and accurately translate them into clinical procedures, thereby eliminating the need for multiple surgical procedures, reducing surgical discomfort, and enhancing surgical efficiency. Furthermore, the utilization of digital 3D-printed implant guides facilitates immediate restoration by precisely translating preoperative implant design plans, enabling the preparation of temporary restorations preoperatively. METHODS This comprehensive study aimed to assess the postoperative oral health status of patients receiving personalized 3D-printed implants and investigate the advantages and disadvantages between the 3D-printed implant and conventional protocol. Additionally, variance analysis was employed to delve into the correlation between periodontal status and overall oral health. Comparisons of continuous paired parameters were made by t-test. RESULTS The results of our study indicate a commendable one-year survival rate of over 94% for 3D-printed implants. This finding was corroborated by periodontal examinations and follow-up surveys using the Oral Health Impact Profile-14 (OHIP-14) questionnaire, revealing excellent postoperative oral health status among patients. Notably, OHIP-14 scores were significantly higher in patients with suboptimal periodontal health, suggesting a strong link between periodontal health and overall oral well-being. Moreover, we found that the operating time (14.41 ± 4.64 min) was less statistically significant than for the control group (31.76 ± 6.83 min). CONCLUSION In conclusion, personalized 3D-printed implant surgery has emerged as a reliable clinical option, offering a viable alternative to traditional implant methods. However, it is imperative to gather further evidence-based medical support through extended follow-up studies to validate its long-term efficacy and safety.
Collapse
Affiliation(s)
| | | | | | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China; (H.M.)
| | - Zhihui Tang
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China; (H.M.)
| |
Collapse
|
9
|
De Stefano M, Singh K, Raina A, Mohan S, Ul Haq MI, Ruggiero A. Tribocorrosion of 3D printed dental implants: An overview. J Taibah Univ Med Sci 2024; 19:644-663. [PMID: 38807965 PMCID: PMC11131088 DOI: 10.1016/j.jtumed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
With the advancements in dental science and the growing need for improved dental health, it has become imperative to develop new implant materials which possess better geometrical, mechanical, and physical properties. The oral environment is a corrosive environment and the relative motion between the teeth also makes the environment more hostile. Therefore, the combined corrosion and tribology commonly known as tribocorrosion of implants needs to be studied. The complex shapes of the dental implants and the high-performance requirements of these implants make manufacturing difficult by conventional manufacturing processes. With the advent of additive manufacturing or 3D-printing, the development of implants has become easy. However, the various requirements such as surface roughness, mechanical strength, and corrosion resistance further make the manufacturing of implants difficult. The current paper reviews the various studies related to3D-printed implants. Also, the paper tries to highlight the role of 3D-Printing can play in the area of dental implants. Further studies both experimental and numerical are needed to devise optimized conditions for 3D-printing implants to develop implants with improved mechanical, corrosion, and biological properties.
Collapse
Affiliation(s)
- Marco De Stefano
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Khushneet Singh
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Sanjay Mohan
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Alessandro Ruggiero
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
10
|
Akbas O, Greuling A, Stiesch M. The effects of different grading approaches in additively manufactured dental implants on peri-implant bone stress: A finite element analysis. J Mech Behav Biomed Mater 2024; 154:106530. [PMID: 38552334 DOI: 10.1016/j.jmbbm.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Additive manufacturing enables local grading of the stiffness of dental implants through targeted adjustment of the manufacturing parameters to meet patient specific requirements. The extent to which such a manufacturing approach affects the interaction between the implant body and the surrounding bone, and what grading is optimal, is currently insufficiently investigated. This study investigates the effect of different Young's modulus grading approaches on stresses in the peri-implant bone via finite element analysis. The implant geometry was kept constant and in the case of the implant a node-dependent elastic modulus was assigned. In this way, a vertical, a radial and three torus based grading approaches were created and examined. A load was then applied directly to the occlusal surface of the implant crown. It was found that a local grading utilizing a torus shape was most favourable in terms of an effective stress peak reduction. The best torus shape tested achieved a 22 % reduction of maximum principal stress and 6 % reduction of minimum principal stress compared to the uniform material. In clinical settings, this may provide benefits in situations of overload. Based on the results, a graded stiffness in dental implants appears to be of interest for developing advanced, patient-specific implant solutions.
Collapse
Affiliation(s)
- Osman Akbas
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Calazans Neto JV, Reis ACD, Valente MLDC. Influence of building direction on physical and mechanical properties of titanium implants: A systematic review. Heliyon 2024; 10:e30108. [PMID: 38774089 PMCID: PMC11106820 DOI: 10.1016/j.heliyon.2024.e30108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
The objective of the systematic review is to find an answer to a question: "What is the influence of the building direction of titanium implants produced by additive manufacturing on their physical and mechanical properties?" This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the Open Science Framework (OSF) (osf.io/rdc84). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on February 17th, 2024. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: In vitro studies that evaluated the influence of the impression direction of titanium implants produced by additive manufacturing on their physical and mechanical properties were selected. Articles were excluded that (1) did not use additive technology to obtain the implants, 2) used surfaces other than titanium, 3) did not evaluate the direction of impression, 4) Studies with only in vivo analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports, and personal opinions.). In the initial search, 581 results were found. Of this total, 108 were excluded for duplication and, after applying the eligibility criteria, 16 articles were included in the present review. The risk of bias was analyzed using the RoBDEMAT. The risk of bias was analyzed using the RoBDEMAT. In addition, the coefficient of interagreement of the reviewers (Cohen's Kappa) and the certainty of evidence by GRADE were analyzed. In general, different impression angles showed variations in the physical and mechanical characteristics of the groups evaluated, including roughness, tensile strength, hardness, and modulus of elasticity. While some impression orientations resulted in greater strength or hardness, others showed greater elasticity or lower surface roughness. These findings suggest that print orientation plays a significant role in determining material properties. It can be concluded that printing directions influence the physical and mechanical properties of titanium implants and the studies included showed that the 0°, 45°, and 90° directions are the most evaluated as they present lower probabilities of structural anisotropies and provide better results in their roughness, hardness, tensile and compressive strength.
Collapse
Affiliation(s)
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
Ftoutou E, Allegue L, Marouani H, Hassine T, Fouad Y, Mrad H. Modeling of Effect of Infill Density Percentage on Rotating Bending Fatigue Behavior of Additive-Manufactured PLA Polymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:471. [PMID: 38276410 PMCID: PMC10820292 DOI: 10.3390/ma17020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nowadays, 3D PLA-printed parts are widely used in many applications, essentially using the fused filament fabrication technique. While the influence of printing parameters on quasi-static mechanical characterization has been extensively considered within the literature, there are limited accounts of this effect on fatigue performance. The two main aims of this research are first to investigate the effects of the infill density percentage on the fatigue life of dog-bone samples under rotating bending cycling loads, and second to model the fatigue life using Wöhler and Basquin models. The experiments exhibit a high variability of results, especially for low cyclic loads. The S-N curves show that the number of cycles at failure increases with the increase in the infill density percentage and decreases with the increase in loads. Investigations allow the formulation of each constant model as a function of the infill density percentage. The new fatigue model formulations exhibit good agreement with the experimental data. As an outcome of this study, the fatigue model for 3D-printed parts may be expressed as a function of the infill density percentage using fewer tests in the future and for other polymers used in fused filament fabrication.
Collapse
Affiliation(s)
- Ezzeddine Ftoutou
- Mechanical Engineering Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia; (E.F.); (L.A.); (T.H.)
| | - Lamis Allegue
- Mechanical Engineering Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia; (E.F.); (L.A.); (T.H.)
| | - Haykel Marouani
- Mechanical Engineering Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia; (E.F.); (L.A.); (T.H.)
| | - Tarek Hassine
- Mechanical Engineering Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia; (E.F.); (L.A.); (T.H.)
| | - Yasser Fouad
- Department of Applied Mechanical Engineering, College of Applied Engineering, Muzahimiyah Branch, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Hatem Mrad
- School of Engineering, University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC J9X 5E4, Canada;
| |
Collapse
|
13
|
Shu T, Wang X, Li M, Ma S, Cao J, Sun G, Lai T, Liu S, Li A, Qu Z, Pei D. Nanoscaled Titanium Oxide Layer Provokes Quick Osseointegration on 3D-Printed Dental Implants: A Domino Effect Induced by Hydrophilic Surface. ACS NANO 2024; 18:783-797. [PMID: 38117950 DOI: 10.1021/acsnano.3c09285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Three-dimensional printing is a revolutionary strategy to fabricate dental implants. Especially, 3D-printed dental implants modified with nanoscaled titanium oxide layer (H-SLM) have impressively shown quick osseointegration, but the accurate mechanism remains elusive. Herein, we unmask a domino effect that the hydrophilic surface of the H-SLM facilitates blood wetting, enhances the blood shear rate, promotes blood clotting, and changes clot features for quick osseointegration. Combining computational fluid dynamic simulation and biological verification, we find a blood shear rate during blood wetting of the hydrophilic H-SLM 1.2-fold higher than that of the raw 3D-printed implant, which activates blood clot formation. Blood clots formed on the hydrophilic H-SLM demonstrate anti-inflammatory and pro-osteogenesis effects, leading to a 1.5-fold higher bone-to-implant contact and a 1.8-fold higher mechanical anchorage at the early stage of osseointegration. This mechanism deepens current knowledge between osseointegration speed and implant surface characteristics, which is instructive in surface nanoscaled modification of multiple 3D-printed intrabony implants.
Collapse
Affiliation(s)
- Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueliang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Lai
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Liu L, Wu J, Lv S, Xu D, Li S, Hou W, Wang C, Yu D. Synergistic effect of hierarchical topographic structure on 3D-printed Titanium scaffold for enhanced coupling of osteogenesis and angiogenesis. Mater Today Bio 2023; 23:100866. [PMID: 38149019 PMCID: PMC10750103 DOI: 10.1016/j.mtbio.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 12/28/2023] Open
Abstract
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Leyi Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiyu Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Duoling Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
15
|
Nassar HI, Fateen A. Accuracy of fit for cobaltchromium bar over two implants fabricated with different manufacturing techniques: an in-vitro study. BMC Oral Health 2023; 23:946. [PMID: 38031111 PMCID: PMC10688085 DOI: 10.1186/s12903-023-03700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVE The purpose of the invitro research was to compare the fit of Cobalt Chromium customized bar fabricated with different manufacturing processes cast metal bar, milled bar and 3D printed bar using scanning electron microscope. MATERIALS AND METHODS Clear epoxy resin molds were prepared. In each mold two parallel implants with a 14 mm distance from each other were embedded. Thirty Co-Cr custom bars were constructed and were divided equally into three groups: Group (I) (Co-Cr conv), group (II) milled bar (Co-Cr milled), and group (III) printed bar (Co-Cr print). The marginal fit at implant-abutment interface was scanned using scanning electron microscope (SEM). RESULTS There was a significant difference between the three studied groups regarding marginal misfit the between implant and fabricated bars with p-value < 0.001. The highest value of micro-gap distance was found in Co-Cr conventional group (7.95 ± 2.21 μm) followed by Co-Cr 3D printed group (4.98 ± 1.73) and the lower value were found in Co-Cr milled (3.22 ± 0.75). CONCLUSION The marginal fit of milled, 3D printed and conventional cast for Co-Cr alloy were within the clinically acceptable range of misfit. CAD/CAM milled Co-Cr bar revealed a superior internal fit at the implant-abutment interface. This was followed by selective laser melting (SLM) 3D printed bar and the least fit was shown for customized bar with the conventional lost wax technique.
Collapse
Affiliation(s)
- Hossam I Nassar
- Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Ayman Fateen
- Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
16
|
Khaohoen A, Sornsuwan T, Chaijareenont P, Poovarodom P, Rungsiyakull C, Rungsiyakull P. Biomaterials and Clinical Application of Dental Implants in Relation to Bone Density-A Narrative Review. J Clin Med 2023; 12:6924. [PMID: 37959389 PMCID: PMC10649288 DOI: 10.3390/jcm12216924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Titanium has been the material of choice for dental implant fixtures due to its exceptional qualities, such as its excellent balance of rigidity and stiffness. Since zirconia is a soft-tissue-friendly material and caters to esthetic demands, it is an alternative to titanium for use in implants. Nevertheless, bone density plays a vital role in determining the material and design of implants. Compromised bone density leads to both early and late implant failures due to a lack of implant stability. Therefore, this narrative review aims to investigate the influence of implant material/design and surgical technique on bone density from both biomechanical and biological standpoints. Relevant articles were included for analysis. Dental implant materials can be fabricated from titanium, zirconia, and PEEK. In terms of mechanical and biological aspects, titanium is still the gold standard for dental implant materials. Additionally, the macro- and microgeometry of dental implants play a role in determining and planning the appropriate treatment because it can enhance the mechanical stress transmitted to the bone tissue. Under low-density conditions, a conical titanium implant design, longer length, large diameter, reverse buttress with self-tapping, small thread pitch, and deep thread depth are recommended. Implant material, implant design, surgical techniques, and bone density are pivotal factors affecting the success rates of dental implant placement in low-density bone. Further study is required to find the optimal implant material for a clinical setting's bone state.
Collapse
Affiliation(s)
- Angkoon Khaohoen
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| | - Tanapon Sornsuwan
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Pisaisit Chaijareenont
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| | - Pongsakorn Poovarodom
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| | - Chaiy Rungsiyakull
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimduen Rungsiyakull
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| |
Collapse
|
17
|
Moraru E, Stoica AM, Donțu O, Cănănău S, Stoica NA, Constantin V, Cioboată DD, Bădiță-Voicu LL. Mechanical and Surface Characteristics of Selective Laser Melting-Manufactured Dental Prostheses in Different Processing Stages. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6141. [PMID: 37763418 PMCID: PMC10533055 DOI: 10.3390/ma16186141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Due to the expansion of the use of powder bed fusion metal additive technologies in the medical field, especially for the realization of dental prostheses, in this paper, the authors propose a comparative experimental study of the mechanical characteristics and the state of their microscale surfaces. The comparison was made from material considerations starting from two dental alloys commonly used to realize dental prostheses: Ni-Cr and Co-Cr, but also technologies for obtaining selective laser melting (SLM) and conventional casting. In addition, to compare the performances with the classical casting technology, for the dental prostheses obtained through SLM, the post-processing stage in which they are in a preliminary finishing and polished state was considered. Therefore, for the determination of important mechanical characteristics and the comparative study of dental prostheses, the indentation test was used, after which the hardness, penetration depths (maximum, permanent, and contact depth), contact stiffness, and contact surface were established, and for the determination of the microtopography of the surfaces, atomic force microscopy (AFM) was used, obtaining the local areal roughness parameters at the miniaturized scale-surface average roughness, root-mean-square roughness (RMS), and peak-to-peak values. Following the research carried out, several interesting conclusions were drawn, and the superiority of the SLM technology over the classic casting method for the production of dental prostheses in terms of some mechanical properties was highlighted. At the same time, the degree of finishing of dental prostheses made by SLM has a significant impact on the mechanical characteristics and especially the local roughness parameters on a miniaturized scale, and if we consider the same degree of finishing, no major differences are observed in the roughness parameters of the surfaces of the prostheses produced by different technologies.
Collapse
Affiliation(s)
- Edgar Moraru
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Alina-Maria Stoica
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Octavian Donțu
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Sorin Cănănău
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Nicolae-Alexandru Stoica
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Victor Constantin
- Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.M.); (O.D.); (S.C.); (N.-A.S.); (V.C.)
| | - Daniela-Doina Cioboată
- The National Institute of Research and Development in Mechatronics and Measurement Technique, 6-8 Soseaua Pantelimon, 021631 Bucharest, Romania; (D.-D.C.); (L.-L.B.-V.)
| | - Liliana-Laura Bădiță-Voicu
- The National Institute of Research and Development in Mechatronics and Measurement Technique, 6-8 Soseaua Pantelimon, 021631 Bucharest, Romania; (D.-D.C.); (L.-L.B.-V.)
| |
Collapse
|
18
|
Wang L, Yu H, Hao Z, Tang W, Dou R. Investigating the effect of solid loading on microstructure, mechanical properties, and translucency of highly translucent zirconia ceramics prepared via stereolithography-based additive manufacturing. J Mech Behav Biomed Mater 2023; 144:105952. [PMID: 37311296 DOI: 10.1016/j.jmbbm.2023.105952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
A study was conducted to explore the potential of 5 mol% yttria-partially stabilized zirconia (5Y-PSZ) ceramics for dental restorations, using stereolithography (SLA) printing technique. Four different solid loadings were established in the ceramic paste systems to study their effects on microstructure, mechanical properties, and translucency. The study examined the rheological behavior and photopolymerization performance of the ceramic pastes with varying solid loadings. Results showed that, an increase in powder concentration resulted in a decrease in cure depth (Cd) and penetration depth (Dp). A narrower pore size distribution was observed in the green bodies with a high solid loading, facilitating the achievement of final densification. The green and sintered densities were highest at 52 vol%, with values of 3.46 ± 0.01 g/cm3 and 6.01 ± 0.02 g/cm3, respectively. Additionally, all of the green strengths exceeded 30 MPa, with a maximum of 35.09 ± 2.02 MPa obtained at 44 vol%. The maximum flexural strength and minimum contrast ratio (CR) value of 746 ± 75 MPa and 0.40 ± 0.01 were achieved at 52 vol% after sintering. No significant differences were observed in the phase composition and hardness of the as-sintered ceramics. Though significant differences were observed in photopolymerization performance, four materials showed similar structural reliability considering Weibull modulus and characteristic strength.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Hang Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zongdong Hao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Weizhe Tang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Rui Dou
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
19
|
Miura S, Shinya A, Ishida Y, Fujisawa M. Mechanical and surface properties of additive manufactured zirconia under the different building directions. J Prosthodont Res 2023; 67:410-417. [PMID: 36403961 DOI: 10.2186/jpr.jpr_d_22_00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE This study investigates the mechanical and surface properties of zirconia manufactured using additive manufacturing (AM) technology and the effect of the building direction on the mechanical and surface properties. METHODS Specimens were prepared using ZrO2 paste (3DMix ZrO2; 3DCeram) and a three-dimensional printing system (CeraMaker 900; 3DCeram) based on the principles of stereolithography (SLA). The mechanical properties (flexural strength, Vickers hardness, fracture toughness, elastic modulus, and Poisson's ratio) and surface properties (chemical composition and surface observation) were evaluated for three building directions (parallel, diagonal, and perpendicular) to investigate the relationship between the building directions and the anisotropy of the mechanical and surface properties of SLA-manufactured zirconia. Statistical analysis was performed using a one-way analysis of variance and Tukey's honestly significant difference test. RESULTS The highest flexural strength was obtained for a perpendicular building direction. The flexural strength was significantly higher in the perpendicular direction than in the parallel and diagonal directions; it was also significantly higher in the diagonal direction than in the parallel direction (P<0.05). The Vickers hardness, fracture toughness, elastic modulus, Poisson's ratio, and chemical composition did not differ significantly. Microstructural observations revealed that the layers, large crystals, and pores were more prominent in the parallel direction. CONCLUSIONS The flexural strength and surface structure of the tested SLA-manufactured zirconia were influenced by the building direction; however, other mechanical properties remained unaffected. The layer boundaries affected the anisotropic behavior of the builds to a certain extent, owing to the layer-by-layer production method.
Collapse
Affiliation(s)
- Shoko Miura
- Division of Fixed Prosthodontics, Department of Restorative & Biomaterials Sciences, Meikai University School of Dentistry, Japan
| | - Akikazu Shinya
- Department of Dental Materials Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Finland
| | - Yoshiki Ishida
- Department of Dental Materials Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan
| | - Masanori Fujisawa
- Division of Fixed Prosthodontics, Department of Restorative & Biomaterials Sciences, Meikai University School of Dentistry, Japan
| |
Collapse
|
20
|
Calazans Neto JV, Reis ACD, Valente MLDC. Osseointegration in additive-manufactured titanium implants: A systematic review of animal studies on the need for surface treatment. Heliyon 2023; 9:e17105. [PMID: 37484223 PMCID: PMC10361303 DOI: 10.1016/j.heliyon.2023.e17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
The objective of the systematic review is to find an answer to a question: "Do surface treatments on titanium implants produced by additive manufacturing improve osseointegration, compared to untreated surfaces?". This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022321351). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on March 22nd, 2022. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: articles in animals that addressed the influence of surface treatments on osseointegration in implants produced by additive manufacturing. Articles were excluded that (1) did not use titanium surface, 2) that did not evaluate surface treatments, 3) that did not described osseointegration, 4) Studies with only in vitro analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports and personal opinions.). 1003 articles were found and, after applying the eligibility criteria, 17 were used for the construction of this review. All included studies found positive osseointegration results from performing surface treatments on titanium. The risk of bias was analyzed using the SYRCLE assessment tool. Surface treatments are proposed to promote changes in the microstructure and composition of the implant surface to favor the adhesion of bone cells responsible for osseointegration. It is observed that despite the benefits generated by the additive manufacturing process in the microstructure of the implant surface, surface treatments are still indispensable, as they can promote more suitable characteristics for bone-implant integration. It can be concluded that the surface treatments evaluated in this systematic review, performed on implants produced by additive manufacturing, optimize osseointegration, as it allows the creation of a micro-nano-textured structure that makes the surface more hydrophilic and allows better contact bone-implant.
Collapse
Affiliation(s)
| | | | - Mariana Lima da Costa Valente
- Corresponding author. Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, FORP-USP. Av. Do Café, s/n, 14040Ribeirão Preto, Brazil.
| |
Collapse
|
21
|
Celik HK, Koc S, Kustarci A, Caglayan N, Rennie AE. The state of additive manufacturing in dental research - A systematic scoping review of 2012-2022. Heliyon 2023; 9:e17462. [PMID: 37484349 PMCID: PMC10361388 DOI: 10.1016/j.heliyon.2023.e17462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background/purpose Additive manufacturing (AM), also known as 3D printing, has the potential to transform the industry. While there have been advancements in using AM for dental restorations, there is still a need for further research to develop functional biomedical and dental materials. It's crucial to understand the current status of AM technology and research trends to advance dental research in this field. The aim of this study is to reveal the current status of international scientific publications in the field of dental research related to AM technologies. Materials and methods In this study, a systematic scoping review was conducted using appropriate keywords within the scope of international scientific publishing databases (PubMed and Web of Science). The review included related clinical and laboratory research, including both human and animal studies, case reports, review articles, and questionnaire studies. A total of 187 research studies were evaluated for quantitative synthesis in this review. Results The findings highlighted a rising trend in research numbers over the years (From 2012 to 2022). The most publications were produced in 2020 and 2021, with annual percentage increases of 25.7% and 26.2%, respectively. The majority of AM-related publications in dentistry research originate from Korea. The pioneer dental sub-fields with the ost publications in its category are prosthodontics and implantology, respectively. Conclusion The final review result clearly stated an expectation for the future that the research in dentistry would concentrate on AM technologies in order to increase the new product and process development in dental materials, tools, implants and new generation modelling strategy related to AM. The results of this work can be used as indicators of trends related to AM research in dentistry and/or as prospects for future publication expectations in this field.
Collapse
Affiliation(s)
- H. Kursat Celik
- Dept. of Agr. Machinery and Technology Engineering, Akdeniz University, Antalya, 07070, Turkey
| | - Simay Koc
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Alper Kustarci
- Dept. of Endodontics, Fac. of Dentistry, Akdeniz University, Antalya, Turkey
| | - Nuri Caglayan
- Dept. of Mechatronics, Fac. of Engineering, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
22
|
Sutejo IA, Kim J, Zhang S, Gal CW, Choi YJ, Park H, Yun HS. Fabrication of color-graded feldspathic dental prosthetics for aesthetic and restorative dentistry. Dent Mater 2023:S0109-5641(23)00089-1. [PMID: 37088587 DOI: 10.1016/j.dental.2023.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE Feasibility investigation of natural teeth shades replication on dental prosthetics fabricated via functionally graded additive manufacturing (FGAM) using combination of feldspathic porcelain (FP) and yttrium aluminum garnet cerium (Y3Al5O12:Ce, YAG:Ce) as a promising esthetic restoration option. METHODS Color-graded feldspathic crown fabrication parameter through FGAM method was comprehensively examined from the slurry rheology, cure depth, debinding to sintering temperature. Effect of light absorbent also checked towards overcuring reaction during UV exposure by the shape comparison. Lastly, the flexural bending strength measured following ISO 6872:2015 to assure the applicability. Applying the studied parameter, natural teeth shades then imitated and investigated by alteration of FP and FP + 0.1 wt% YAG:Ce (Y-FP). Generated color across the structure captured through mobile camera, interpreted through the CIELAB coordinate and the gradation confirmed by the color differences (ΔE00) calculated using CIEDE2000 formula. RESULT Parameter study indicated that 70 wt% of FP slurry with 3 wt% dispersant and 0.2 wt% light absorbent is favored. It produces excellent flowability in our FGAM system with less overcuring justified by edge margin reduction from 95.65° to 90.00° after UV exposure on rectangle shapes masking. The obtain structure also offers adequate flexural bending strength of 106.26 MPa (FP) and 101.36 MPa (Y-FP) after sintering at 780 °C. This validated the materials as class 2 dental prosthetics citing ISO 6872:2015. Color gradation was verified by the yellow b* value reduction (14.8 to -3.33) as it shifted from cervical to incisal area while ΔE00 further affirmed the differences from each segment in comparison with the FP and Y-FP. SIGNIFICANCE Color gradation was successfully replicated by FP and YAG:Ce composition shift via FGAM technique. This result highlights the potential of FGAM as an alternative for fabricating dental prosthetics with high efficiency and improved esthetic appeal.
Collapse
Affiliation(s)
- Imam Akbar Sutejo
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jeehwan Kim
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; Pusan National University (PNU), Busan, Republic of Korea
| | - Sinuo Zhang
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Chang Woo Gal
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Yeong-Jin Choi
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Honghyun Park
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Hui-Suk Yun
- Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea,; University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
23
|
Rezaie F, Farshbaf M, Dahri M, Masjedi M, Maleki R, Amini F, Wirth J, Moharamzadeh K, Weber FE, Tayebi L. 3D Printing of Dental Prostheses: Current and Emerging Applications. JOURNAL OF COMPOSITES SCIENCE 2023; 7:80. [PMID: 38645939 PMCID: PMC11031267 DOI: 10.3390/jcs7020080] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments. Three-dimensional printing has been narrowly employed in the fabrication of various kinds of prostheses and implants. There is still an on-demand production procedure that offers a reasonable method with superior efficiency to engineer multifaceted dental constructs. This review article aims to cover the most recent applications of 3D printing techniques in the manufacturing of dental prosthetics. More specifically, after describing various 3D printing techniques and their advantages/disadvantages, the applications of 3D printing in dental prostheses are elaborated in various examples in the literature. Different 3D printing techniques have the capability to use different materials, including thermoplastic polymers, ceramics, and metals with distinctive suitability for dental applications, which are discussed in this article. The relevant limitations and challenges that currently limit the efficacy of 3D printing in this field are also reviewed. This review article has employed five major scientific databases, including Google Scholar, PubMed, ScienceDirect, Web of Science, and Scopus, with appropriate keywords to find the most relevant literature in the subject of dental prostheses 3D printing.
Collapse
Affiliation(s)
- Fereshte Rezaie
- Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz P.O. Box 5163639888, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz P.O. Box 5163639888, Iran
| | - Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz P.O. Box 5163639888, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 6468571468, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran P.O. Box 33535111, Iran
| | - Fatemeh Amini
- School of Dentistry, Shahed University of Medical Sciences, Tehran P.O. Box 5163639888, Iran
| | - Jonathan Wirth
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates
| | - Franz E. Weber
- Center for Dental Medicine/Cranio-Maxillofacial and Oral Surgery, Oral Biotechnology and Bioengineering, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
24
|
Herrero-Climent M, Punset M, Molmeneu M, Brizuela A, Gil J. Differences between the Fittings of Dental Prostheses Produced by CAD-CAM and Laser Sintering Processes. J Funct Biomater 2023; 14:jfb14020067. [PMID: 36826866 PMCID: PMC9959825 DOI: 10.3390/jfb14020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Digital dentistry and new techniques for the dental protheses' suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium-cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.
Collapse
Affiliation(s)
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Meritxell Molmeneu
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Faculty of Medicine and Health Sciences, International University of Catalonia, Josep Trueta s/n, 08195 Barcelona, Spain
- Correspondence:
| |
Collapse
|
25
|
Huang S, Wei H, Li D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front Bioeng Biotechnol 2023; 11:1100155. [PMID: 36741746 PMCID: PMC9895117 DOI: 10.3389/fbioe.2023.1100155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Additive manufacturing (AM) technologies can enable the direct fabrication of customized physical objects with complex shapes, based on computer-aided design models. This technology is changing the digital manufacturing industry and has become a subject of considerable interest in digital implant dentistry. Personalized dentistry implant treatments for individual patients can be achieved through Additive manufacturing. Herein, we review the applications of Additive manufacturing technologies in oral implantology, including implant surgery, and implant and restoration products, such as surgical guides for implantation, custom titanium meshes for bone augmentation, personalized or non-personalized dental implants, custom trays, implant casts, and implant-support frameworks, among others. In addition, this review also focuses on Additive manufacturing technologies commonly used in oral implantology. Stereolithography, digital light processing, and fused deposition modeling are often used to construct surgical guides and implant casts, whereas direct metal laser sintering, selective laser melting, and electron beam melting can be applied to fabricate dental implants, personalized titanium meshes, and denture frameworks. Moreover, it is sometimes required to combine Additive manufacturing technology with milling and other cutting and finishing techniques to ensure that the product is suitable for its final application.
Collapse
Affiliation(s)
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Dias Corpa Tardelli J, Duarte Firmino AC, Ferreira I, Cândido dos Reis A. Influence of the roughness of dental implants obtained by additive manufacturing on osteoblastic adhesion and proliferation: A systematic review. Heliyon 2022; 8:e12505. [PMID: 36643331 PMCID: PMC9834751 DOI: 10.1016/j.heliyon.2022.e12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Critically analyzed the existing literature to answer the question "What is the influence of roughness of surfaces for dental implants obtained by additive manufacturing compared to machined on osteoblastic cell adhesion and proliferation?" Design This systematic review followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the Open Science Framework. The personalized search strategy was applied to Embase, Pub Med, Scopus, and Science Direct databases and Google Scholar and ProQuest grey literature. The selection process was carried out in two stages independently by two reviewers according to the eligibility criteria. The risk of bias was analyzed using a checklist of important parameters to be considered. Results When applying the search strategy on databases 223 articles were found, after removing the duplicates, 171 were analyzed by title and abstract of which 25 were selected for full reading, of these, 6 met the eligibility criteria. 2 studies were included from the reference list totaling 8 articles included in this systematic review and none were included from the Grey Literature. 7 had a low risk of bias and 1 moderate. Conclusions 1) Roughness is a property that must be analyzed and correlated with the chemical composition, intrinsic to the alloy and resulting from the surface treatment; morphology of topographic peaks and valleys; printing technique and its parameters; 2) Need for more studies on the biomolecular level to elucidate the mechanism by which the roughness and the morphology of topographical peaks and valleys descriptive of roughness influence osteoblastic adhesion and proliferation.
Collapse
|
27
|
Hoque ME, Showva NN, Ahmed M, Rashid AB, Sadique SE, El-Bialy T, Xu H. Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects. Heliyon 2022; 8:e11300. [PMID: 36387463 PMCID: PMC9640965 DOI: 10.1016/j.heliyon.2022.e11300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Many implant materials have been used in various dental applications depending on their efficacy and availability. A dental implant must possess the required characteristics, such as biocompatibility, corrosion & wear resistance, adequate mechanical properties, osseointegration, etc., to ensure its safe and optimum use. This review analyzes various aspects of titanium (Ti) and Ti alloys, including properties, manufacturing processes, surface modifications, applications as dental implants, and limitations. In addition, it also presents a perception of recent advances in Ti-based implant materials and the futuristic development of innovative dental implants.
Collapse
Affiliation(s)
- Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Nazmir-Nur Showva
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Mansura Ahmed
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Sarder Elius Sadique
- College of Information Technology and Engineering, Marshall University, West Virginia, USA
| | - Tarek El-Bialy
- Department of Dentistry & Dental Hygiene, University of Alberta, Alberta, Canada
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology (KIT), Sakyoku, Kyoto City, Japan
| |
Collapse
|
28
|
Antimicrobial incorporation on 3D-printed polymers used as potential dental materials and biomaterials: a systematic review of the state of the art. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Campos MRD, Oliveira TTD, Botelho AL, Reis ACD. Mechanical, Chemical, and Biological Properties of 3D-Printed Abutments: A Systematic Review. JOURNAL OF ADVANCED ORAL RESEARCH 2022. [DOI: 10.1177/23202068221099772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: A systematic review of the methods of 3D printing and the materials used so far for the manufacture of abutments was performed to evaluate whether their clinical use is indicated through the mechanical, chemical, and biological analyses carried out. Materials and Methods: An electronic search conducted by three independent reviewers was carried out in the PubMed, Web of Science, Cochrane Library, Science Direct, and Lilac databases. The inclusion criterion was researching articles in English that contained as subject the manufacturing of abutments through 3D printing/additive manufacturing. Any meta-analyses, reviews, book chapters, abstracts, letters, conferences papers, and studies without abutments printed were excluded. Results: We found 780 references, which after applying the exclusion criteria resulted in the final inclusion of seven articles for review. The studies had a high heterogeneity, showing different materials and methodologies to manufacture abutments, which makes a comparison between them difficult, and for this reason it was not possible to carry out a meta-analysis with the data found. Conclusions: Even with the limitations found in the present research, it is possible to conclude that printed abutments have adequate mechanical, chemical, and biological properties that can indicate their clinical use. 3D printing presents high accuracy and speed and can produce customized abutments according to each case.
Collapse
Affiliation(s)
- Murilo Rodrigues de Campos
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, Ribeirão Preto, SP, Brazil
| | | | - André Luís Botelho
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, Ribeirão Preto, SP, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Takashima H, Tagami T, Kato S, Pae H, Ozeki T, Shibuya Y. Three-Dimensional Printing of an Apigenin-Loaded Mucoadhesive Film for Tailored Therapy to Oral Leukoplakia and the Chemopreventive Effect on a Rat Model of Oral Carcinogenesis. Pharmaceutics 2022; 14:pharmaceutics14081575. [PMID: 36015201 PMCID: PMC9415331 DOI: 10.3390/pharmaceutics14081575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Oral leukoplakia, which presents as white lesions in the oral cavity, including on the tongue, is precancerous in nature. Conservative treatment is preferable, since surgical removal can markedly reduce the patient’s quality of life. In the present study, we focused on the flavonoid apigenin as a potential compound for preventing carcinogenesis, and an apigenin-loaded mucoadhesive oral film was prepared using a three-dimensional (3D) bioprinter (semi-solid extrusion-type 3D printer). Apigenin-loaded printer inks are composed of pharmaceutical excipients (HPMC, CARBOPOL, and Poloxamer), water, and ethanol to dissolve apigenin, and the appropriate viscosity of printer ink after adjusting the ratios allowed for the successful 3D printing of the film. After drying the 3D-printed object, the resulting film was characterized. The chemopreventive effect of the apigenin-loaded film was evaluated using an experimental rat model that had been exposed to 4-nitroquinoline 1-oxide (4NQO) to induce oral carcinogenesis. Treatment with the apigenin-loaded film showed a remarkable chemopreventive effect based on an analysis of the specimen by immunohistostaining. These results suggest that the apigenin-loaded mucoadhesive film may help prevent carcinogenesis. This successful preparation of apigenin-loaded films by a 3D printer provides useful information for automatically fabricating other tailored films (with individual doses and shapes) for patients with oral leukoplakia in a future clinical setting.
Collapse
Affiliation(s)
- Hiroyuki Takashima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-0001, Japan; (H.T.); (S.K.)
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (T.T.); (H.P.); (T.O.)
| | - Shinichiro Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-0001, Japan; (H.T.); (S.K.)
| | - Heeju Pae
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (T.T.); (H.P.); (T.O.)
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (T.T.); (H.P.); (T.O.)
| | - Yasuyuki Shibuya
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-0001, Japan; (H.T.); (S.K.)
- Correspondence: ; Tel.: +81-52-858-7302
| |
Collapse
|
31
|
Chakraborty A, Sahare KD, Datta P, Majumder S, Roychowdhury A, Basu B. Probing the Influence of Hybrid Thread Design On Biomechanical Response of Dental Implants: Finite Element Study and Experimental Validation. J Biomech Eng 2022; 145:1143180. [PMID: 35838340 DOI: 10.1115/1.4054984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To perform quantitative biomechanical analysis, probing the effect of varying thread shapes in an implant for improved primary stability in prosthodontics surgery. METHODS Dental implants with square (SQR), buttress (BUT) and triangular (TRI) thread shapes or their combinations. Cone-beam computed tomography images of mandible molar zones in human subjects belonging to three age groups were used for virtual implantation of designed implants, to quantify patient-specific peri-implant bone micro-strain, using finite element analyses. The in silico analyses were carried out considering frictional contact to simulate immediate loading with a static masticatory force of 200 N. In order to validate computational biomechanics results, compression tests were performed on 3D printed implants having investigated thread architectures. Bone/implant contact areas were also quantitatively assessed. RESULTS Bone/implant contact was maximum for SQR implants followed by BUT and TRI implants. For all the cases, peak micro-strain was recorded in the cervical cortical bone. The combination of different thread shapes in the middle or apical part (or both) was demonstrated to improve peri-implant micro-strain particularly for BUT and TRI. CONCLUSIONS Considering 1500-2000 micro-strain generates in peri-implant bone during regular physiological functioning, BUT-SQR, BUT-TRI-SQR, TRI-SQR-BUT, SQR, SQR-BUT-TRI design concepts were suitable for younger; BUT-TRI-SQR, BUT-SQR-TRI, TRI-SQR-BUT, SQR-BUT, SQR-TRI for middle-aged, and BUT-TRI-SQR, BUT-SQR-TRI, TRI-BUT-SQR, SQR, SQR-TRI for older group of human patients.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, P.O. - Botanic Garden, Howrah- 711103, West Bengal, India
| | - Kalash Darshan Sahare
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, P.O. - Botanic Garden, Howrah- 711103, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata- 700054, West Bengal, India
| | - Santanu Majumder
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, P.O. - Botanic Garden, Howrah- 711103, West Bengal, India
| | - Amit Roychowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, P.O. - Botanic Garden, Howrah- 711103, West Bengal, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bengaluru, Bengaluru- 560012, Karnataka, India
| |
Collapse
|
32
|
Moghanian A, Cecen B, Nafisi N, Miri Z, Rosenzweig DH, Miri AK. Review of Current Literature for Vascularized Biomaterials in Dental Repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Beatriz Vilela Teixeira A, Greghi de Carvalho G, Cândido dos Reis A. Incorporation of antimicrobial agents into dental materials obtained by additive manufacturing: A literature review. Saudi Dent J 2022; 34:411-420. [PMID: 36092519 PMCID: PMC9453510 DOI: 10.1016/j.sdentj.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 10/31/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
34
|
Guo Y, Liu F, Bian X, Lu K, Huang P, Ye X, Tang C, Li X, Wang H, Tang K. Effect of Pore Size of Porous-Structured Titanium Implants on Tendon Ingrowth. Appl Bionics Biomech 2022; 2022:2801229. [PMID: 35510044 PMCID: PMC9061050 DOI: 10.1155/2022/2801229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The reconstruction of a tendon insertion on metal prostheses is a challenge in orthopedics. Of the available metal prostheses, porous metal prostheses have been shown to have better biocompatibility for tissue integration. Therefore, this study is aimed at identifying an appropriate porous structure for the reconstruction of a tendon insertion on metal prostheses. Methods Ti6Al4V specimens with a diamond-like porous structure with triply periodic minimal surface pore sizes of 300, 500, and 700 μm and a porosity of 58% (designated Ti300, Ti500, and Ti700, respectively) were manufactured by selective laser melting and were characterized with micro-CT and scanning electron microscopy for their porosity, pore size, and surface topography. The porous specimens were implanted into the patellar tendon of rabbits. Tendon integration was evaluated after implantation into the tendon at 4, 8, and 12 weeks by histology, and the fixation strength was evaluated with a pull-out test at week 12. Results The average pore sizes of the Ti300, Ti500, and Ti700 implants were 261, 480, and 668 μm, respectively. The Ti500 and Ti700 implants demonstrated better tissue growth than the Ti300 implant at weeks 4, 8, and 12. At week 12, the histological score of the Ti500 implant was 13.67 ± 0.58, and it had an area percentage of type I collagen of 63.90% ± 3.41%; both of these results were significantly higher than those for the Ti300 and Ti700 implants. The pull-out load at week 12 was also the highest in the Ti500 group. Conclusion Ti6Al4V implants with a diamond-like porous structure with triply periodic minimal surface pore size of 500 μm are suitable for tendon integration.
Collapse
Affiliation(s)
- Yupeng Guo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Liu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuting Bian
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kang Lu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Pan Huang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiao Ye
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chuyue Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinxin Li
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huan Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
35
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
36
|
Liu M, Wang Y, Zhang S, Wei Q, Li X. Success Factors of Additive Manufactured Root Analogue Implants. ACS Biomater Sci Eng 2022; 8:360-378. [PMID: 34990114 DOI: 10.1021/acsbiomaterials.1c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dental implantation is an effective method for the treatment of loose teeth, but the threaded dental implants used in the clinic cannot match with the tooth extraction socket. A root analogue implant (RAI) has the congruence shape, which reduces the damage to bone and soft tissue. Additive manufacturing (AM) technologies have the advantages of high precision, flexibility, and easy operation, becoming the main manufacturing method of RAI in basic research. The purpose of this systematic review is to summarize AM technologies used for RAI manufacturing as well as the factors affecting successful implantation. First, it introduces the AM technologies according to different operating principles and summarizes the advantages and disadvantages of each method. Then the influences of materials, structure design, surface characteristics, implant site, and positioning are discussed, providing reference for designers and dentists. Finally, it addresses the gap between basic research and clinical application for additive manufactured RAIs and discusses the current challenges and future research directions for this field.
Collapse
Affiliation(s)
- Minyan Liu
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shan Zhang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinpei Li
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
37
|
Karapetyan AA, Ukhanov MM, Ryakhovsky AN. [Metal 3D printing in dentistry]. STOMATOLOGIIA 2022; 101:85-91. [PMID: 36268927 DOI: 10.17116/stomat202210105185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The article describes the use of 3D printing in dentistry, the principle of operation of 3D printers for metals, a review of comparative data on the quality and accuracy of the final product of 3D metal printing is carried out. Possibilities and prospects of using 3D metal printing in dentistry are indicated.
Collapse
Affiliation(s)
- A A Karapetyan
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| | - M M Ukhanov
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| | - A N Ryakhovsky
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
38
|
Zhou Y, Tang C, Deng J, Xu R, Yang Y, Deng F. Micro/nano topography of selective laser melting titanium inhibits osteoclastogenesis via mediation of macrophage polarization. Biochem Biophys Res Commun 2021; 581:53-59. [PMID: 34655976 DOI: 10.1016/j.bbrc.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Selective laser melting (SLM) titanium (Ti) implants have shown good prospects for personalized clinical application, but further research is necessary to develop stabilized long-term properties. Since surface modification has been proven bioactive for osseointegration, conventional Ti surface treatment technologies, including sandblasting/acid-etching (SLA) and sandblasting/alkali-heating (SAH), were applied to construct micro and micro/nano surfaces. The SAH group with netlike nano-structure topography exhibited appropriate surface roughness and high hydrophilicity, and as expected, the osseointegration capacities in vivo of the three groups were in order of SAH > SLA > SLM. Besides, both in vivo and in vitro studies revealed that the SLA- and SAH-treated SLM Ti implants significantly inhibited osteoclast activity of peri-implants. Considering the close associations between osteoclasts and macrophages, the effects of Ti surface topography on macrophage polarization were detected. The results showed that the SLA- and SAH-treated SLM Ti implants, especially the latter, had the capacity to promote macrophage polarization to the M2 phenotype. Moreover, the cell culture supernatants of M2 macrophages and RAW264.7 cells seeded on SLA- and SAH-treated SLM Ti surfaces had an adverse effect on osteoclastogenesis. Collectively, this study demonstrated that micro/nano topographies of SLM Ti implants were effective for osseointegration promotion, and their inhibition of osteoclastogenesis might be attributed to macrophage polarization. Our findings shed some light on clinical application of SLM Ti implants and also prove a specific association between macrophage polarization and osteoclastogenesis.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Cuizhu Tang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Jiali Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Shaikh MQ, Nath SD, Akilan AA, Khanjar S, Balla VK, Grant GT, Atre SV. Investigation of Patient-Specific Maxillofacial Implant Prototype Development by Metal Fused Filament Fabrication (MF 3) of Ti-6Al-4V. Dent J (Basel) 2021; 9:dj9100109. [PMID: 34677171 PMCID: PMC8534331 DOI: 10.3390/dj9100109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Additive manufacturing (AM) and related digital technologies have enabled several advanced solutions in medicine and dentistry, in particular, the design and fabrication of patient-specific implants. In this study, the feasibility of metal fused filament fabrication (MF3) to manufacture patient-specific maxillofacial implants is investigated. Here, the design and fabrication of a maxillofacial implant prototype in Ti-6Al-4V using MF3 is reported for the first time. The cone-beam computed tomography (CBCT) image data of the patient’s oral anatomy was digitally processed to design a 3D CAD model of the hard tissue and fabricate a physical model by stereolithography (SLA). Using the digital and physical models, bone loss condition was analyzed, and a maxillofacial implant initial design was identified. Three-dimensional (3D) CAD models of the implant prototypes were designed that match the patient’s anatomy and dental implant requirement. In this preliminary stage, the CAD models of the prototypes were designed in a simplified form. MF3 printing of the prototypes was simulated to investigate potential deformation and residual stresses. The patient-specific implant prototypes were fabricated by MF3 printing followed by debinding and sintering using a support structure for the first time. MF3 printed green part dimensions fairly matched with simulation prediction. Sintered parts were characterized for surface integrity after cutting the support structures off. An overall 18 ± 2% shrinkage was observed in the sintered parts relative to the green parts. A relative density of 81 ± 4% indicated 19% total porosity including 11% open interconnected porosity in the sintered parts, which would favor bone healing and high osteointegration in the metallic implants. The surface roughness of Ra: 18 ± 5 µm and a Rockwell hardness of 6.5 ± 0.8 HRC were observed. The outcome of the work can be leveraged to further investigate the potential of MF3 to manufacture patient-specific custom implants out of Ti-6Al-4V.
Collapse
Affiliation(s)
- Mohammad Qasim Shaikh
- Materials Innovation Guild, University of Louisville, Louisville, KY 40208, USA; (M.Q.S.); (S.D.N.); (A.A.A.); (S.K.); (V.K.B.)
| | - Subrata Deb Nath
- Materials Innovation Guild, University of Louisville, Louisville, KY 40208, USA; (M.Q.S.); (S.D.N.); (A.A.A.); (S.K.); (V.K.B.)
| | - Arulselvan Arumugam Akilan
- Materials Innovation Guild, University of Louisville, Louisville, KY 40208, USA; (M.Q.S.); (S.D.N.); (A.A.A.); (S.K.); (V.K.B.)
| | - Saleh Khanjar
- Materials Innovation Guild, University of Louisville, Louisville, KY 40208, USA; (M.Q.S.); (S.D.N.); (A.A.A.); (S.K.); (V.K.B.)
| | - Vamsi Krishna Balla
- Materials Innovation Guild, University of Louisville, Louisville, KY 40208, USA; (M.Q.S.); (S.D.N.); (A.A.A.); (S.K.); (V.K.B.)
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | - Sundar Vedanarayanan Atre
- Materials Innovation Guild, University of Louisville, Louisville, KY 40208, USA; (M.Q.S.); (S.D.N.); (A.A.A.); (S.K.); (V.K.B.)
- Correspondence:
| |
Collapse
|
40
|
Băilă DI, Vițelaru C, Trușcă R, Constantin LR, Păcurar A, Parau CA, Păcurar R. Thin Films Deposition of Ta 2O 5 and ZnO by E-Gun Technology on Co-Cr Alloy Manufactured by Direct Metal Laser Sintering. MATERIALS 2021; 14:ma14133666. [PMID: 34209275 PMCID: PMC8269889 DOI: 10.3390/ma14133666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022]
Abstract
In recent years in the dental field, new types of materials and techniques for the manufacturing of dental crowns and analog implants have been developed to improve the quality of these products. The objective of this article was to perform the surface characterization and determine the properties of Co-Cr alloy samples fabricated by the direct metal laser sintering (DMLS) process and coated by e-gun technology with thin films of Ta2O5 and ZnO. Both oxides are frequently used for dental products, in pharmacology, cosmetics, and medicine, due to their good anticorrosive, antibacterial, and photo-catalytic properties. Following the deposition of thin oxide films on the Co-Cr samples fabricated by DMLS, a very fine roughness in the order of nanometers was obtained. Thin films deposition was realized to improve the hardness and the roughness of the Co-Cr parts fabricated by the DMLS process. Surface characterization was performed using SEM-EDS, AFM, and XRD. AFM was used to determine the roughness of the samples and the nanoindentation curves were determined to establish the hardness values and modulus of elasticity.
Collapse
Affiliation(s)
- Diana-Irinel Băilă
- Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, Polytechnic University of Bucharest, Splaiul Independenţei nr. 313, Sector 6, 060042 Bucharest, Romania;
- Correspondence: (D.-I.B.); (R.P.)
| | - Cătălin Vițelaru
- National Institute for Research and Development in Optoelectronics, Atomiștilor 409, 077125 Măgurele, Romania; (C.V.); (L.R.C.); (C.A.P.)
| | - Roxana Trușcă
- Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, Polytechnic University of Bucharest, Splaiul Independenţei nr. 313, Sector 6, 060042 Bucharest, Romania;
| | - Lidia Ruxandra Constantin
- National Institute for Research and Development in Optoelectronics, Atomiștilor 409, 077125 Măgurele, Romania; (C.V.); (L.R.C.); (C.A.P.)
| | - Ancuța Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics, Management and Production Management, Technical University of Cluj-Napoca, B-dul Muncii 103-105, 400641 Cluj-Napoca, Romania;
| | - Constantina Anca Parau
- National Institute for Research and Development in Optoelectronics, Atomiștilor 409, 077125 Măgurele, Romania; (C.V.); (L.R.C.); (C.A.P.)
| | - Răzvan Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics, Management and Production Management, Technical University of Cluj-Napoca, B-dul Muncii 103-105, 400641 Cluj-Napoca, Romania;
- Correspondence: (D.-I.B.); (R.P.)
| |
Collapse
|
41
|
Pugalendhi A, Ranganathan R. A review of additive manufacturing applications in ophthalmology. Proc Inst Mech Eng H 2021; 235:1146-1162. [PMID: 34176362 DOI: 10.1177/09544119211028069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
42
|
Bioprinting on 3D Printed Titanium Scaffolds for Periodontal Ligament Regeneration. Cells 2021; 10:cells10061337. [PMID: 34071316 PMCID: PMC8229613 DOI: 10.3390/cells10061337] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
The three-dimensional (3D) cell-printing technique has been identified as a new biofabrication platform because of its ability to locate living cells in pre-defined spatial locations with scaffolds and various growth factors. Osseointegrated dental implants have been regarded as very reliable and have long-term reliability. However, host defense mechanisms against infections and micro-movements have been known to be impaired around a dental implant because of the lack of a periodontal ligament. In this study, we fabricated a hybrid artificial organ with a periodontal ligament on the surface of titanium using 3D printing technology. CEMP-1, a known cementogenic factor, was enhanced in vitro. In animal experiments, when the hybrid artificial organ was transplanted to the calvarial defect model, it was observed that the amount of connective tissue increased. 3D-printed hybrid artificial organs can be used with dental implants, establishing physiological tooth functions, including the ability to react to mechanical stimuli and the ability to resist infections.
Collapse
|
43
|
Losic D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opin Drug Deliv 2021; 18:1355-1378. [PMID: 33985402 DOI: 10.1080/17425247.2021.1928071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Titanium (Ti) and their alloys are used as main implant materials in orthopedics and dentistry for decades having superior mechanical properties, chemical stability and biocompatibility. Their rejections due lack of biointegration and bacterial infection are concerning with considerable healthcare costs and impacts on patients. To address these limitations, conventional Ti implants need improvements where the use of surface nanoengineering approaches and the development of a new generation of implants are recognized as promising strategies.Areas covered:This review presents an overview of recent progress on the application of surface engineering methods to advance Ti implants enable to address their key limitations. Several promising surface engineering strategies are presented and critically discussed to generate advanced surface properties and nano-topographies (tubular, porous, pillars) able not only to improve their biointegration, antibacterial performances, but also to provide multiple functions such as drug delivery, therapy, sensing, communication and health monitoring underpinning the development of new generation and smart medical implants.Expert opinion:Recent advances in cell biology, materials science, nanotechnology and additive manufacturing has progressively influencing improvements of conventional Ti implants toward the development of the next generation of implants with improved performances and multifunctionality. Current research and development are in early stage, but progressing with promising results and examples of moving into in-vivo studies an translation into real applications.
Collapse
Affiliation(s)
- Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia.,ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia
| |
Collapse
|
44
|
Abstract
The high specific strength, good corrosion resistance, and great biocompatibility make titanium and its alloys the ideal materials for biomedical metallic implants. Ti-6Al-4V alloy is the most employed in practical biomedical applications because of the excellent combination of strength, fracture toughness, and corrosion resistance. However, recent studies have demonstrated some limits in biocompatibility due to the presence of toxic Al and V. Consequently, scientific literature has reported novel biomedical β-Ti alloys containing biocompatible β-stabilizers (such as Mo, Ta, and Zr) studying the possibility to obtain similar performances to the Ti-6Al-4V alloys. The aim of this review is to highlight the corrosion resistance of the passive layers on biomedical Ti-6Al-4V and β-type Ti alloys in the human body environment by reviewing relevant literature research contributions. The discussion is focused on all those factors that influence the performance of the passive layer at the surface of the alloy subjected to electrochemical corrosion, among which the alloy composition, the method selected to grow the oxide coating, and the physicochemical conditions of the body fluid are the most significant.
Collapse
|
45
|
Antonini MJ, Plana D, Srinivasan S, Atta L, Achanta A, Yang H, Cramer AK, Freake J, Sinha MS, Yu SH, LeBoeuf NR, Linville-Engler B, Sorger PK. A Crisis-Responsive Framework for Medical Device Development Applied to the COVID-19 Pandemic. Front Digit Health 2021; 3:617106. [PMID: 33899045 PMCID: PMC8064560 DOI: 10.3389/fdgth.2021.617106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
The disruption of conventional manufacturing, supply, and distribution channels during the COVID-19 pandemic caused widespread shortages in personal protective equipment (PPE) and other medical supplies. These shortages catalyzed local efforts to use nontraditional, rapid manufacturing to meet urgent healthcare needs. Here we present a crisis-responsive design framework designed to assist with product development under pandemic conditions. The framework emphasizes stakeholder engagement, comprehensive but efficient needs assessment, rapid manufacturing, and modified product testing to enable accelerated development of healthcare products. We contrast this framework with traditional medical device manufacturing that proceeds at a more deliberate pace, discuss strengths and weakness of pandemic-responsive fabrication, and consider relevant regulatory policies. We highlight the use of the crisis-responsive framework in a case study of face shield design and production for a large US academic hospital. Finally, we make recommendations aimed at improving future resilience to pandemics and healthcare emergencies. These include continued development of open source designs suitable for rapid manufacturing, education of maker communities and hospital administrators about rapidly-manufactured medical devices, and changes in regulatory policy that help strike a balance between quality and innovation.
Collapse
Affiliation(s)
- Marc-Joseph Antonini
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard-MIT Division of Health Sciences and Technology Program, Cambridge, MA, United States
| | - Deborah Plana
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology Program, Cambridge, MA, United States
- Department of Systems Biology, Harvard Ludwig Cancer Research Center and Harvard Medical School, Boston, MA, United States
| | - Shriya Srinivasan
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lyla Atta
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aditya Achanta
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Helen Yang
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
| | - Avilash K. Cramer
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology Program, Cambridge, MA, United States
| | - Jacob Freake
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Fikst Product Development, Woburn, MA, United States
| | - Michael S. Sinha
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
| | - Sherry H. Yu
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Nicole R. LeBoeuf
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Department of Dermatology, Center for Cutaneous Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ben Linville-Engler
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- System Design and Management, Massachusetts Institute of Technology, Cambridge, MA, United States
- Massachusetts Manufacturing Emergency Response Team (MA M-ERT), Massachusetts Technology Collaborative, Westborough, MA, United States
| | - Peter K. Sorger
- Greater Boston Pandemic Fabrication Team (PanFab) c/o Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
- Department of Systems Biology, Harvard Ludwig Cancer Research Center and Harvard Medical School, Boston, MA, United States
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Dias Corpa Tardelli J, Lima da Costa Valente M, Theodoro de Oliveira T, Cândido Dos Reis A. Influence of chemical composition on cell viability on titanium surfaces: A systematic review. J Prosthet Dent 2021; 125:421-425. [PMID: 32178882 DOI: 10.1016/j.prosdent.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/23/2022]
Abstract
STATEMENT OF PROBLEM A consensus on which dental implant alloy and surface treatment provide the best cell viability is unclear. PURPOSE The purpose of this systematic review was to provide information on the influence of surface and intrinsic titanium alloy chemical components on cell viability. MATERIAL AND METHODS The PubMed, LILACS, COCHRANE library, and Science Direct databases were electronically searched for the terms dental implants AND titanium AND cytotoxicity. Inclusion criteria were research articles that studied titanium or its alloys for chemical composition and cell viability and were published in English between 1999 and 2019. Articles that did not study titanium and its alloys, articles with nondental or biomedical implants, and articles that were not found in their entirety were excluded. RESULTS A total of 1226 articles selected by title or abstract according to the inclusion and exclusion criteria resulted in 51 articles that were reduced to 27 after reading in full. The treatments analyzed were arc fusion, electron beam physical deposition, plasma electrolytic oxidation, coating addition, micro arc oxidation, anodization, thermochemical process, BMP-2 immobilization, pressure-assisted sintering, and alkali heat treatment. CONCLUSIONS The evaluated literature did not allow a determination of the best surface treatment for cell viability because of the heterogeneity of the studies regarding the type of alloy, cell used in the MTT assay, study, and implant purpose (biomedical or dental). The cytotoxic effect of chemical components was dependent on dose, time, size, temperature, and cell type. The niobium, tantalum, zirconium, and molybdenum elements have been most often added in the development of less toxic Ti alloys with lower modulus of elasticity and increased strength.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Graduate student, Graduate Dentistry, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Postgraduate student, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thaisa Theodoro de Oliveira
- Postgraduate student, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Associate Professor, Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
47
|
Influence of Successive Chemical and Thermochemical Treatments on Surface Features of Ti6Al4V Samples Manufactured by SLM. METALS 2021. [DOI: 10.3390/met11020313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ti6Al4V samples, obtained by selective laser melting (SLM), were subjected to successive treatments: acid etching, chemical oxidation in hydrogen peroxide solution and thermochemical processing. The effect of temperature and time of acid etching on the surface roughness, morphology, topography and chemical and phase composition after the thermochemical treatment was studied. The surfaces were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and contact profilometry. The temperature used in the acid etching had a greater influence on the surface features of the samples than the time. Acid etching provided the original SLM surface with a new topography prior to oxidation and thermochemical treatments. A nanostructure was observed on the surfaces after the full process, both on their protrusions and pores previously formed during the acid etching. After the thermochemical treatment, the samples etched at 40 °C showed macrostructures with additional submicro and nanoscale topographies. When a temperature of 80 °C was used, the presence of micropores and a thicker anatase layer, detectable by X-ray diffraction, were also observed. These surfaces are expected to generate greater levels of bioactivity and high biomechanics fixation of implants as well as better resistance to fatigue.
Collapse
|
48
|
Crenn MJ, Benoit A, Rohman G, Guilbert T, Fromentin O, Attal JP, Bardet C. Selective Laser Melted Titanium Alloy for Transgingival Components: Influence of Surface Condition on Fibroblast Cell Behavior. J Prosthodont 2021; 31:50-58. [PMID: 33569866 DOI: 10.1111/jopr.13347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To mechanically characterize and assess the biological properties of Ti6Al4V surfaces obtained by Selective Laser Melting in order to determine whether this process is conceivable for production of implant-supported prostheses and particularly trans-gingival components. As-built and polished surfaces were studied in comparison with components obtained by computer numerical control machining technology in order to consider whether the properties are in the same range as the conventional method currently used. MATERIALS AND METHODS Cylindrical specimens of Ti6Al4V (n = 6) were built with Selective Laser Melting for the characterization of mechanical properties according to ISO 22674 and discs (n = 12) were fabricated in the same conditions for cytotoxicity evaluation. Discs (n = 12) of Ti6Al4V were also obtained by computer numerical control machining as control. Half of the number of discs (n = 6) from each process were polished, to simulate the laboratory protocol for polishing of transmucosal components and half of the discs remained unaltered (as-built). Surface roughness measurements of disc specimens (as-built and polished) were compared with computer numerical control milling specimens (as-built and polished). Proliferation of human gingival fibroblasts on Ti6Al4V surfaces was also assessed for each condition. Viability and cell morphology were then evaluated qualitatively. Ra and Sa data were compared using Student's t-test (α = 0.05) and metabolic activity data were compared using Kruskal-Wallis statistical test (α = 0.05). RESULTS Selective Laser Melting specimens showed elongation at break greater than 2% and 0.2% yield strength better than 500MPa which complied with ISO 22674 standards. Although Selective Laser Melting samples displayed significantly increased roughness on as-built surfaces compared to computer numerically controlled milling samples (p < 0.05), no statistically significant difference was observed after mechanical polishing (p = 0.279). Regarding metabolic activity, no statistical difference was observed between groups at day 3 (p > 0.05) and fibroblasts showed a viability higher than 97% on all discs. Cell shapes on polished samples suggested moderate adhesion compared to unpolished samples. CONCLUSION With the manufacturing parameters selected in this study, Selective Laser Melting of Ti6Al4V appeared to be compatible with a prosthetic application type 4 according to ISO 22674. Surfaces obtained, followed by recommended postprocessing provided components with equivalent biological properties compared to computer numerical control machining technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire Bardet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, Université de Paris, Montrouge, France
| |
Collapse
|
49
|
Shu T, Zhang Y, Sun G, Pan Y, He G, Cheng Y, Li A, Pei D. Enhanced Osseointegration by the Hierarchical Micro-Nano Topography on Selective Laser Melting Ti-6Al-4V Dental Implants. Front Bioeng Biotechnol 2021; 8:621601. [PMID: 33490056 PMCID: PMC7817818 DOI: 10.3389/fbioe.2020.621601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, selective laser melting (SLM) has been thriving in implant dentistry for on-demand fabricating dental implants. Based on the coarse microtopography of SLM titanium surfaces, constructing nanostructure to form the hierarchical micro-nano topography is effective in enhancing osseointegration. Given that current nanomodification techniques of SLM implants, such as anodization and hydrothermal treatment, are facing the inadequacy in costly specific apparatus and reagents, there has been no recognized nanomodified SLM dental implants. The present study aimed to construct hierarchical micro-nano topography on self-made SLM dental implants by a simple and safe inorganic chemical oxidation, and to evaluate its contribution on osteoblastic cells bioactivity and osseointegration. The surface chemical and physical parameters were characterized by FE-SEM, EDS, profilometer, AFM, and contact angle meter. The alteration on bioactivity of MG-63 human osteoblastic cells were detected by qRT-PCR. Then the osseointegration was assessed by implanting implants on the femur condyle of New Zealand Rabbits. The hierarchical micro-nano topography was constituted by the microrough surface of SLM implants and nanoneedles (diameter: 20∼50 nm, height: 150∼250 nm), after nanomodifying SLM implants in 30% hydrogen peroxide and 30% hydrochloride acid (volume ratio 1:2.5) at room temperature for 36 h. Low chemical impurities content and high hydrophilicity were observed in the nanomodified group. Cell experiments on the nanomodified group showed higher expression of mitophagy related gene (PINK1, PARKIN, LC3B, and LAMP1) at 5 days and higher expression of osteogenesis related gene (Runx2 and OCN) at 14 days. In the early stage of bone formation, the nanomodified SLM implants demonstrated higher bone-to-implant contact. Intriguingly, the initial bone-to-implant contact of nanomodified SLM implants consisted of more mineralized bone with less immature osteoid. After the cessation of bone formation, the bone-to-implant contact of nanomodified SLM implants was equal to untreated SLM implants and marketable TixOs implants. The overall findings indicated that the inorganic chemical oxidized hierarchical micro-nano topography could enhance the bioactivity of osteoblastic cells, and consequently promote the peri-implant bone formation and mineralization of SLM dental implants. This study sheds some light on improvements in additive manufactured dental implants.
Collapse
Affiliation(s)
- Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
50
|
Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review. MACHINES 2020. [DOI: 10.3390/machines8040084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
3D printing conquers new branches of production due to becoming a more reliable and professional method of manufacturing. The benefits of additive manufacturing such as part optimization, weight reduction, and ease of prototyping were factors accelerating the popularity of 3D printing. Additive manufacturing has found its niches, inter alia, in automotive, aerospace and dentistry. Although further research in those branches is still required, in some specific applications, additive manufacturing (AM) can be beneficial. It has been proven that additively manufactured parts have the potential to out perform the conventionally manufactured parts due to their mechanical properties; however, they must be designed for specific 3D printing technology, taking into account its limitations. The maritime industry has a long-standing tradition and is based on old, reliable techniques; therefore it implements new solutions very carefully. Besides, shipbuilding has to face very high classification requirements that force the use of technologies that guarantee repeatability and high quality. This paper provides information about current R&D works in the field of implementing AM in shipbuilding, possible benefits, opportunities and threats of implementation.
Collapse
|