1
|
Schwartzová V, Laputková G, Talian I, Marcin M, Schwartzová Z, Glaba D. Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics. Int J Mol Sci 2024; 25:12405. [PMID: 39596473 PMCID: PMC11594355 DOI: 10.3390/ijms252212405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Long-term treatment with bisphosphonates is accompanied by an increased risk of medication-related osteonecrosis of the jaw (MRONJ). Currently, no clinically useful biomarkers for the predictive diagnosis of MRONJ are available. To investigate the potential key proteins involved in the pathogenesis of MRONJ, a proteomic LC-MS/MS analysis of saliva was performed. Differentially expressed proteins (DEPs) were analyzed using BiNGO, ClueGO, cytoHubba, MCODE, KEGG, and ReactomeFI software packages using Cytoscape platforms. In total, 1545 DEPs were identified, including 43 up- and 11 down-regulated with a 1.5-fold cut-off value and adj. p-value < 0.05. The analysis provided a panel of hub genes, including APOA2, APOB, APOC2, APOC3, APOE, APOM, C4B, C4BPA, C9, FGG, GC, HP, HRG, LPA, SAA2-SAA4, and SERPIND1. The most prevalent terms in GO of the biological process were macromolecular complex remodeling, protein-lipid complex remodeling, and plasma lipoprotein particle remodeling. DEPs were mainly involved in signaling pathways associated with lipoproteins, the innate immune system, complement, and coagulation cascades. The current investigation advanced our knowledge of the molecular mechanisms underlying MRONJ. In particular, the research identified the principal salivary proteins that are implicated in the onset and progression of this condition.
Collapse
Affiliation(s)
- Vladimíra Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia; (V.S.); (Z.S.)
| | - Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Zuzana Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia; (V.S.); (Z.S.)
| | - Dominik Glaba
- Faculty of Medicine, University of P. J. Šafárik, 041 90 Košice, Slovakia;
| |
Collapse
|
2
|
Koubova K, Tauber Z, Cizkova K. Exploring the impact of sEH inhibition on intestinal cell differentiation and Colon Cancer: Insights from TPPU treatment. Toxicol Appl Pharmacol 2024; 492:117128. [PMID: 39414156 DOI: 10.1016/j.taap.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Inhibition of soluble epoxide hydrolase (sEH) appears to be promising for the treatment of many diseases. Studies have focused on the beneficial effects of epoxyeicosatrienoic acids (EETs), which are sEH substrates. However, our recent studies have shown that the sEH activity is crucial for the proper intestinal cell differentiation. In this recent study, we investigated the impact of TPPU, an inhibitor of sEH, on the colon cancer cell lines Caco2 and HT-29. We analysed the changes in the expression of the cytoskeletal protein ezrin and the phosphorylated protein kinase p38 (p-p38). Our results showed a decrease in ezrin expression in differentiated cells and an increase in p-p38 expression after TPPU treatment. Immunocytochemical staining revealed a higher staining intensity of p-p38 in the nuclei of HT-29 cells following TPPU treatment. Immunohistochemical staining was performed on human samples of normal colon tissue, grade 2 tumours, and embryonal/foetal tissues. The staining intensity of ezrin in tumours was reduced in the surface area compared to the crypts. Additionally, we observed the translocation of p-p38 expression from the cytoplasm to the nucleus during differentiation. The tumour samples exhibited higher levels of p-p38 in the cytoplasm, similar to normal undifferentiated tissue. To observe the disruption of the cytoskeleton after TPPU treatment, confocal microscopy was used. It was found that β-actin associated with ezrin forms clusters under the plasma membranes. All of these results are significant because sEH inhibitors are being tested in clinical trials, but they could cause an unexpected adverse effects.
Collapse
Affiliation(s)
- Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Watanabe S, Souza FDC, Kusumoto I, Shen Q, Nitin N, Lein PJ, Taha AY. Intraperitoneally injected d11-11(12)-epoxyeicosatrienoic acid is rapidly incorporated and esterified within rat plasma and peripheral tissues but not the brain. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102622. [PMID: 38954932 PMCID: PMC11613899 DOI: 10.1016/j.plefa.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
Epoxyeicosatrienoic acids (EpETrEs) are bioactive lipid mediators of arachidonic acid cytochrome P450 oxidation. In vivo, the free (unbound) form of EpETrEs regulate multiple processes including blood flow, angiogenesis and inflammation resolution. Free EpETrEs are thought to rapidly degrade via soluble epoxide hydrolase (sEH); yet, in many tissues, the majority of EpETrEs are esterified to complex lipids (e.g. phospholipids) suggesting that esterification may play a major role in regulating free, bioactive EpETrE levels. This hypothesis was tested by quantifying the metabolism of intraperitoneally injected free d11-11(12)-Epoxyeicosatrienoic acid (d11-11(12)-EpETrE) in male and female rats. Plasma and tissues (liver, adipose and brain) were obtained 3 to 4 min later and assayed for d11-11(12)-EpETrE and its sEH metabolite, d11-11,12-dihydroxyeicosatrienoic acid (d11-11,12-diHETrE) in both the free and esterified lipid fractions. In both males and females, the majority of injected tracer was recovered in liver followed by plasma and adipose. No tracer was detected in the brain, indicating that brain levels are maintained by endogenous synthesis from precursor fatty acids. In plasma, liver, and adipose, the majority (>54 %) of d11-11(12)-EpETrE was found esterified to phospholipids or neutral lipids (triglycerides and cholesteryl esters). sEH-derived d11-11,12-diHETrE was not detected in plasma or tissues, suggesting negligible conversion within the 3-4 min period post tracer injection. This study shows that esterification is the main pathway regulating free 11(12)-EpETrE levels in vivo.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, 9800845, Japan
| | - Felipe Da Costa Souza
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Ibuki Kusumoto
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, 9800845, Japan
| | - Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Nitin Nitin
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA; MIND Institute, University of California-Davis, 2825 50th Street, Sacramento, CA 95817
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Naeem Z, Zukunft S, Huard A, Hu J, Hammock BD, Weigert A, Frömel T, Fleming I. Role of the soluble epoxide hydrolase in keratinocyte proliferation and sensitivity of skin to inflammatory stimuli. Biomed Pharmacother 2024; 171:116127. [PMID: 38198951 PMCID: PMC10857809 DOI: 10.1016/j.biopha.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.
Collapse
Affiliation(s)
- Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Arnaud Huard
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; CardioPulmonary Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
6
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
miRNA-Mediated Low Expression of EPHX3 Is Associated with Poor Prognosis and Tumor Immune Infiltration in Head and Neck Squamous Cell Carcinomas. JOURNAL OF ONCOLOGY 2022; 2022:7633720. [PMID: 35401746 PMCID: PMC8993555 DOI: 10.1155/2022/7633720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the regulatory role of epoxide hydrolase 3 (EPHX3) in head and neck squamous cell carcinoma (HNSCC) and to analyze its bioinformatic function, as well as, to screen and predict the miRNAs that can regulate EPHX3 expression in HNSCC. We examined the expression profile and prognostic potential of EPHX3 in TCGA and GTEX databases and performed functional enrichment analysis of EPHX3 using string database. Subsequently, we analyzed the regulatory role of miRNAs on EPHX3, including expression analysis, correlation analysis, and survival analysis. In addition, we also used TIMER to investigate the relationship among EPHX3 expression level, immune checkpoints, and immune infiltration in HNSCC. The results of data analysis after TGCA showed that EPHX3 is a key regulator of tumorigenesis in 13 cancers and can be used as a marker of poor prognosis in HNSCC patients. Bioinformatics analysis revealed that miR-4713-3p is a key miRNA of EPHX3 in HNSCC. Together, our findings indicate that EPHX3 exerts its anticancer effects by suppressing tumor immune checkpoint expression and immune cell infiltration. Overall, our data uncovered miRNA-mediated EPHX3 downregulation as a contributor to poor HNSCC prognosis and reduced tumor immune infiltration.
Collapse
|
8
|
Puebla M, Tapia PJ, Espinoza H. Key Role of Astrocytes in Postnatal Brain and Retinal Angiogenesis. Int J Mol Sci 2022; 23:ijms23052646. [PMID: 35269788 PMCID: PMC8910249 DOI: 10.3390/ijms23052646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.
Collapse
Affiliation(s)
- Mariela Puebla
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Av. Plaza 680, Las Condes, Santiago 7550000, Chile;
| | - Pablo J. Tapia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Av. Lota 2465, Providencia, Santiago 7500000, Chile;
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Av. República 71, Santiago 8320000, Chile
| | - Hilda Espinoza
- Facultad de Ciencias de la Salud, Universidad del Alba, Av. Ejército Libertador 171, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
9
|
Zhao Z, Zhang C, Lin J, Zheng L, Li H, Qi X, Huo H, Lou X, Hammock BD, Hwang SH, Bao Y, Luo M. COX-2/sEH Dual Inhibitor PTUPB Alleviates CCl 4 -Induced Liver Fibrosis and Portal Hypertension. Front Med (Lausanne) 2022; 8:761517. [PMID: 35004731 PMCID: PMC8734593 DOI: 10.3389/fmed.2021.761517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023] Open
Abstract
Background: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl) -benzenesulfonamide (PTUPB), a dual cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) inhibitor, was found to alleviate renal, pulmonary fibrosis and liver injury. However, few is known about the effect of PTUPB on liver cirrhosis. In this study, we aimed to explore the role of PTUPB in liver cirrhosis and portal hypertension (PHT). Method: Rat liver cirrhosis model was established via subcutaneous injection of carbon tetrachloride (CCl4) for 16 weeks. The experimental group received oral administration of PTUPB (10 mg/kg) for 4 weeks. We subsequently analyzed portal pressure (PP), liver fibrosis, inflammation, angiogenesis, and intra- or extrahepatic vascular remodeling. Additionally, network pharmacology was used to investigate the possible mechanisms of PTUPB in live fibrosis. Results: CCl4 exposure induced liver fibrosis, inflammation, angiogenesis, vascular remodeling and PHT, and PTUPB alleviated these changes. PTUPB decreased PP from 17.50 ± 4.65 to 6.37 ± 1.40 mmHg, reduced collagen deposition and profibrotic factor. PTUPB alleviated the inflammation and bile duct proliferation, as indicated by decrease in serum interleukin-6 (IL-6), liver cytokeratin 19 (CK-19), transaminase, and macrophage infiltration. PTUPB also restored vessel wall thickness of superior mesenteric arteries (SMA) and inhibited intra- or extrahepatic angiogenesis and vascular remodeling via vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), etc. Moreover, PTUPB induced sinusoidal vasodilation by upregulating endothelial nitric oxide synthase (eNOS) and GTP-cyclohydrolase 1 (GCH1). In enrichment analysis, PTUPB engaged in multiple biological functions related to cirrhosis, including blood pressure, tissue remodeling, immunological inflammation, macrophage activation, and fibroblast proliferation. Additionally, PTUPB suppressed hepatic expression of sEH, COX-2, and transforming growth factor-β (TGF-β). Conclusion: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)- benzenesulfonamide ameliorated liver fibrosis and PHT by inhibiting fibrotic deposition, inflammation, angiogenesis, sinusoidal, and SMA remodeling. The molecular mechanism may be mediated via the downregulation of the sEH/COX-2/TGF-β.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce D Hammock
- Department of Entomology, Nematology and UC Davis Comprehensive Cancer Center, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology, Nematology and UC Davis Comprehensive Cancer Center, Davis, CA, United States
| | - Yongyang Bao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 595] [Impact Index Per Article: 148.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
12
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
13
|
Luo Y, Liu JY. Pleiotropic Functions of Cytochrome P450 Monooxygenase-Derived Eicosanoids in Cancer. Front Pharmacol 2020; 11:580897. [PMID: 33192522 PMCID: PMC7658919 DOI: 10.3389/fphar.2020.580897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eicosanoids are a class of functionally bioactive lipid mediators derived from the metabolism of long-chain polyunsaturated fatty acids (PUFAs) mediated by multiple enzymes of three main branches, including cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs). Recently, the role of eicosanoids derived by COXs and LOXs pathways in the control of physiological and pathological processes associated with cancer has been well documented. However, the role of CYPs-mediated eicosanoids, such as epoxyeicosatrienoic acids (EETs), epoxyoctadecenoic acids (EpOMEs), epoxyeicosatetraenoic acids (EpETEs), and epoxydocosapentaenoic acids (EDPs), as well as hydroxyeicosatetraenoic acids (HETEs), in tumorigenesis and cancer progression have not been fully elucidated yet. Here we summarized the association of polymorphisms of CYP monooxygenases with cancers and the pleiotropic functions of CYP monooxygenase-mediated eicosanoids (EETs, EpOMEs, EpETE, EDPs, and 20-HETE) in the tumorigenesis and metastasis of multiple cancers, including but not limited to colon, liver, kidney, breast and prostate cancers, which hopefully provides valuable insights into cancer therapeutics. We believe that manipulation of CYPs with or without supplement of ω-3 PUFAs to regulate eicosanoid profile is a promising strategy to prevent and/or treat cancers.
Collapse
Affiliation(s)
- Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jun-Yan Liu
- Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Cytochrome 450 metabolites of arachidonic acid (20-HETE, 11,12-EET and 14,15-EET) promote pheochromocytoma cell growth and tumor associated angiogenesis. Biochimie 2020; 171-172:147-157. [PMID: 32105813 DOI: 10.1016/j.biochi.2020.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
The importance of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites, 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) as tumor growth promotors has already been described in several cancer types. The aim of this study was to evaluate the role of these compounds in the biology of pheochromocytoma/paraganglioma. These tumors originate from chromaffin cells derived from adrenal medulla (pheochromocytomas) or extra-adrenal autonomic paraganglia (paragangliomas), and they represent the most common hereditary endocrine neoplasia. According to mutations in the driver genes, these tumors are divided in two clusters: pseudo-hypoxic and kinase-signaling EETs, but not 20-HETE, exhibited a potent ability to sustain growth in a murine pheochromocytoma cell line (MPC) in vitro, EETs promoted an increase in cell proliferation and a decrease in cell apoptosis. In a mouse model of pheochromocytoma, the inhibition of CYP-mediated AA metabolism using 1-aminobenzotriazol resulted in slower tumor growth, a decreased vascularization, and a lower final volume. Also, the expression of AA-metabolizing CYP monooxygenases was detected in tumor samples from human origin, being their apparent abundance and the production of both metabolites higher in tumors from the kinase-signaling cluster. This is the first evidence of the importance of CYP- derived AA metabolites in the biology and development of pheochromocytoma/paraganglioma tumors.
Collapse
|
15
|
Rahm M, Merl-Pham J, Adamski J, Hauck SM. Time-resolved phosphoproteomic analysis elucidates hepatic 11,12-Epoxyeicosatrienoic acid signaling pathways. Prostaglandins Other Lipid Mediat 2019; 146:106387. [PMID: 31669255 DOI: 10.1016/j.prostaglandins.2019.106387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 01/20/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are potent lipid mediators with well-established effects in vascular tissues. Recent studies indicated an emerging role of these eicosanoids in metabolic diseases and the EET signaling pathway was shown to be involved in hepatic insulin sensitivity. However, compared to vascular tissues, there is only limited knowledge about the underlying signaling pathways in the liver. Therefore, we employed an LC-MS/MS-based time-resolved phosphoproteomics approach to characterize 11,12-EET-mediated signaling events in the liver cell line Hepa 1-6. 11,12-EET treatment resulted in the time-dependent regulation of phosphopeptides involved in processes as yet unknown to be affected by EETs, including RNA processing, splicing and translation regulation. Pathway analysis combined with western blot-based validation revealed enhanced AKT/mTOR/p70S6K signaling as demonstrated by increased acute phosphorylation of AKT (Ser473) and p70S6K (Thr389). In addition, 11,12-EET treatment led to differential regulation of phosphopeptides including important mediators of the DNA damage response and we observed a prolonged induction of the etoposide-induced DNA damage marker γH2AX in response to 11,12-EET. In summary, our findings extend current knowledge of 11,12-EET signaling events and emphasize the importance of the AKT/mTOR/p70S6K pathway in hepatic 11,12-EET signaling. Based on the results presented in this study, we furthermore propose a novel role of EET signaling in the regulation of the DNA damage response.
Collapse
Affiliation(s)
- Marco Rahm
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
16
|
Rand AA, Rajamani A, Kodani SD, Harris TR, Schlatt L, Barnych B, Passerini AG, Hammock BD. Epoxyeicosatrienoic acid (EET)-stimulated angiogenesis is mediated by epoxy hydroxyeicosatrienoic acids (EHETs) formed from COX-2. J Lipid Res 2019; 60:1996-2005. [PMID: 31641036 DOI: 10.1194/jlr.m094219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are formed from the metabolism of arachidonic acid by cytochrome P450s. EETs promote angiogenesis linked to tumor growth in various cancer models that is attenuated in vivo by cyclooxygenase 2 (COX-2) inhibitors. This study further defines a role for COX-2 in mediating endothelial EET metabolism promoting angiogenesis. Using human aortic endothelial cells (HAECs), we quantified 8,9-EET-induced tube formation and cell migration as indicators of angiogenic potential in the presence and absence of a COX-2 inducer [phorbol 12,13-dibutyrate (PDBu)]. The angiogenic response to 8,9-EET in the presence of PDBu was 3-fold that elicited by 8,9-EET stabilized with a soluble epoxide hydrolase inhibitor (t-TUCB). Contributing to this response was the COX-2 metabolite of 8,9-EET, the 11-hydroxy-8,9-EET (8,9,11-EHET), which exogenously enhanced angiogenic responses in HAECs at levels comparable to those elicited by vascular endothelial growth factor (VEGF). In contrast, the 15-hydroxy-8,9-EET isomer was also formed but inactive. The 8,9,11-EHET also promoted expression of the VEGF family of tyrosine kinase receptors. These results indicate that 8,9-EET-stimulated angiogenesis is enhanced by COX-2 metabolism in the endothelium through the formation of 8,9,11-EHET. This alternative pathway for the metabolism of 8,9-EET may be particularly important in regulating angiogenesis under circumstances in which COX-2 is induced, such as in cancer tumor growth and inflammation.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anita Rajamani
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Sean D Kodani
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Todd R Harris
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Lukas Schlatt
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Bodgan Barnych
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA .,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| |
Collapse
|
17
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
18
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
19
|
Capdevila JH, Falck JR. The arachidonic acid monooxygenase: from biochemical curiosity to physiological/pathophysiological significance. J Lipid Res 2018; 59:2047-2062. [PMID: 30154230 PMCID: PMC6210905 DOI: 10.1194/jlr.r087882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
The initial studies of the metabolism of arachidonic acid (AA) by the cytochrome P450 (P450) hemeproteins sought to: a) elucidate the roles for these enzymes in the metabolism of endogenous pools of the FA, b) identify the P450 isoforms involved in AA epoxidation and ω/ω-1 hydroxylation, and c) explore the biological activities of their metabolites. These early investigations provided a foundation for subsequent efforts to establish the physiological relevance of the AA monooxygenase and its contributions to the pathophysiology of, for example, cancer, diabetes, hypertension, inflammation, nociception, and vascular disease. This retrospective analyzes the history of some of these efforts, with emphasis on genetic studies that identified roles for the murine Cyp4a and Cyp2c genes in renal and vascular physiology and the pathophysiology of hypertension and cancer. Wide-ranging investigations by laboratories worldwide, including the authors, have established a better appreciation of the enzymology, genetics, and physiologic roles for what is now known as the third branch of the AA cascade. Combined with the development of analytical and pharmacological tools, including robust synthetic agonists and antagonists of the major metabolites, we stand at the threshold of novel therapeutic approaches for the treatment of renal injury, pain, hypertension, and heart disease.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
20
|
Oguro A, Inoue T, Kudoh SN, Imaoka S. 14,15-epoxyeicosatrienoic acid produced by cytochrome P450s enhances neurite outgrowth of PC12 and rat hippocampal neuronal cells. Pharmacol Res Perspect 2018; 6:e00428. [PMID: 30237892 PMCID: PMC6141511 DOI: 10.1002/prp2.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Polyunsaturated fatty acids, such as arachidonic acid, are accumulated in brain and induce neuronal differentiation. Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) by cytochrome P450s. In this study, we found that 14,15-EET and 20-HETE-enhanced NGF-induced rat pheochromocytoma PC12 cell neurite outgrowth even at the concentration of 100 nmol L-1. LC-MS analysis revealed that 14,15-EET was effectively produced from arachidonic acid by rat CYP2C11, 2C13, and 2C23, and these P450s were expressed in PC12 cells. An inhibitor of these P450s, ketoconazole, inhibited neurite outgrowth, whereas inhibition of soluble epoxide hydrolase, which hydrolyzes EETs to their corresponding diols enhanced neurite outgrowth. To determine the mechanism of neurite formation enhancement by arachidonic acid metabolites, we focused on transient receptor potential (TRP) channels expressed in PC12 cells. The TRPV4 inhibitor HC067047, but not the TRPV1 inhibitor capsazepine, inhibited the effects of 14,15-EET on neurite outgrowth of PC12. Furthermore, 14,15-EET increased the cytosolic calcium ion concentration and this increase was inhibited by HC067047. 14,15-EET also enhanced neurite outgrowth of primary cultured neuron from rat hippocampus. This study suggests that arachidonic acid metabolites produced by P450 contribute to neurite outgrowth through calcium influx.
Collapse
Affiliation(s)
- Ami Oguro
- Department of Biomedical ChemistrySchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Takumi Inoue
- Department of Human‐System InteractionSchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Suguru N. Kudoh
- Department of Human‐System InteractionSchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Susumu Imaoka
- Department of Biomedical ChemistrySchool of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| |
Collapse
|
21
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
22
|
Specific oxylipins enhance vertebrate hematopoiesis via the receptor GPR132. Proc Natl Acad Sci U S A 2018; 115:9252-9257. [PMID: 30139917 DOI: 10.1073/pnas.1806077115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based β-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure-activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.
Collapse
|
23
|
Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, McGarrah P, Potter DA. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev 2018; 37:409-423. [DOI: 10.1007/s10555-018-9749-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
[Cardiovascular consequences of chronic kidney disease, impact of modulation of epoxyeicosatrienoic acids]. Ann Cardiol Angeiol (Paris) 2018; 67:141-148. [PMID: 29793671 DOI: 10.1016/j.ancard.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/22/2022]
Abstract
Cardiovascular events are more prevalent in chronic kidney disease than in the general population, being the main cause of morbi-mortality. The physiopathology explaining this association remains complex. Thus, research for new therapies to prevent cardiovascular events in chronic kidney disease is a major issue. Epoxyeicosatrienoic acids, products of the arachidonic acid metabolism, are endothelium-derived hyperpolarizing factors with vasodilatory, anti-inflammatory, thrombolytic, pro-angiogenic and anti-apoptotic properties. A decrease in the bioavailability of epoxyeicosatrienoic acids has been observed in many cardiovascular diseases such as hypertension, myocardial infarction or diabetes. Moreover, human studies of genetic polymorphisms of soluble epoxide hydrolase, the enzyme degrading epoxyeicoatrienoic acids, have shown that allelic variants related to an increase in its activity is associated with higher risk of cardiovascular events. Modulation of epoxyeicosatrienoic acids by soluble epoxide hydrolase inhibitors in some cardiovascular diseases induces structural improvements in the heart, vessels and kidneys, including decrease in cardiomyocyte hypertrophy, reduction in cardiac and renal interstitial fibrosis, improvement in renal hemodynamics, and prevention of endothelial dysfunction. In this context, increasing the bioavailability of epoxyeicosatrienoic acids appears to be an interesting therapeutic option in the prevention of cardiovascular events related to chronic kidney disease.
Collapse
|
25
|
Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 2018; 293:10675-10691. [PMID: 29777058 DOI: 10.1074/jbc.ra117.001297] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 μm, 0.91 ± 0.08 μm, 3.9 ± 0.06 μm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anja Herrnreiter
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sandra L Pfister
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Kathryn M Gauthier
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Benjamin A Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John R Falck
- the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William B Campbell
- From the Department of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
26
|
Barnych B, Rand AA, Cajka T, Lee KSS, Hammock BD. Synthesis of cyclooxygenase metabolites of 8,9-epoxyeicosatrienoic acid (EET): 11- and 15-hydroxy 8,9-EETs. Org Biomol Chem 2018; 15:4308-4313. [PMID: 28470279 DOI: 10.1039/c7ob00789b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
COX metabolites of 8,9-EET, previously observed as potent mitogenic lipid mediators, were synthesized for the first time by using two synthetic approaches. These synthetic materials allow for structural confirmation of COX metabolites of 8,9-EET and further study of their biological roles.
Collapse
Affiliation(s)
- Bogdan Barnych
- Departments of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
27
|
Genome-wide association and pathway analysis of left ventricular function after anthracycline exposure in adults. Pharmacogenet Genomics 2018; 27:247-254. [PMID: 28542097 DOI: 10.1097/fpc.0000000000000284] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Anthracyclines are important chemotherapeutic agents, but their use is limited by cardiotoxicity. Candidate gene and genome-wide studies have identified putative risk loci for overt cardiotoxicity and heart failure, but there has been no comprehensive assessment of genomic variation influencing the intermediate phenotype of anthracycline-related changes in left ventricular (LV) function. The purpose of this study was to identify genetic factors influencing changes in LV function after anthracycline chemotherapy. METHODS We conducted a genome-wide association study (GWAS) of change in LV function after anthracycline exposure in 385 patients identified from BioVU, a resource linking DNA samples to de-identified electronic medical record data. Variants with P values less than 1×10 were independently tested for replication in a cohort of 181 anthracycline-exposed patients from a prospective clinical trial. Pathway analysis was performed to assess combined effects of multiple genetic variants. RESULTS Both cohorts were middle-aged adults of predominantly European descent. Among 11 candidate loci identified in discovery GWAS, one single nucleotide polymorphism near PR domain containing 2, with ZNF domain (PRDM2), rs7542939, had a combined P value of 6.5×10 in meta-analysis. Eighteen Kyoto Encyclopedia of Gene and Genomes pathways showed strong enrichment for variants associated with the primary outcome. Identified pathways related to DNA repair, cellular metabolism, and cardiac remodeling. CONCLUSION Using genome-wide association we identified a novel candidate susceptibility locus near PRDM2. Variation in genes belonging to pathways related to DNA repair, metabolism, and cardiac remodeling may influence changes in LV function after anthracycline exposure.
Collapse
|
28
|
Altered Protein Expression of Cardiac CYP2J and Hepatic CYP2C, CYP4A, and CYP4F in a Mouse Model of Type II Diabetes-A Link in the Onset and Development of Cardiovascular Disease? Pharmaceutics 2017; 9:pharmaceutics9040044. [PMID: 29023376 PMCID: PMC5750650 DOI: 10.3390/pharmaceutics9040044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Arachidonic acid can be metabolized by cytochrome P450 (CYP450) enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective) and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic). Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db) was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001); (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01). In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001); (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001). These alterations induced by Type II diabetes in the endogenous pathway (CYP450) of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated) and cardiotoxic (CYP4A/CYP4F-generated) metabolites of arachidonic acid.
Collapse
|
29
|
Abstract
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- Administration, Oral
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Fatty Acids, Monounsaturated/administration & dosage
- Fatty Acids, Monounsaturated/chemistry
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney Diseases/drug therapy
- Kidney Diseases/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Structure-Activity Relationship
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- William B Campbell
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; and †Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
30
|
Kastritis E, Melea P, Bagratuni T, Melakopoulos I, Gavriatopoulou M, Roussou M, Migkou M, Eleutherakis-Papaiakovou E, Terpos E, Dimopoulos MA. Genetic factors related with early onset of osteonecrosis of the jaw in patients with multiple myeloma under zoledronic acid therapy. Leuk Lymphoma 2017; 58:2304-2309. [PMID: 28604257 DOI: 10.1080/10428194.2017.1300889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Specific genetic polymorphisms (SNPs) have been correlated with the development of bisphosphonate-related osteonecrosis of the jaw (BRONJ) in small series. We screened 140 myeloma patients (36 patients with and 104 without BRONJ) for the presence of previously identified SNPs in PPARG and CYP2C8 genes. All the patients received exclusively zolendronic acid (ZA) therapy and were followed prospectively for BRONJ. SNPs in both genes were associated with a higher risk of development of early BRONJ, occurring within less than 2 years of ZA therapy (59% vs. 16%, p = .022 for PPARG and 29% vs. 7%, p = .07 for CYP2C8) and a shorter time to develop BRONJ (59% versus 12%, p = .011 for PPARG and 29% versus 0% at 2 years, p = .037 for CYP2C8), independently of indices of poor oral hygiene. Thus, although preliminary, our data indicate that the presence of SNPs in PPARG and CYP2C8 genes may be associated with increased risk of early BRONJ.
Collapse
Affiliation(s)
- Efstathios Kastritis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Pelagia Melea
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Tina Bagratuni
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Ioannis Melakopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Maria Gavriatopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Maria Roussou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Magdalini Migkou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | | | - Evangelos Terpos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Meletios A Dimopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| |
Collapse
|
31
|
Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proc Natl Acad Sci U S A 2017; 114:4370-4375. [PMID: 28396419 DOI: 10.1073/pnas.1616893114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Arachidonic acid (ARA) is metabolized by cyclooxygenase (COX) and cytochrome P450 to produce proangiogenic metabolites. Specifically, epoxyeicosatrienoic acids (EETs) produced from the P450 pathway are angiogenic, inducing cancer tumor growth. A previous study showed that inhibiting soluble epoxide hydrolase (sEH) increased EET concentration and mildly promoted tumor growth. However, inhibiting both sEH and COX led to a dramatic decrease in tumor growth, suggesting that the contribution of EETs to angiogenesis and subsequent tumor growth may be attributed to downstream metabolites formed by COX. This study explores the fate of EETs with COX, the angiogenic activity of the primary metabolites formed, and their subsequent hydrolysis by sEH and microsomal EH. Three EET regioisomers were found to be substrates for COX, based on oxygen consumption and product formation. EET substrate preference for both COX-1 and COX-2 were estimated as 8,9-EET > 5,6-EET > 11,12-EET, whereas 14,15-EET was inactive. The structure of two major products formed from 8,9-EET in this COX pathway were confirmed by chemical synthesis: ct-8,9-epoxy-11-hydroxy-eicosatrienoic acid (ct-8,9-E-11-HET) and ct-8,9-epoxy-15-hydroxy-eicosatrienoic acid (ct-8,9-E-15-HET). ct-8,9-E-11-HET and ct-8,9-E-15-HET are further metabolized by sEH, with ct-8,9-E-11-HET being hydrolyzed much more slowly. Using an s.c. Matrigel assay, we showed that ct-8,9-E-11-HET is proangiogenic, whereas ct-8,9-E-15-HET is not active. This study identifies a functional link between EETs and COX and identifies ct-8,9-E-11-HET as an angiogenic lipid, suggesting a physiological role for COX metabolites of EETs.
Collapse
|
32
|
Jain M, Gamage NDH, Alsulami M, Shankar A, Achyut BR, Angara K, Rashid MH, Iskander A, Borin TF, Wenbo Z, Ara R, Ali MM, Lebedyeva I, Chwang WB, Guo A, Bagher-Ebadian H, Arbab AS. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models. Sci Rep 2017; 7:41809. [PMID: 28139732 PMCID: PMC5282583 DOI: 10.1038/srep41809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model.
Collapse
Affiliation(s)
- Meenu Jain
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Meshal Alsulami
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Adarsh Shankar
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Bhagelu R. Achyut
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Kartik Angara
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Mohammad H. Rashid
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Asm Iskander
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Thaiz F. Borin
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Zhi Wenbo
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Meser M. Ali
- Cellular and Molecular Imaging Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, GA, USA
| | - Wilson B. Chwang
- Cellular and Molecular Imaging Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Austin Guo
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Hassan Bagher-Ebadian
- Cellular and Molecular Imaging Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Ali S. Arbab
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
33
|
Supp DM, Hahn JM, McFarland KL, Combs KA, Lee KSS, Inceoglu B, Wan D, Boyce ST, Hammock BD. Soluble Epoxide Hydrolase Inhibition and Epoxyeicosatrienoic Acid Treatment Improve Vascularization of Engineered Skin Substitutes. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1151. [PMID: 28293507 PMCID: PMC5222652 DOI: 10.1097/gox.0000000000001151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autologous engineered skin substitutes comprised of keratinocytes, fibroblasts, and biopolymers can serve as an adjunctive treatment for excised burns. However, engineered skin lacks a vascular plexus at the time of grafting, leading to slower vascularization and reduced rates of engraftment compared with autograft. Hypothetically, vascularization of engineered skin grafts can be improved by treatment with proangiogenic agents at the time of grafting. Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are inactivated by soluble epoxide hydrolase (sEH). EETs have multiple biological activities and have been shown to promote angiogenesis. Inhibitors of sEH (sEHIs) represent attractive therapeutic agents because they increase endogenous EET levels. We investigated sEHI administration, alone or combined with EET treatment, for improved vascularization of engineered skin after grafting to mice. METHODS Engineered skin substitutes, prepared using primary human fibroblasts and keratinocytes, were grafted to full-thickness surgical wounds in immunodeficient mice. Mice were treated with the sEHI 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered in drinking water throughout the study period, with or without topical EET treatment, and were compared with vehicle-treated controls. Vascularization was quantified by image analysis of CD31-positive areas in tissue sections. RESULTS At 2 weeks after grafting, significantly increased vascularization was observed in the TPPU and TPPU + EET groups compared with controls, with no evidence of toxicity. CONCLUSIONS The results suggest that sEH inhibition can increase vascularization of engineered skin grafts after transplantation, which may contribute to enhanced engraftment and improved treatment of full-thickness wounds.
Collapse
Affiliation(s)
- Dorothy M. Supp
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Jennifer M. Hahn
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Kevin L. McFarland
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Kelly A. Combs
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Kin Sing Stephen Lee
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Bora Inceoglu
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Debin Wan
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Steven T. Boyce
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| | - Bruce D. Hammock
- From the Research Department, Shriners Hospitals for Children – Cincinnati, Cincinnati, Ohio; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California at Davis, Davis, Calif
| |
Collapse
|
34
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
35
|
Imig JD. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:105-41. [PMID: 27451096 DOI: 10.1016/bs.apha.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.
Collapse
Affiliation(s)
- J D Imig
- Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
36
|
Lazaar AL, Yang L, Boardley RL, Goyal NS, Robertson J, Baldwin SJ, Newby DE, Wilkinson IB, Tal‐Singer R, Mayer RJ, Cheriyan J. Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor. Br J Clin Pharmacol 2016; 81:971-9. [PMID: 26620151 PMCID: PMC4834590 DOI: 10.1111/bcp.12855] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Endothelial-derived epoxyeicosatrienoic acids may regulate vascular tone and are metabolized by soluble epoxide hydrolase enzymes (sEH). GSK2256294 is a potent and selective sEH inhibitor that was tested in two phase I studies. METHODS Single escalating doses of GSK2256294 2-20 mg or placebo were administered in a randomized crossover design to healthy male subjects or obese smokers. Once daily doses of 6 or 18 mg or placebo were administered for 14 days to obese smokers. Data were collected on safety, pharmacokinetics, sEH enzyme inhibition and blood biomarkers. Single doses of GSK2256294 10 mg were also administered to healthy younger males or healthy elderly males and females with and without food. Data on safety, pharmacokinetics and biliary metabolites were collected. RESULTS GSK2256294 was well-tolerated with no serious adverse events (AEs) attributable to the drug. The most frequent AEs were headache and contact dermatitis. Plasma concentrations of GSK2256294 increased with single doses, with a half-life averaging 25-43 h. There was no significant effect of age, food or gender on pharmacokinetic parameters. Inhibition of sEH enzyme activity was dose-dependent, from an average of 41.9% on 2 mg (95% confidence interval [CI] -51.8, 77.7) to 99.8% on 20 mg (95% CI 99.3, 100.0) and sustained for up to 24 h. There were no significant changes in serum VEGF or plasma fibrinogen. CONCLUSIONS GSK2256294 was well-tolerated and demonstrated sustained inhibition of sEH enzyme activity. These data support further investigation in patients with endothelial dysfunction or abnormal tissue repair, such as diabetes, wound healing or COPD.
Collapse
Affiliation(s)
| | - Lucy Yang
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
| | | | | | | | | | - David E. Newby
- University Centre for Cardiovascular Science, University of EdinburghEdinburghUK
| | - Ian B. Wilkinson
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
| | | | | | - Joseph Cheriyan
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
- GSK R&DStevenageCambridge and Ware
- Cambridge University Hospitals NHS Foundation TrustCambridge and
| |
Collapse
|
37
|
Apaya MK, Chang MT, Shyur LF. Phytomedicine polypharmacology: Cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol Ther 2016; 162:58-68. [PMID: 26969215 DOI: 10.1016/j.pharmthera.2016.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrative approaches in cancer therapy have recently been extended beyond the induction of cytotoxicity to controlling the tumor microenvironment and modulating inflammatory cascades and pathways such as lipid mediator biosynthesis and their dynamics. Profiling of important lipid messengers, such as oxylipins, produced as part of the physiological response to pharmacological stimuli, provides a unique opportunity to explore drug pharmacology and the possibilities for molecular management of cancer physiopathology. Whereas single targeted chemotherapeutic drugs commonly lack efficacy and invoke drug resistance and/or adverse effects in cancer patients, traditional herbal medicines are seen as bright prospects for treating complex diseases, such as cancers, in a systematic and holistic manner. Understanding the molecular mechanisms of traditional medicine and its bioactive chemical constituents may aid the modernization of herbal remedies and the discovery of novel phytoagents for cancer management. In this review, systems-based polypharmacology and studies to develop multi-target drugs or leads from phytomedicines and their derived natural products that may overcome the problems of current anti-cancer drugs, are proposed and summarized.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
38
|
Liu Y, Wan Y, Fang Y, Yao E, Xu S, Ning Q, Zhang G, Wang W, Huang X, Xie M. Epoxyeicosanoid Signaling Provides Multi-target Protective Effects on Neurovascular Unit in Rats After Focal Ischemia. J Mol Neurosci 2015; 58:254-65. [DOI: 10.1007/s12031-015-0670-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023]
|
39
|
Liu JY, Tsai HJ, Morisseau C, Lango J, Hwang SH, Watanabe T, Kim IH, Hammock BD. In vitro and in vivo metabolism of N-adamantyl substituted urea-based soluble epoxide hydrolase inhibitors. Biochem Pharmacol 2015; 98:718-31. [PMID: 26494425 DOI: 10.1016/j.bcp.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
N,N'-disubstituted urea-based soluble epoxide hydrolase (sEH) inhibitors are promising therapeutics for hypertension, inflammation, and pain in multiple animal models. The drug absorption and pharmacological efficacy of these inhibitors have been reported extensively. However, the drug metabolism of these inhibitors is not well described. Here we reported the metabolic profile and associated biochemical studies of an N-adamantyl urea-based sEH inhibitor 1-adamantan-1-yl-3-(5-(2-(2-ethoxyethoxy)ethoxy)pentyl)urea (AEPU) in vitro and in vivo. The metabolites of AEPU were identified by interpretation of liquid chromatography-mass spectrometry (LC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and/or NMR. In vitro, AEPU had three major positions for phase I metabolism including oxidations on the adamantyl moiety, urea nitrogen atoms, and cleavage of the polyethylene glycol chain. In a rodent model, the metabolites from the hydroxylation on the adamantyl group and nitrogen atom were existed in blood while the metabolites from cleavage of polyethylene glycol chain were not found in urine. The major metabolite found in rodent urine was 3-(3-adamantyl-ureido)-propanoic acid, a presumably from cleavage and oxidation of the polyethylene glycol moiety. All the metabolites found were active but less potent than AEPU at inhibiting human sEH. Furthermore, cytochrome P450 (CYP) 3A4 was found to be a major enzyme mediating AEPU metabolism. In conclusion, the metabolism of AEPU resulted from oxidation by CYP could be shared with other N-adamantyl-urea-based compounds. These findings suggest possible therapeutic roles for AEPU and new strategies for drug design in this series of possible drugs.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 210072, PR China; Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Hsing-Ju Tsai
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jozsef Lango
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Takaho Watanabe
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - In-Hae Kim
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
40
|
Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AOS. Early Changes in Cytochrome P450s and Their Associated Arachidonic Acid Metabolites Play a Crucial Role in the Initiation of Cardiac Hypertrophy Induced by Isoproterenol. Drug Metab Dispos 2015; 43:1254-66. [PMID: 26033621 DOI: 10.1124/dmd.115.063776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 enzymes (P450s), along with their cardioprotective metabolites the epoxyeicosatrienoic acids (EETs) and cardiotoxic metabolite 20-hydroxyeicosatetraeonic acid (20-HETE), were found to be altered in cardiac hypertrophy; however, it is unclear whether these changes are causal or epiphenomenon. Therefore, we hypothesized that P450s and their metabolites play a crucial role in the initiation of cardiac hypertrophy. To test our hypothesis, rats and RL-14 cells were treated with the hypertrophic agonist isoproterenol for different time periods. Thereafter, in vivo heart function and wall thickness were assessed using echocardiography. Moreover, the role of P450 epoxygenases, ω-hydroxylases, and soluble epoxide hydrolase (sEH) were determined at mRNA, protein, and activity levels using real-time polymerase chain reaction, Western blot, and liquid chromatography-mass spectrometry, respectively. Our results show that in vivo and in vitro hypertrophy was initiated after 72 hours and 6 hours of isoproterenol treatment, respectively. Studies performed at the prehypertrophy phase showed a significant decrease in P450 epoxygenases along with a significant induction of sEH activity. Consequently, lower EET and higher dihydroxyeicosatrienoic acid levels were observed during this phase. However, significant increases in P450 ω-hydroxylase along with its associated metabolite, 20-HETE, were detected only in vivo. Interestingly, increasing EET levels by P450 epoxygenase induction, sEH inhibition, or exogenous administration of EET prevented the initiation of cardiac hypertrophy through a nuclear factor-κB-mediated mechanism. Taken together, these findings reveal a crucial role of P450 epoxygenases and EETs in the development of cardiac hypertrophy, which could uncover novel targets for prevention of heart failure at early stages.
Collapse
Affiliation(s)
- Hassan N Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Zaid H Maayah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Yang L, Mäki-Petäjä K, Cheriyan J, McEniery C, Wilkinson IB. The role of epoxyeicosatrienoic acids in the cardiovascular system. Br J Clin Pharmacol 2015; 80:28-44. [PMID: 25655310 PMCID: PMC4500322 DOI: 10.1111/bcp.12603] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/29/2022] Open
Abstract
There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms. These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors, and considers the pharmacological potential of targeting this pathway.
Collapse
Affiliation(s)
- L Yang
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - K Mäki-Petäjä
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - J Cheriyan
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - C McEniery
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - I B Wilkinson
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
42
|
Chen X, Chen X, Huang X, Qin C, Fang Y, Liu Y, Zhang G, Pan D, Wang W, Xie M. Soluble epoxide hydrolase inhibition provides multi-target therapeutic effects in rats after spinal cord injury. Mol Neurobiol 2015; 53:1565-1578. [DOI: 10.1007/s12035-015-9118-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022]
|
43
|
Tacconelli S, Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front Pharmacol 2014; 5:239. [PMID: 25426071 PMCID: PMC4226225 DOI: 10.3389/fphar.2014.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) generated from arachidonic acid through cytochrome P450 (CYP) epoxygenases have many biological functions. Importantly, CYP epoxygenase-derived EETs are involved in the maintenance of cardiovascular homeostasis. In fact, in addition to their potent vasodilating effect, EETs have potent anti-inflammatory properties, inhibit platelet aggregation, promote fibrinolysis, and reduce vascular smooth muscle cell proliferation. All EETs are metabolized to the less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). Numerous evidences support the role of altered EET biosynthesis in the pathophysiology of hypertension and suggest the utility of antihypertensive strategies that increase CYP-derived EET or EET analogs. Indeed, a number of studies have demonstrated that EET analogs and sEH inhibitors induce vasodilation, lower blood pressure and decrease inflammation. Some of these agents are currently under evaluation in clinical trials for treatment of hypertension and diabetes. However, the role of CYP epoxygenases and of the metabolites generated in cancer progression may limit the use of these drugs in humans.
Collapse
Affiliation(s)
- Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" University Chieti, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Science, Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" University Chieti, Italy
| |
Collapse
|
44
|
Hye Khan MA, Pavlov TS, Christain SV, Neckář J, Staruschenko A, Gauthier KM, Capdevila JH, Falck JR, Campbell WB, Imig JD. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin Sci (Lond) 2014; 127:463-74. [PMID: 24707975 PMCID: PMC4167712 DOI: 10.1042/cs20130479] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) contribute to haemodynamics, electrolyte homoeostasis and blood pressure regulation, leading to the concept that EETs can be therapeutically targeted for hypertension. In the present study, multiple structural EET analogues were synthesized based on the EET pharmacophore and vasodilator structure-activity studies. Four EET analogues with 91-119% vasodilatory activity in the isolated bovine coronary artery (EC50: 0.18-1.6 μM) were identified and studied for blood-pressure-lowering in hypertension. Two EET analogues in which the COOH group at carbon 1 of the EET pharmacophore was replaced with either an aspartic acid (EET-A) or a heterocyclic surrogate (EET-X) were administered for 14 days [10 mg/kg per day intraperitoneally (i.p.)]. Both EET-A and EET-X lowered blood pressure in spontaneously hypertensive rats (SHRs) and in angiotensin II (AngII) hypertension. On day 14, the mean arterial pressures in EET analogue-treated AngII-hypertensive and SHRs were 30-50 mmHg (EET-A) and 15-20 mmHg (EET-X) lower than those in vehicle-treated controls. These EET analogues (10 mg/kg per day) were further tested in AngII hypertension by administering orally in drinking water for 14 days and EET-A lowered blood pressure. Additional experiments demonstrated that EET-A inhibits epithelial sodium channel (ENaC) activity in cultured cortical collecting duct cells and reduced renal expression of ENaC subunits in AngII hypertension. In conclusion, we have characterized EET-A as an orally active antihypertensive EET analogue that protects vascular endothelial function and has ENaC inhibitory activity in AngII hypertension.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Tengis S Pavlov
- †Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Sarah V Christain
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | | | - Kathryn M Gauthier
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Jorge H Capdevila
- §Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | - John R Falck
- ∥Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, U.S.A
| | | | | |
Collapse
|
45
|
Martini RP, Ward J, Siler DA, Eastman JM, Nelson JW, Borkar RN, Alkayed NJ, Dogan A, Cetas JS. Genetic variation in soluble epoxide hydrolase: association with outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 2014; 121:1359-66. [PMID: 25216066 DOI: 10.3171/2014.7.jns131990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECT Patients with aneurysmal subarachnoid hemorrhage (SAH) are at high risk for delayed cerebral ischemia (DCI) and stroke. Epoxyeicosatrienoic acids (EETs) play an important role in cerebral blood flow regulation and neuroprotection after brain injury. Polymorphisms in the gene for the enzyme soluble epoxide hydrolase (sEH), which inactivates EETs, are associated with ischemic stroke risk and neuronal survival after ischemia. This prospective observational study of patients with SAH compares vital and neurologic outcomes based on functional polymorphisms of sEH. METHODS Allelic discrimination based on quantitative real-time polymerase chain reaction was used to differentiate wild-type sEH from K55R heterozygotes (predictive of increased sEH activity and reduced EETs) and R287Q heterozygotes (predictive of decreased sEH activity and increased EETs). The primary outcome was new stroke after SAH. Secondary outcomes were death, Glasgow Outcome Scale score, and neurological deterioration attributable to DCI. RESULTS Multivariable logistic regression models adjusted for age at admission and Glasgow Coma Scale scores revealed an increase in the odds of new stroke (OR 5.48 [95% CI 1.51-19.91]) and death (OR 7.52 [95% CI 1.27-44.46]) in the K55R group, but no change in the odds of new stroke (OR 0.56 [95% CI 0.16-1.96]) or death (OR 3.09 [95% CI 0.51-18.52]) in patients with R287Q genotype, compared with wild-type sEH. The R287Q genotype was associated with reduced odds of having a Glasgow Outcome Scale score of ≤ 3 (OR 0.23 [95% CI 0.06-0.82]). There were no significant differences in the odds of neurological deterioration due to DCI. CONCLUSIONS Genetic polymorphisms of sEH are associated with neurological and vital outcomes after aneurysmal SAH.
Collapse
Affiliation(s)
- Ross P Martini
- Departments of Anesthesiology & Perioperative Medicine and
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:356-65. [PMID: 25093613 DOI: 10.1016/j.bbalip.2014.07.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Arthur A Spector
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Davis CM, Fairbanks SL, Alkayed NJ. Mechanism of the sex difference in endothelial dysfunction after stroke. Transl Stroke Res 2014; 4:381-9. [PMID: 23853671 DOI: 10.1007/s12975-012-0227-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke, the number four cause of death in the United States, is a greatly debilitating event resulting from insufficient blood supply to the brain (cerebral ischemia). Endothelial dysfunction, primarily characterized by dampened endothelial- dependent vasodilation, is a major contributor to the development and outcome of stroke. This review discusses the role of soluble epoxide hydrolase (sEH), an enzyme responsible for the degradation of vasoprotective eicosatrienoic acids (EETs), in the context of the cerebral vasculature and its contribution to the sexual dimorphic nature of stroke.
Collapse
Affiliation(s)
- Catherine M Davis
- Cerebrovascular Research Division, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
48
|
Capozzi ME, McCollum GW, Penn JS. The role of cytochrome P450 epoxygenases in retinal angiogenesis. Invest Ophthalmol Vis Sci 2014; 55:4253-60. [PMID: 24917142 DOI: 10.1167/iovs.14-14216] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the role(s) of cytochrome P450 epoxygenases (CYPs) and their products, the epoxyeicosatrienoic acids (EETs), in hypoxia-induced VEGF production and pathologic retinal angiogenesis. METHODS Human retinal astrocytes, Müller cells, and retinal microvascular endothelial cells (HRMEC) were exposed to hypoxia, and relative CYP2C expression was measured by RT-PCR. Astrocyte and Müller cell VEGF production was measured by ELISA after exposure to hypoxia and treatment with the general CYP inhibitor, SKF-525a. Human retinal microvascular endothelial cells were treated with the CYP product, 11,12-epoxyeicosatrienoic acid [EET], or SKF-525a in the presence or absence of VEGF. Proliferation of HRMEC and tube formation were assayed. Oxygen-induced retinopathy (OIR) was induced in newborn rats. Retinal CYP2C11 and CYP2C23 expression were measured by RT-PCR. The OIR rats received SKF-525a by intravitreal injection and preretinal neovascularization (NV) was quantified. Retinal VEGF protein levels were measured by ELISA. RESULTS Human retinal astrocytes were the only cells to exhibit significant induction of CYP2C8 and CYP2C9 mRNA expression by hypoxia. Astrocytes, but not Müller cells, exhibited reduced hypoxia-induced VEGF production when treated with SKF-525a. 11,12-EET induced HRMEC proliferation and tube formation, and SKF-525a inhibited VEGF-induced proliferation. Oxygen-induced retinopathy induced expression of CYP2C23, but had no effect on CYP2C11. SKF-525a inhibited retinal NV and reduced retinal VEGF levels in OIR rats. CONCLUSIONS The CYP-derived 11,12-EET may exhibit a proangiogenic biological function in the retina following stimulation by hypoxia in astrocytes. Inhibition of CYP may provide a rational therapy against retinal NV, because it can reduce VEGF production and VEGF-induced angiogenic responses in endothelial cells.
Collapse
Affiliation(s)
- Megan E Capozzi
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Gary W McCollum
- Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - John S Penn
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
49
|
Shrestha A, Krishnamurthy PT, Thomas P, Hammock BD, Hwang SH. Soluble epoxide hydrolase inhibitor, t-TUCB, protects against myocardial ischaemic injury in rats. ACTA ACUST UNITED AC 2014; 66:1251-8. [PMID: 24697323 DOI: 10.1111/jphp.12251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/02/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine the protective role of a soluble epoxide hydrolase(sEH) inhibitor, trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), in isoproterenol (ISO)-induced myocardial ischaemic injury in vivo. METHODS Cardioprotective activity of t-TUCB was studied against ISO-induced myocardial ischaemic injury in male Wistar rats. Cardioprotection was assessed by measuring elecrocardiographic (EKG), serum lactate dehydrogenase (LDH) and creatine kinase (CK-MB) levels, cardiac calcium and antioxidant levels, and also by measuring infarct size in the cardiac tissue. KEY FINDINGS Pretreatment with t-TUCB at 3, 10 and 30 mg/kg orally for a period of 14 days significantly prevented the changes in EKG parameters (QTc interval prolongation, ST height depression, pathological Q waves formation and T-wave inversion), serum cardiac biomarkers (CK-MB and LDH), relative heart weight, myocardial calcium levels, infarct size and the oxidative status in the cardiac tissue (lipid peroxidation, catalase and superoxide dismutase levels) when compared with the untreated control animals (P < 0.05). CONCLUSION The sEH inhibitor t-TUCB significantly prevents ISO-induced myocardial ischaemic injury in rats. This study provides a preliminary confirmation of the efficacy of t-TUCB by oral administration in rats.
Collapse
Affiliation(s)
- Ayush Shrestha
- Department of Pharmacology, JSS College of Pharmacy (A constituent college of JSS University, Mysore), Ootacamund, Tamilnadu, India
| | | | | | | | | |
Collapse
|
50
|
Fenofibrate Modulates Cytochrome P450 and Arachidonic Acid Metabolism in the Heart and Protects Against Isoproterenol-induced Cardiac Hypertrophy. J Cardiovasc Pharmacol 2014; 63:167-77. [DOI: 10.1097/fjc.0000000000000036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|