1
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. PLoS Negl Trop Dis 2023; 17:e0011731. [PMID: 37917723 PMCID: PMC10656021 DOI: 10.1371/journal.pntd.0011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/17/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigotes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypanosomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
3
|
Alves AA, Bastin P. The hows and whys of amastigote flagellum motility in Trypanosoma cruzi. mBio 2023; 14:e0053123. [PMID: 37278521 PMCID: PMC10470501 DOI: 10.1128/mbio.00531-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
The protist Trypanosoma cruzi exhibits several extracellular stages characterized by the presence of a long and motile flagellum and one intracellular life cycle stage termed amastigote, which possesses a tiny flagellum barely exiting the flagellar pocket. This stage was so far described as replicative but immotile cells. Unexpectedly, the recent work of M. M. Won, T. Krüger, M. Engstler, and B. A. Burleigh (mBio 14:e03556-22, 2023, https://doi.org/10.1128/mbio.03556-22) revealed that this short flagellum actually displays beating activity. This commentary explores how such a short flagellum could be constructed and why it could affect the parasite's survival inside the mammalian host.
Collapse
Affiliation(s)
- Aline Araujo Alves
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| |
Collapse
|
4
|
Peacock L, Kay C, Collett C, Bailey M, Gibson W. Development of the livestock pathogen Trypanosoma (Nannomonas) simiae in the tsetse fly with description of putative sexual stages from the proboscis. Parasit Vectors 2023; 16:231. [PMID: 37434196 DOI: 10.1186/s13071-023-05847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Tsetse-transmitted African animal trypanosomiasis is recognised as an important disease of ruminant livestock in sub-Saharan Africa, but also affects domestic pigs, with Trypanosoma simiae notable as a virulent suid pathogen that can rapidly cause death. Trypanosoma simiae is widespread in tsetse-infested regions, but its biology has been little studied compared to T. brucei and T. congolense. METHODS Trypanosoma simiae procyclics were cultured in vitro and transfected using protocols developed for T. brucei. Genetically modified lines, as well as wild-type trypanosomes, were transmitted through tsetse flies, Glossina pallidipes, to study T. simiae development in the tsetse midgut, proventriculus and proboscis. The development of proventricular trypanosomes was also studied in vitro. Image and mensural data were collected and analysed. RESULTS A PFR1::YFP line successfully completed development in tsetse, but a YFP::HOP1 line failed to progress beyond midgut infection. Analysis of image and mensural data confirmed that the vector developmental cycles of T. simiae and T. congolense are closely similar, but we also found putative sexual stages in T. simiae, as judged by morphological similarity to these stages in T. brucei. Putative meiotic dividers were abundant among T. simiae trypanosomes in the proboscis, characterised by a large posterior nucleus and two anterior kinetoplasts. Putative gametes and other meiotic intermediates were also identified by characteristic morphology. In vitro development of proventricular forms of T. simiae followed the pattern previously observed for T. congolense: long proventricular trypanosomes rapidly attached to the substrate and shortened markedly before commencing cell division. CONCLUSIONS To date, T. brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, which occurs in the fly salivary glands. By analogy, sexual stages of T. simiae or T. congolense are predicted to occur in the proboscis, where the corresponding portion of the developmental cycle takes place. While no such stages have been observed in T. congolense, for T. simiae putative sexual stages were abundant in the tsetse proboscis. Although our initial attempt to demonstrate expression of a YFP-tagged, meiosis-specific protein was unsuccessful, the future application of transgenic approaches will facilitate the identification of meiotic stages and hybrids in T. simiae.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Chris Kay
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Clare Collett
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Pathogen Immunology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
5
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542100. [PMID: 37293088 PMCID: PMC10245916 DOI: 10.1101/2023.05.24.542100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas' disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigoes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypansomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
6
|
Perdomo-Gómez CD, Ruiz-Uribe NE, González JM, Forero-Shelton M. Extensible membrane nanotubules mediate attachment of Trypanosoma cruzi epimastigotes under flow. PLoS One 2023; 18:e0283182. [PMID: 36947570 PMCID: PMC10032539 DOI: 10.1371/journal.pone.0283182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, an important cause of infectious chronic myocardiopathy in Latin America. The life cycle of the parasite involves two main hosts: a triatomine (arthropod hematophagous vector) and a mammal. Epimastigotes are flagellated forms inside the triatomine gut; they mature in its intestine into metacyclic trypomastigotes, the infective form for humans. Parasites attach despite the shear stress generated by fluid flow in the intestines of the host, but little is known about the mechanisms that stabilize attachment in these conditions. Here, we describe the effect of varying levels of shear stress on attached T. cruzi epimastigotes using a parallel plate flow chamber. When flow is applied, parasites are partially dragged but maintain a connection to the surface via ~40 nm wide filaments (nanotubules) and the activity of flagella is reduced. When flow stops, parasites return near their original position and flagellar motion resumes. Nanotubule elongation increases with increasing shear stress and is consistent with a model of membrane tether extension under force. Fluorescent probes used to confirm membrane composition also show micron-wide anchoring pads at the distal end of the nanotubules. Multiple tethering accounts for more resistance to large shear stresses and for reduced flagellar movement when flow is stopped. The formation of membrane nanotubules is a possible mechanism to enhance adherence to host cells under shear stress, favoring the continuity of the parasite´s life cycle.
Collapse
Affiliation(s)
- Cristhian David Perdomo-Gómez
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de los Andes, Bogotá, Colombia
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Nancy E Ruiz-Uribe
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - John Mario González
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|
7
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
8
|
Tihon E, Rubio-Peña K, Dujeancourt-Henry A, Crouzols A, Rotureau B, Glover L. VEX1 Influences mVSG Expression During the Transition to Mammalian Infectivity in Trypanosoma brucei. Front Cell Dev Biol 2022; 10:851475. [PMID: 35450294 PMCID: PMC9017762 DOI: 10.3389/fcell.2022.851475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The Trypanosoma (T) brucei life cycle alternates between the tsetse fly vector and the mammalian host. In the insect, T. brucei undergoes several developmental stages until it reaches the salivary gland and differentiates into the metacyclic form, which is capable of infecting the next mammalian host. Mammalian infectivity is dependent on expression of the metacyclic variant surface glycoprotein genes as the cells develop into mature metacyclics. The VEX complex is essential for monoallelic variant surface glycoprotein expression in T. brucei bloodstream form, however, initiation of expression of the surface proteins genes during metacyclic differentiation is poorly understood. To better understand the transition to mature metacyclics and the control of metacyclic variant surface glycoprotein expression we examined the role of VEX1 in this process. We show that modulating VEX1 expression leads to a dysregulation of variant surface glycoprotein expression during metacyclogenesis, and that following both in vivo and in vitro metacyclic differentiation VEX1 relocalises from multiple nuclear foci in procyclic cells to one to two distinct nuclear foci in metacyclic cells - a pattern like the one seen in mammalian infective bloodstream forms. Our data suggest a role for VEX1 in the metacyclic differentiation process and their capacity to become infectious to the mammalian host.
Collapse
Affiliation(s)
- Eliane Tihon
- Trypanosome Molecular Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Karinna Rubio-Peña
- Trypanosome Molecular Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 and, Institut Pasteur, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 and, Institut Pasteur, Paris, France
- Parasitology Lab, Institut Pasteur of Guinea, Conakry, Guinea
| | - Lucy Glover
- Trypanosome Molecular Biology, Institut Pasteur, Université Paris Cité, Paris, France
- *Correspondence: Lucy Glover,
| |
Collapse
|
9
|
Howick VM, Peacock L, Kay C, Collett C, Gibson W, Lawniczak MKN. Single-cell transcriptomics reveals expression profiles of Trypanosoma brucei sexual stages. PLoS Pathog 2022; 18:e1010346. [PMID: 35255094 PMCID: PMC8939820 DOI: 10.1371/journal.ppat.1010346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/22/2022] [Accepted: 02/06/2022] [Indexed: 01/26/2023] Open
Abstract
Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei, the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but analysis of the molecular signatures that define these sexual forms is complicated because they mingle with more numerous, mitotically-dividing developmental stages. We used single-cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut, proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale changes in gene expression over a developmental progression from putative sexual forms through metacyclics expressing variant surface glycoprotein genes. The cluster of cells potentially containing sexual forms was characterized by high level transcription of the gamete fusion protein HAP2, together with an array of surface proteins and several genes of unknown function. We linked these expression patterns to distinct morphological forms using immunofluorescence assays and reporter gene expression to demonstrate that the kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by meiotic intermediates and gametes. Further experiments are required to establish whether this protein, currently of unknown function, plays a role in gamete formation and/or fusion.
Collapse
Affiliation(s)
- Virginia M. Howick
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Chris Kay
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Clare Collett
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Mara K. N. Lawniczak
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
10
|
Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. mBio 2022; 13:e0235721. [PMID: 35012336 PMCID: PMC8749461 DOI: 10.1128/mbio.02357-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.
Collapse
|
11
|
Muniz RS, Campbell PC, Sladewski TE, Renner LD, de Graffenried CL. Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. PLoS Pathog 2022; 18:e1010218. [PMID: 35041719 PMCID: PMC8797261 DOI: 10.1371/journal.ppat.1010218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, is highly motile and must be able to move in all three dimensions for reliable cell division. These characteristics make long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of important cellular events. To address this issue, we devised an imaging approach that confines cells in small volumes within cast agarose microwells that can be imaged continuously for up to 24 h. Individual T. brucei cells were imaged through multiple rounds of cell division with high spatial and temporal resolution. We developed a strategy that employs in-well “sentinel” cells to monitor potential imaging toxicity during loss-of-function experiments such as small-molecule inhibition and RNAi. Using our approach, we show that the asymmetric daughter cells produced during T. brucei division subsequently divide at different rates, with the old-flagellum daughter cell dividing first. The flagellar detachment phenotype that appears during inhibition of the Polo-like kinase homolog TbPLK occurs in a stepwise fashion, with the new flagellum initially linked by its tip to the old, attached flagellum. We probe the feasibility of a previously proposed “back-up” cytokinetic mechanism and show that cells that initiate this process do not appear to complete cell division. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.
Collapse
Affiliation(s)
- Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
12
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Steketee PC, Giordani F, Vincent IM, Crouch K, Achcar F, Dickens NJ, Morrison LJ, MacLeod A, Barrett MP. Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole. PLoS Negl Trop Dis 2021; 15:e0009939. [PMID: 34752454 PMCID: PMC8648117 DOI: 10.1371/journal.pntd.0009939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/06/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Subspecies of the protozoan parasite Trypanosoma brucei are the causative agents of Human African Trypanosomiasis (HAT), a debilitating neglected tropical disease prevalent across sub-Saharan Africa. HAT case numbers have steadily decreased since the start of the century, and sustainable elimination of one form of the disease is in sight. However, key to this is the development of novel drugs to combat the disease. Acoziborole is a recently developed benzoxaborole, currently in advanced clinical trials, for treatment of stage 1 and stage 2 HAT. Importantly, acoziborole is orally bioavailable, and curative with one dose. Recent studies have made significant progress in determining the molecular mode of action of acoziborole. However, less is known about the potential mechanisms leading to acoziborole resistance in trypanosomes. In this study, an in vitro-derived acoziborole-resistant cell line was generated and characterised. The AcoR line exhibited significant cross-resistance with the methyltransferase inhibitor sinefungin as well as hypersensitisation to known trypanocides. Interestingly, transcriptomics analysis of AcoR cells indicated the parasites had obtained a procyclic- or stumpy-like transcriptome profile, with upregulation of procyclin surface proteins as well as differential regulation of key metabolic genes known to be expressed in a life cycle-specific manner, even in the absence of major morphological changes. However, no changes were observed in transcripts encoding CPSF3, the recently identified protein target of acoziborole. The results suggest that generation of resistance to this novel compound in vitro can be accompanied by transcriptomic switches resembling a procyclic- or stumpy-type phenotype.
Collapse
Affiliation(s)
- Pieter C. Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Nicholas J. Dickens
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, United Kingdom
| |
Collapse
|
14
|
Hutchinson S, Foulon S, Crouzols A, Menafra R, Rotureau B, Griffiths AD, Bastin P. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands. PLoS Pathog 2021; 17:e1009904. [PMID: 34543350 PMCID: PMC8509897 DOI: 10.1371/journal.ppat.1009904] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands. Therefore, we sought to further our understanding of this phenomenon by performing single-cell RNA-sequencing (scRNA-seq) on these trypanosome populations. We were able to capture the developmental program of trypanosomes in the salivary glands, identifying populations of epimastigote, gamete, pre-metacyclic and metacyclic cells. Our results show that parasite metabolism is dramatically remodeled during development in the salivary glands, with a shift in transcript abundance from tricarboxylic acid metabolism to glycolytic metabolism. Analysis of VSG gene expression in pre-metacyclic and metacyclic cells revealed a dynamic VSG gene activation program. Strikingly, we found that pre-metacyclic cells contain transcripts from multiple VSG genes, which resolves to singular VSG gene expression in mature metacyclic cells. Single molecule RNA fluorescence in situ hybridisation (smRNA-FISH) of VSG gene expression following in vitro metacyclogenesis confirmed this finding. Our data demonstrate that multiple VSG genes are transcribed before a single gene is chosen. We propose a transcriptional race model governs the initiation of monoallelic expression. African trypanosomes are parasitic protists which cause endemic disease in sub-Saharan Africa. To evade mammalian immune responses the parasite has developed a system of antigenic variation, where the surface of the cell is covered in a tightly packed coat of variant surface glycoproteins (VSGs). Each cell expresses only one variant surface glycoprotein at a time, and this is periodically switched to evade new antibodies. The process of singular gene expression is termed monoallelic expression and this has two components, establishment and maintenance, i.e. how a single gene is selected for expression and how its singular expression is maintained throughout successive generations. The establishment of monoallelic VSG gene expression occurs in the salivary gland of the tsetse fly vector, although this process is not well understood. We used single cell gene expression profiling applied to thousands of single cells in the salivary gland of the fly. We show that in order to select a single gene, trypanosomes initially transcribe multiple VSGs before a single gene is selected for high-level expression. We propose a model where this process is driven by a race to accumulate transcription factors at a single VSG gene.
Collapse
Affiliation(s)
- Sebastian Hutchinson
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
- * E-mail:
| | - Sophie Foulon
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Aline Crouzols
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| | - Roberta Menafra
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Naguleswaran A, Fernandes P, Bevkal S, Rehmann R, Nicholson P, Roditi I. Developmental changes and metabolic reprogramming during establishment of infection and progression of Trypanosoma brucei brucei through its insect host. PLoS Negl Trop Dis 2021; 15:e0009504. [PMID: 34543277 PMCID: PMC8483307 DOI: 10.1371/journal.pntd.0009504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma brucei ssp., unicellular parasites causing human and animal trypanosomiasis, are transmitted between mammals by tsetse flies. Periodic changes in variant surface glycoproteins (VSG), which form the parasite coat in the mammal, allow them to evade the host immune response. Different isolates of T. brucei show heterogeneity in their repertoires of VSG genes and have single nucleotide polymorphisms and indels that can impact on genome editing. T. brucei brucei EATRO1125 (AnTaR1 serodeme) is an isolate that is used increasingly often because it is pleomorphic in mammals and fly transmissible, two characteristics that have been lost by the most commonly used laboratory stocks. We present a genome assembly of EATRO1125, including contigs for the intermediate chromosomes and minichromosomes that serve as repositories of VSG genes. In addition, de novo transcriptome assemblies were performed using Illumina sequences from tsetse-derived trypanosomes. Reads of 150 bases enabled closely related members of multigene families to be discriminated. This revealed that the transcriptome of midgut-derived parasites is dynamic, starting with the expression of high affinity hexose transporters and glycolytic enzymes and then switching to proline uptake and catabolism. These changes resemble the transition from early to late procyclic forms in culture. Further metabolic reprogramming, including upregulation of tricarboxylic acid cycle enzymes, occurs in the proventriculus. Many transcripts upregulated in the salivary glands encode surface proteins, among them 7 metacyclic VSGs, multiple BARPs and GCS1/HAP2, a marker for gametes. A novel family of transmembrane proteins, containing polythreonine stretches that are predicted to be O-glycosylation sites, was also identified. Finally, RNA-Seq data were used to create an optimised annotation file with 5’ and 3’ untranslated regions accurately mapped for 9302 genes. We anticipate that this will be of use in identifying transcripts obtained by single cell sequencing technologies. Trypanosoma brucei ssp. are single-celled parasites that cause two tropical diseases: sleeping sickness in humans and nagana in domestic animals. Parasites survive in the host bloodstream because they periodically change their surface coats and also because they can switch from slender dividing forms to stumpy non-dividing forms. The latter can be transmitted to their second host, the tsetse fly. Although closely related, different geographical isolates differ in their repertoire of surface coats and have small, but important differences in their DNA sequences. In addition, laboratory strains that are transferred between mammals by needle passage lose the ability to produce stumpy forms and to infect flies. The isolate T. b. brucei EATRO1125 is often used for research as it produces stumpy forms and is fly transmissible. We provide an assembly of the genome of this isolate, including part of the repertoire of coat proteins, and a detailed analysis of the genes that the parasites express as they establish infection and progress through the fly. This has provided new insights into trypanosome biology. The combined genomic (DNA) and transcriptomic (RNA) data will be useful resources for the trypanosome research community.
Collapse
Affiliation(s)
| | - Paula Fernandes
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Campbell PC, de Graffenried CL. Alternate histories of cytokinesis: lessons from the trypanosomatids. Mol Biol Cell 2021; 31:2631-2639. [PMID: 33180676 PMCID: PMC7927182 DOI: 10.1091/mbc.e19-12-0696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Popular culture has recently produced several “alternate histories” that describe worlds where key historical events had different outcomes. Beyond entertainment, asking “could this have happened a different way?” and “what would the consequences be?” are valuable approaches for exploring molecular mechanisms in many areas of research, including cell biology. Analogous to alternate histories, studying how the evolutionary trajectories of related organisms have been selected to provide a range of outcomes can tell us about the plasticity and potential contained within the genome of the ancestral cell. Among eukaryotes, a group of model organisms has been employed with great success to identify a core, conserved framework of proteins that segregate the duplicated cellular organelles into two daughter cells during cell division, a process known as cytokinesis. However, these organisms provide relatively sparse sampling across the broad evolutionary distances that exist, which has limited our understanding of the true potential of the ancestral eukaryotic toolkit. Recent work on the trypanosomatids, a group of eukaryotic parasites, exemplifies alternate historical routes for cytokinesis that illustrate the range of eukaryotic diversity, especially among unicellular organisms.
Collapse
Affiliation(s)
- Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | | |
Collapse
|
17
|
Luzak V, López-Escobar L, Siegel TN, Figueiredo LM. Cell-to-Cell Heterogeneity in Trypanosomes. Annu Rev Microbiol 2021; 75:107-128. [PMID: 34228491 DOI: 10.1146/annurev-micro-040821-012953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in single-cell and single-molecule techniques have revealed surprising levels of heterogeneity among isogenic cells. These advances have transformed the study of cell-to-cell heterogeneity into a major area of biomedical research, revealing that it can confer essential advantages, such as priming populations of unicellular organisms for future environmental stresses. Protozoan parasites, such as trypanosomes, face multiple and often hostile environments, and to survive, they undergo multiple changes, including changes in morphology, gene expression, and metabolism. But why does only a subset of proliferative cells differentiate to the next life cycle stage? Why do only some bloodstream parasites undergo antigenic switching while others stably express one variant surface glycoprotein? And why do some parasites invade an organ while others remain in the bloodstream? Building on extensive research performed in bacteria, here we suggest that biological noise can contribute to the fitness of eukaryotic pathogens and discuss the importance of cell-to-cell heterogeneity in trypanosome infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vanessa Luzak
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
18
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Calvo-Álvarez E, Bonnefoy S, Salles A, Benson FE, McKean PG, Bastin P, Rotureau B. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction. Cell Microbiol 2021; 23:e13347. [PMID: 33896083 PMCID: PMC8459223 DOI: 10.1111/cmi.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian‐infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta‐marker of the flagellum stage and maturation state in trypanosomes.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Audrey Salles
- Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Institut Pasteur, Paris, France
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Paul G McKean
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Mwangi KW, Macharia RW, Bargul JL. Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector. Parasit Vectors 2021; 14:74. [PMID: 33482903 PMCID: PMC7821691 DOI: 10.1186/s13071-021-04597-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Trypanosoma brucei species are motile protozoan parasites that are cyclically transmitted by tsetse fly (genus Glossina) causing human sleeping sickness and nagana in livestock in sub-Saharan Africa. African trypanosomes display digenetic life cycle stages in the tsetse fly vector and in their mammalian host. Experimental work on insect-stage trypanosomes is challenging because of the difficulty in setting up successful in vitro cultures. Therefore, there is limited knowledge on the trypanosome biology during its development in the tsetse fly. Consequently, this limits the development of new strategies for blocking parasite transmission in the tsetse fly. Methods In this study, RNA-Seq data of insect-stage trypanosomes were used to construct a T. brucei gene co-expression network using the weighted gene co-expression analysis (WGCNA) method. The study identified significant enriched modules for genes that play key roles during the parasite’s development in tsetse fly. Furthermore, potential 3′ untranslated region (UTR) regulatory elements for genes that clustered in the same module were identified using the Finding Informative Regulatory Elements (FIRE) tool. Results A fraction of gene modules (12 out of 27 modules) in the constructed network were found to be enriched in functional roles associated with the cell division, protein biosynthesis, mitochondrion, and cell surface. Additionally, 12 hub genes encoding proteins such as RNA-binding protein 6 (RBP6), arginine kinase 1 (AK1), brucei alanine-rich protein (BARP), among others, were identified for the 12 significantly enriched gene modules. In addition, the potential regulatory elements located in the 3′ untranslated regions of genes within the same module were predicted. Conclusions The constructed gene co-expression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. This will enhance understanding of the molecular mechanisms that underlie important biological processes during parasite’s development in tsetse fly. Ultimately, these findings will be key in the identification of potential molecular targets for disease control.![]()
Collapse
Affiliation(s)
- Kennedy W Mwangi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya.
| | | | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya
| |
Collapse
|
21
|
Bertiaux E, Mallet A, Rotureau B, Bastin P. Intraflagellar transport during assembly of flagella of different length in Trypanosoma brucei isolated from tsetse flies. J Cell Sci 2020; 133:jcs248989. [PMID: 32843573 DOI: 10.1242/jcs.248989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms assemble cilia and flagella of precise lengths differing from one cell to another, yet little is known about the mechanisms governing these differences. Similarly, protists assemble flagella of different lengths according to the stage of their life cycle. Trypanosoma brucei assembles flagella of 3 to 30 µm during its development in the tsetse fly. This provides an opportunity to examine how cells naturally modulate organelle length. Flagella are constructed by addition of new blocks at their distal end via intraflagellar transport (IFT). Immunofluorescence assays, 3D electron microscopy and live-cell imaging revealed that IFT was present in all T. brucei life cycle stages. IFT proteins are concentrated at the base, and IFT trains are located along doublets 3-4 and 7-8 and travel bidirectionally in the flagellum. Quantitative analysis demonstrated that the total amount of flagellar IFT proteins correlates with the length of the flagellum. Surprisingly, the shortest flagellum exhibited a supplementary large amount of dynamic IFT material at its distal end. The contribution of IFT and other factors to the regulation of flagellum length is discussed.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
- Ultrastructural Bio Imaging Unit, C2RT, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
22
|
Abstract
Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies. To complete its infectious cycle, the protozoan parasite Trypanosoma brucei must navigate through diverse tissue environments in both its tsetse fly and mammalian hosts. This is hypothesized to be driven by yet unidentified chemotactic cues. Prior work has shown that parasites engaging in social motility in vitro alter their trajectory to avoid other groups of parasites, an example of negative chemotaxis. However, movement of T. brucei toward a stimulus, positive chemotaxis, has so far not been reported. Here, we show that upon encountering Escherichia coli, socially behaving T. brucei parasites exhibit positive chemotaxis, redirecting group movement toward the neighboring bacterial colony. This response occurs at a distance from the bacteria and involves active changes in parasite motility. By developing a quantitative chemotaxis assay, we show that the attractant is a soluble, diffusible signal dependent on actively growing E. coli. Time-lapse and live video microscopy revealed that T. brucei chemotaxis involves changes in both group and single cell motility. Groups of parasites change direction of group movement and accelerate as they approach the source of attractant, and this correlates with increasingly constrained movement of individual cells within the group. Identification of positive chemotaxis in T. brucei opens new opportunities to study mechanisms of chemotaxis in these medically and economically important pathogens. This will lead to deeper insights into how these parasites interact with and navigate through their host environments. IMPORTANCE Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies.
Collapse
|
23
|
Highly Localized Enrichment of Trypanosoma brucei Parasites Using Dielectrophoresis. MICROMACHINES 2020; 11:mi11060625. [PMID: 32604888 PMCID: PMC7344920 DOI: 10.3390/mi11060625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne neglected tropical disease endemic to rural sub-Saharan Africa. Current methods of early detection in the affected rural communities generally begin with general screening using the card agglutination test for trypanosomiasis (CATT), a serological test. However, the gold standard for confirmation of trypanosomiasis remains the direct observation of the causative parasite, Trypanosoma brucei. Here, we present the use of dielectrophoresis (DEP) to enrich T. brucei parasites in specific locations to facilitate their identification in a future diagnostic assay. DEP refers to physical movement that can be selectively induced on the parasites when exposing them to electric field gradients of specific magnitude, phase and frequency. The long-term goal of our work is to use DEP to selectively trap and enrich T. brucei in specific locations while eluting all other cells in a sample. This would allow for a diagnostic test that enables the user to characterize the presence of parasites in specific locations determined a priori instead of relying on scanning a sample. In the work presented here, we report the characterization of the conditions that lead to high enrichment, 780% in 50 s, of the parasite in specific locations using an array of titanium microelectrodes.
Collapse
|
24
|
Rose C, Casas-Sánchez A, Dyer NA, Solórzano C, Beckett AJ, Middlehurst B, Marcello M, Haines LR, Lisack J, Engstler M, Lehane MJ, Prior IA, Acosta-Serrano Á. Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus. Nat Microbiol 2020; 5:909-916. [DOI: 10.1038/s41564-020-0707-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/09/2020] [Indexed: 01/10/2023]
|
25
|
Lemos M, Mallet A, Bertiaux E, Imbert A, Rotureau B, Bastin P. Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly. Parasit Vectors 2020; 13:169. [PMID: 32248844 PMCID: PMC7132888 DOI: 10.1186/s13071-020-04026-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection. Methods Here, we monitored flagellum assembly in trypanosomes during differentiation from the trypomastigote to the epimastigote stage, i.e. when the nucleus migrates to the posterior end of the cell, by using three-dimensional electron microscopy (focused ion beam scanning electron microscopy, FIB-SEM) and immunofluorescence assays. Results The combination of light and electron microscopy approaches provided structural and molecular evidence that the new flagellum is assembled while the nucleus migrates towards the posterior region of the body. Two major differences with well-known procyclic cells are reported. First, growth of the new flagellum begins when the associated basal body is found in a posterior position relative to the mature flagellum. Secondly, the new flagellum acquires its own flagellar pocket before rotating on the left side of the anterior-posterior axis. FIB-SEM revealed the presence of a structure connecting the new and mature flagellum and serial sectioning confirmed morphological similarities with the flagella connector of procyclic cells. We discuss the potential function of the flagella connector in trypanosomes from the proventriculus. Conclusions These findings show that T. brucei finely modulates its cytoskeletal components to generate highly variable morphologies.![]()
Collapse
Affiliation(s)
- Moara Lemos
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.,UtechS Ultrastructural Bioimaging (Ultrapole), C2RT, Institut Pasteur, 75015, Paris, France.,Sorbonne Université école doctorale Complexité du Vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252, Paris Cedex 05, France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.,Sorbonne Université école doctorale Complexité du Vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252, Paris Cedex 05, France
| | | | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
26
|
Macleod OJS, Bart JM, MacGregor P, Peacock L, Savill NJ, Hester S, Ravel S, Sunter JD, Trevor C, Rust S, Vaughan TJ, Minter R, Mohammed S, Gibson W, Taylor MC, Higgins MK, Carrington M. A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nat Commun 2020; 11:1326. [PMID: 32165615 PMCID: PMC7067766 DOI: 10.1038/s41467-020-15125-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/15/2020] [Indexed: 11/09/2022] Open
Abstract
Persistent pathogens have evolved to avoid elimination by the mammalian immune system including mechanisms to evade complement. Infections with African trypanosomes can persist for years and cause human and animal disease throughout sub-Saharan Africa. It is not known how trypanosomes limit the action of the alternative complement pathway. Here we identify an African trypanosome receptor for mammalian factor H, a negative regulator of the alternative pathway. Structural studies show how the receptor binds ligand, leaving inhibitory domains of factor H free to inactivate complement C3b deposited on the trypanosome surface. Receptor expression is highest in developmental stages transmitted to the tsetse fly vector and those exposed to blood meals in the tsetse gut. Receptor gene deletion reduced tsetse infection, identifying this receptor as a virulence factor for transmission. This demonstrates how a pathogen evolved a molecular mechanism to increase transmission to an insect vector by exploitation of a mammalian complement regulator.
Collapse
Affiliation(s)
- Olivia J S Macleod
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jean-Mathieu Bart
- Intertryp, IRD, Cirad, University of Montpellier, Montpellier, France
| | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK
| | - Nicholas J Savill
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sophie Ravel
- Intertryp, IRD, Cirad, University of Montpellier, Montpellier, France
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Camilla Trevor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Steven Rust
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Tristan J Vaughan
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Ralph Minter
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK
| | - Martin C Taylor
- Faculty of Infectious and Tropical diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
27
|
Peacock L, Gibson W. Tsetse Fly Transmission Studies of African Trypanosomes. Methods Mol Biol 2020; 2116:49-67. [PMID: 32221913 DOI: 10.1007/978-1-0716-0294-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
African trypanosomes are naturally transmitted by bloodsucking tsetse flies in sub-Saharan Africa and these transmission cycles can be reproduced in the laboratory if clean tsetse flies and suitable trypanosomes are available for experiments. Tsetse transmission gives access to more trypanosome developmental stages than are available from in vitro culture, albeit in very small numbers; for example, the sexual stages of Trypanosoma brucei have been isolated from infected tsetse salivary glands, but have not yet been reported from culture. Tsetse transmission also allows for the natural transition between different developmental stages to be studied.Both wild-type and genetically modified trypanosomes have been successfully fly transmitted, and it is possible to manipulate the trypanosome environment inside the fly to some extent, for example, the induction of expression of genes controlled by the Tet repressor by feeding flies with tetracycline.
Collapse
Affiliation(s)
- Lori Peacock
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Wendy Gibson
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
28
|
Sinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol 2019; 35:760-777. [PMID: 31471215 PMCID: PMC6783356 DOI: 10.1016/j.pt.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The subpellicular microtubule array defines the wide range of cellular morphologies found in parasitic kinetoplastids (trypanosomatids). Morphological studies have characterized array organization, but little progress has been made towards identifying the molecular mechanisms that are responsible for array differentiation during the trypanosomatid life cycle, or the apparent stability and longevity of array microtubules. In this review, we outline what is known about the structure and biogenesis of the array, with emphasis on Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, which cause life-threatening diseases in humans and livestock. We highlight unanswered questions about this remarkable cellular structure that merit new consideration in light of our recently improved understanding of how the 'tubulin code' influences microtubule dynamics to generate complex cellular structures.
Collapse
Affiliation(s)
- Amy N Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
29
|
Abeywickrema M, Vachova H, Farr H, Mohr T, Wheeler RJ, Lai DH, Vaughan S, Gull K, Sunter JD, Varga V. Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei. Mol Microbiol 2019; 112:1024-1040. [PMID: 31286583 PMCID: PMC6771564 DOI: 10.1111/mmi.14345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new‐flagellum and the old‐flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new‐flagellum daughter in particular re‐modelling rapidly and extensively in early G1. This re‐modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old‐flagellum daughter undergoes a different G1 re‐modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non‐equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non‐equivalence.
Collapse
Affiliation(s)
- Movin Abeywickrema
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Hana Vachova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Helen Farr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Timm Mohr
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| |
Collapse
|
30
|
Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, Roditi I, Hill KL. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 2019; 10:803. [PMID: 30778051 PMCID: PMC6379439 DOI: 10.1038/s41467-019-08696-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei is transmitted between mammals by tsetse flies. Following the discovery that flagellar phosphodiesterase PDEB1 is required for trypanosomes to move in response to signals in vitro (social motility), we investigated its role in tsetse flies. Here we show that PDEB1 knockout parasites exhibit subtle changes in movement, reminiscent of bacterial chemotaxis mutants. Infecting flies with the knockout, followed by live confocal microscopy of fluorescent parasites within dual-labelled insect tissues, shows that PDEB1 is important for traversal of the peritrophic matrix, which separates the midgut lumen from the ectoperitrophic space. Without PDEB1, parasites are trapped in the lumen and cannot progress through the cycle. This demonstrates that the peritrophic matrix is a barrier that must be actively overcome and that the parasite’s flagellar cAMP signaling pathway facilitates this. Migration may depend on perception of chemotactic cues, which could stem from co-infecting parasites and/or the insect host. Trypanosoma brucei probably relies on chemotactic signals for movement through tsetse fly tissues, but the molecular basis is unknown. Here, the authors show that flagellar cAMP signaling is required for traversal of the peritrophic matrix and that, without it, parasites are trapped in the midgut lumen.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Stephanie F DeMarco
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Tanja Wenzler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Francesca Florini
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.
| | - Kent L Hill
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Gibson W, Peacock L. Fluorescent proteins reveal what trypanosomes get up to inside the tsetse fly. Parasit Vectors 2019; 12:6. [PMID: 30609932 PMCID: PMC6320599 DOI: 10.1186/s13071-018-3204-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The discovery and development of fluorescent proteins for the investigation of living cells and whole organisms has been a major advance in biomedical research. This approach was quickly exploited by parasitologists, particularly those studying single-celled protists. Here we describe some of our experiments to illustrate how fluorescent proteins have helped to reveal what trypanosomes get up to inside the tsetse fly. Fluorescent proteins turned the tsetse fly from a "black box" into a bright showcase to track trypanosome migration and development within the insect. Crosses of genetically modified red and green fluorescent trypanosomes produced yellow fluorescent hybrids and established the "when" and "where" of trypanosome sexual reproduction inside the fly. Fluorescent-tagging endogenous proteins enabled us to identify the meiotic division stage and gametes inside the salivary glands of the fly and thus elucidate the mechanism of sexual reproduction in trypanosomes. Without fluorescent proteins we would still be in the "dark ages" of understanding what trypanosomes get up to inside the tsetse fly.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
- School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU UK
| |
Collapse
|
32
|
A Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes. Curr Biol 2018; 28:3802-3814.e3. [DOI: 10.1016/j.cub.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
|
33
|
Krüger T, Schuster S, Engstler M. Beyond Blood: African Trypanosomes on the Move. Trends Parasitol 2018; 34:1056-1067. [DOI: 10.1016/j.pt.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
|
34
|
Borges AR, Toledo DA, Fermino BR, de Oliveira JC, Silber AM, Elias MC, D'Avila H, Scopel KKG. In Vitro Cellular Division of Trypanosoma abeli Reveals Two Pathways for Organelle Replication. J Eukaryot Microbiol 2018; 66:385-392. [PMID: 30076737 DOI: 10.1111/jeu.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Abstract
Since the observation of the great pleomorphism of fish trypanosomes, in vitro culture has become an important tool to support taxonomic studies investigating the biology of cultured parasites, such as their structure, growth dynamics, and cellular cycle. Relative to their biology, ex vivo and in vitro studies have shown that these parasites, during the multiplication process, duplicate and segregate the kinetoplast before nucleus replication and division. However, the inverse sequence (the nucleus divides before the kinetoplast) has only been documented for a species of marine fish trypanosomes on a single occasion. Now, this previously rare event was observed in Trypanosoma abeli, a freshwater fish trypanosome. Specifically, from 376 cultured parasites in the multiplication process, we determined the sequence of organelle division for 111 forms; 39% exhibited nucleus duplication prior to kinetoplast replication. Thus, our results suggest that nucleus division before the kinetoplast may not represent an accidental or erroneous event occurring in the main pathway of parasite reproduction, but instead could be a species-specific process of cell biology in trypanosomes, such as previously noticed for Leishmania. This "alternative" pathway for organelle replication is a new field to be explored concerning the biology of marine and freshwater fish trypanosomes.
Collapse
Affiliation(s)
- Alyssa R Borges
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Daniel A Toledo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno R Fermino
- Department of Parasitology, Institute of Biomedical Sciences, São Paulo University, Av. Prof. Lineu Prestes 1374 - Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - José Carlos de Oliveira
- Department of Zoology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374 - Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500 - Butantã, São Paulo, SP, 05503-900, Brazil
| | - Heloisa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Kézia K G Scopel
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
35
|
Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol 2018; 7:rsob.170165. [PMID: 28903998 PMCID: PMC5627057 DOI: 10.1098/rsob.170165] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The shape and form of protozoan parasites are inextricably linked to their pathogenicity. The evolutionary pressure associated with establishing and maintaining an infection and transmission to vector or host has shaped parasite morphology. However, there is not a 'one size fits all' morphological solution to these different pressures, and parasites exhibit a range of different morphologies, reflecting the diversity of their complex life cycles. In this review, we will focus on the shape and form of Leishmania spp., a group of very successful protozoan parasites that cause a range of diseases from self-healing cutaneous leishmaniasis to visceral leishmaniasis, which is fatal if left untreated.
Collapse
Affiliation(s)
- Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
36
|
Peacock L, Kay C, Bailey M, Gibson W. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLoS Pathog 2018; 14:e1007043. [PMID: 29772025 PMCID: PMC5957336 DOI: 10.1371/journal.ppat.1007043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Christopher Kay
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success. PLoS Pathog 2018; 14:e1006972. [PMID: 29614112 PMCID: PMC5898766 DOI: 10.1371/journal.ppat.1006972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/13/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023] Open
Abstract
Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections—the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)—albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success. Insects are responsible for transmission of parasites that cause deadly diseases in humans and animals. Understanding the key factors that enhance or interfere with parasite transmission processes can result in new control strategies. Here, we report that a proportion of tsetse flies with African trypanosome infections in their midgut can prevent parasites from migrating to the salivary glands, albeit at the expense of collateral damage. In a subset of flies with gut infections, the parasites manipulate the integrity of a midgut barrier, called the peritrophic matrix, and reach the salivary glands for transmission to the next mammal. Either targeting parasite manipulative processes or enhancing peritrophic matrix integrity could reduce parasite transmission.
Collapse
|
38
|
Bateta R, Wang J, Wu Y, Weiss BL, Warren WC, Murilla GA, Aksoy S, Mireji PO. Tsetse fly (Glossina pallidipes) midgut responses to Trypanosoma brucei challenge. Parasit Vectors 2017; 10:614. [PMID: 29258576 PMCID: PMC5738168 DOI: 10.1186/s13071-017-2569-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina spp.) are the prominent vector of African trypanosome parasites (Trypanosoma spp.) in sub-Saharan Africa, and Glossina pallidipes is the most widely distributed species in Kenya. This species displays strong resistance to infection by parasites, which are typically eliminated in the midgut shortly after acquisition from the mammalian host. Although extensive molecular information on immunity for the related species Glossina morsitans morsitans exists, similar information is scarce for G. pallidipes. METHODS To determine temporal transcriptional responses of G. pallidipes to Trypanosoma brucei brucei challenge, we conducted Illumina based RNA-seq on midgut organ and carcass from teneral females G. pallidipes at 24 and 48 h post-challenge (hpc) with T. b. brucei relative to their respective controls that received normal blood meals (without the parasite). We used a suite of bioinformatics tools to determine differentially expressed and enriched transcripts between and among tissues, and to identify expanded transcripts in G. pallidipes relative to their orthologs G. m. morsitans. RESULTS Midgut transcripts induced at 24 hpc encoded proteins were associated with lipid remodelling, proteolysis, collagen metabolism, apoptosis, and cell growth. Midgut transcripts induced at 48 hpc encoded proteins linked to embryonic growth and development, serine endopeptidases and proteosomal degradation of the target protein, mRNA translation and neuronal development. Temporal expression of immune responsive transcripts at 48 relative to 24 hpc was pronounced, indicative of a gradual induction of host immune responses the following challenge. We also searched for G. m. morsitans orthologous groups that may have experienced expansions in the G. pallidipes genome. We identified ten expanded groups in G. pallidipes with putative immunity-related functions, which may play a role in the higher refractoriness exhibited by this species. CONCLUSIONS There appears to be a lack of strong immune responses elicited by gut epithelia of teneral adults. This in combination with a compromised peritrophic matrix at this stage during the initial phase of T. b. brucei challenge may facilitate the increased parasite infection establishment noted in teneral flies relative to older adults. Although teneral flies are more susceptible than older adults, the majority of tenerals are still able to eliminate parasite infections. Hence, robust responses elicited at a later time point, such as 72 hpc, may clear parasite infections from the majority of flies. The expanded G. m. morsitans orthologous groups in G. pallidipes may also be functionally associated with the enhanced refractoriness to trypanosome infections reported in G. pallidipes relative to G. m. morsitans.
Collapse
Affiliation(s)
- Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Jingwen Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., Campus Box 8501, St Louis, MO 63108 USA
| | - Grace A. Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Paul O. Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, P. O. Box 428-80108, Kilifi, Kenya
| |
Collapse
|
39
|
Harmer J, Qi X, Toniolo G, Patel A, Shaw H, Benson FE, Ginger ML, McKean PG. Variation in Basal Body Localisation and Targeting of Trypanosome RP2 and FOR20 Proteins. Protist 2017; 168:452-466. [PMID: 28822909 DOI: 10.1016/j.protis.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/22/2022]
Abstract
TOF-LisH-PLL motifs define FOP family proteins; some members are involved in flagellum assembly. The critical role of FOP family protein FOR20 is poorly understood. Here, we report relative localisations of the four FOP family proteins in parasitic Trypanosoma brucei: TbRP2, TbOFD1 and TbFOP/FOP1-like are mature basal body proteins whereas TbFOR20 is present on pro- and mature basal bodies - on the latter it localises distal to TbRP2. We discuss how the data, together with published work for another protist Giardia intestinalis, informs on likely FOR20 function. Moreover, our localisation study provides convincing evidence that the antigen recognised by monoclonal antibody YL1/2 at trypanosome mature basal bodies is FOP family protein TbRP2, not tyrosinated α-tubulin as widely stated in the literature. Curiously, FOR20 proteins from T. brucei and closely related African trypanosomes possess short, negatively-charged N-terminal extensions absent from FOR20 in other trypanosomatids and other eukaryotes. The extension is necessary for protein targeting, but insufficient to re-direct TbRP2 to probasal bodies. Yet, FOR20 from the American trypanosome T. cruzi, which lacks any extension, localises to pro- and mature basal bodies when expressed in T. brucei. This identifies unexpected variation in FOR20 architecture that is presently unique to one clade of trypanosomatids.
Collapse
Affiliation(s)
- Jane Harmer
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xin Qi
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Gabriella Toniolo
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aysha Patel
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hannah Shaw
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Fiona E Benson
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Michael L Ginger
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Paul G McKean
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
40
|
Schuster S, Krüger T, Subota I, Thusek S, Rotureau B, Beilhack A, Engstler M. Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife 2017; 6. [PMID: 28807106 PMCID: PMC5570225 DOI: 10.7554/elife.27656] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.
Collapse
Affiliation(s)
- Sarah Schuster
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Sina Thusek
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Andreas Beilhack
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Christiano R, Kolev NG, Shi H, Ullu E, Walther TC, Tschudi C. The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion. Mol Microbiol 2017; 106:74-92. [PMID: 28742275 DOI: 10.1111/mmi.13754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 01/22/2023]
Abstract
The infectious metacyclic forms of Trypanosoma brucei result from a complex development in the tsetse fly vector. When they infect mammals, they cause African sleeping sickness in humans. Due to scarcity of biological material and difficulties of the tsetse fly as an experimental system, very limited information is available concerning the gene expression profile of metacyclic forms. We used an in vitro system based on expressing the RNA binding protein 6 to obtain infectious metacyclics and determined their protein and mRNA repertoires by mass-spectrometry (MS) based proteomics and mRNA sequencing (RNA-Seq) in comparison to non-infectious procyclic trypanosomes. We showed that metacyclics are quiescent cells, and propose this influences the choice of a monocistronic variant surface glycoprotein expression site. Metacyclics have a largely bloodstream-form type transcriptome, and thus are programmed to translate a bloodstream-form type proteome upon entry into the mammalian host and resumption of cell division. Genes encoding cell surface components showed the largest changes between procyclics and metacyclics, observed at both the transcript and protein levels. Genes encoding metabolic enzymes exhibited expression in metacyclics with features of both procyclic and bloodstream forms, suggesting that this intermediate-type metabolism is dictated by the availability of nutrients in the tsetse fly vector.
Collapse
Affiliation(s)
- Romain Christiano
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Elisabetta Ullu
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Internal Medicine, School of Medicine, Yale University, 330 Cedar St, Boardman 110, New Haven, CT 06520, USA
| | - Tobias C Walther
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Harvard T.H. Chan School of Public Health Boston, MA 02115, USA
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Gibson W, Kay C, Peacock L. Trypanosoma congolense: Molecular Toolkit and Resources for Studying a Major Livestock Pathogen and Model Trypanosome. ADVANCES IN PARASITOLOGY 2017; 98:283-309. [PMID: 28942771 DOI: 10.1016/bs.apar.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The African trypanosomiases are diseases of humans and their livestock caused by trypanosomes carried by bloodsucking tsetse flies. Although the human pathogen Trypanosoma brucei is the best known, other trypanosome species are of greater concern for animal health in sub-Saharan Africa. In particular, Trypanosomacongolense is a major cattle pathogen, which is as amenable to laboratory culture as T. brucei, with the advantage that its whole life cycle can be recapitulated in vitro. Thus, besides being worthy of study in its own right, T. congolense could be useful as a model of trypanosome development. Here we review the biology of T. congolense, highlighting significant and intriguing differences from its sister, T. brucei. An up-to-date compilation of methods for cultivating and genetically manipulating T. congolense in the laboratory is provided, based on published work and current development of methods in our lab, as well as a description of available molecular resources.
Collapse
|
43
|
Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol 2017; 13:e1005353. [PMID: 28141804 PMCID: PMC5308837 DOI: 10.1371/journal.pcbi.1005353] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2017] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion. Swimming cells often follow a helical swimming path, however the advantage of helical paths over a simple straight line path is not clear. To analyse this phenomenon, I analysed the swimming of the human parasites Trypanosoma brucei (which causes sleeping sickness/trypanosomiasis) and Leishmania mexicana (which causes leishmaniasis). Using new computational methods to determine the three dimensional shape of swimming cells I showed that T. brucei have a helical shape which causes rotation as the cell swims, and the geometry of the resulting swimming path makes the cell movement highly directional. In contrast, L. mexicana are symmetrical, do not rotate, and their swimming paths are curved and have low directionality. Using a T. brucei mutant I showed that the cell structure responsible for the helical shape while swimming is the flagellum attachment zone. This explains a key function of this structure. Finally, simulations showed the phenomenon of rotation while swimming is a way cells can ensure highly directional swimming along a controlled helical path, overcoming random variation in cell shape or propulsion. This provides a general explanation for why swimming cells are often asymmetric and tend to follow helical paths.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
44
|
Savage AF, Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans. PLoS One 2016; 11:e0168877. [PMID: 28002435 PMCID: PMC5176191 DOI: 10.1371/journal.pone.0168877] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023] Open
Abstract
African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals, have a complex digenetic life cycle between a mammalian host and an insect vector, the blood-feeding tsetse fly. Although the importance of the insect vector to transmit the disease was first realized over a century ago, many aspects of trypanosome development in tsetse have not progressed beyond a morphological analysis, mainly due to considerable challenges to obtain sufficient material for molecular studies. Here, we used high-throughput RNA-Sequencing (RNA-Seq) to profile Trypanosoma brucei transcript levels in three distinct tissues of the tsetse fly, namely the midgut, proventriculus and salivary glands. Consistent with current knowledge and providing a proof of principle, transcripts coding for procyclin isoforms and several components of the cytochrome oxidase complex were highly up-regulated in the midgut transcriptome, whereas transcripts encoding metacyclic VSGs (mVSGs) and the surface coat protein brucei alanine rich protein or BARP were extremely up-regulated in the salivary gland transcriptome. Gene ontology analysis also supported the up-regulation of biological processes such as DNA metabolism and DNA replication in the proventriculus transcriptome and major changes in signal transduction and cyclic nucleotide metabolism in the salivary gland transcriptome. Our data highlight a small repertoire of expressed mVSGs and potential signaling pathways involving receptor-type adenylate cyclases and members of a surface carboxylate transporter family, called PADs (Proteins Associated with Differentiation), to cope with the changing environment, as well as RNA-binding proteins as a possible global regulators of gene expression.
Collapse
Affiliation(s)
- Amy F. Savage
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Nikolay G. Kolev
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Joseph B. Franklin
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (SA); (CT)
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (SA); (CT)
| |
Collapse
|
45
|
Ooi CP, Schuster S, Cren-Travaillé C, Bertiaux E, Cosson A, Goyard S, Perrot S, Rotureau B. The Cyclical Development of Trypanosoma vivax in the Tsetse Fly Involves an Asymmetric Division. Front Cell Infect Microbiol 2016; 6:115. [PMID: 27734008 PMCID: PMC5039179 DOI: 10.3389/fcimb.2016.00115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma vivax is the most prevalent trypanosome species in African cattle. It is thought to be transmitted by tsetse flies after cyclical development restricted to the vector mouthparts. Here, we investigated the kinetics of T. vivax development in Glossina morsitans morsitans by serial dissections over 1 week to reveal differentiation and proliferation stages. After 3 days, stable numbers of attached epimastigotes were seen proliferating by symmetric division in the cibarium and proboscis, consistent with colonization and maintenance of a parasite population for the remaining lifespan of the tsetse fly. Strikingly, some asymmetrically dividing cells were also observed in proportions compatible with a continuous production of pre- metacyclic trypomastigotes. The involvement of this asymmetric division in T. vivax metacyclogenesis is discussed and compared to other trypanosomatids.
Collapse
Affiliation(s)
- Cher-Pheng Ooi
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Sarah Schuster
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Christelle Cren-Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Eloise Bertiaux
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Alain Cosson
- Trypanosomatids Infectious Processes Unit, Department of Infection and Epidemiology, Institut Pasteur Paris, France
| | - Sophie Goyard
- Trypanosomatids Infectious Processes Unit, Department of Infection and Epidemiology, Institut Pasteur Paris, France
| | - Sylvie Perrot
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| |
Collapse
|
46
|
Peacock L, Bailey M, Gibson W. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei. Parasit Vectors 2016; 9:404. [PMID: 27439767 PMCID: PMC4955137 DOI: 10.1186/s13071-016-1689-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. RESULTS Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. CONCLUSIONS We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids. Establishment of the second strain was severely compromised by the strong immune response of the fly to the existing infection. Although sequential infection provides an opportunity for trypanosome mating, the easiest way for a tsetse fly to acquire a mixed infection is by feeding on a co-infected host.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.,School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Mick Bailey
- School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
47
|
Fort C, Bonnefoy S, Kohl L, Bastin P. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length. J Cell Sci 2016; 129:3026-41. [PMID: 27343245 DOI: 10.1242/jcs.188227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
Intraflagellar transport (IFT) is required for construction of most cilia and flagella. Here, we used electron microscopy, immunofluorescence and live video microscopy to show that IFT is absent or arrested in the mature flagellum of Trypanosoma brucei upon RNA interference (RNAi)-mediated knockdown of IFT88 and IFT140, respectively. Flagella assembled prior to RNAi did not shorten, showing that IFT is not essential for the maintenance of flagella length. Although the ultrastructure of the axoneme was not visibly affected, flagellar beating was strongly reduced and the distribution of several flagellar components was drastically modified. The R subunit of the protein kinase A was no longer concentrated in the flagellum but was largely found in the cell body whereas the kinesin 9B motor was accumulating at the distal tip of the flagellum. In contrast, the distal tip protein FLAM8 was dispersed along the flagellum. This reveals that IFT also functions in maintaining the distribution of some flagellar proteins after construction of the organelle is completed.
Collapse
Affiliation(s)
- Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France Université Pierre et Marie Curie Paris 6, Cellule Pasteur-UPMC, 25 rue du docteur Roux, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| | - Linda Kohl
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS; CP52, 61 rue Buffon, Paris 75005, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
48
|
Avila CCDC, Peacock L, Machado FC, Gibson W, Schenkman S, Carrington M, Castilho BA. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation. Mol Biochem Parasitol 2016; 205:16-21. [PMID: 26996431 PMCID: PMC4850487 DOI: 10.1016/j.molbiopara.2016.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Pleomorphic T. brucei expressing an eIF2α phosphorylation site mutant were made. The mutation did not prevent normal arrest and differentiation into stumpy forms. Mutants differentiate into procyclic forms in vitro and in tsetse flies.
The trypanosome life cycle consists of a series of developmental forms each adapted to an environment in the relevant insect and/or mammalian host. The differentiation process from the mammalian bloodstream form to the insect-midgut procyclic form in Trypanosoma brucei occurs in two steps in vivo. First proliferating ‘slender' bloodstream forms differentiate to non-dividing ‘stumpy' forms arrested in G1. Second, in response to environmental cues, stumpy bloodstream forms re-enter the cell cycle and start to proliferate as procyclic forms after a lag during which both cell morphology and gene expression are modified. Nearly all arrested cells have lower rates of protein synthesis when compared to the proliferating equivalent. In eukaryotes, one mechanism used to regulate the overall rate of protein synthesis involves phosphorylation of the alpha subunit of initiation factor eIF2 (eIF2α). The effect of eIF2α phosphorylation is to prevent the action of eIF2B, the guanine nucleotide exchange factor that activates eIF2 for the next rounds of initiation. To investigate the role of the phosphorylation of eIF2α in the life cycle of T. brucei, a cell line was made with a single eIF2α gene that contained the phosphorylation site, threonine 169, mutated to alanine. These cells were capable of differentiating from proliferating bloodstream form cells into arrested stumpy forms in mice and into procyclic forms in vitro and in tsetse flies. These results indicate that translation attenuation mediated by the phosphorylation of eIF2α on threonine 169 is not necessary for the cell cycle arrest associated with these differentiation processes.
Collapse
Affiliation(s)
- Carla Cristi D C Avila
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lori Peacock
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Fabricio Castro Machado
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
49
|
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci 2016; 129:854-67. [PMID: 26746239 PMCID: PMC4760377 DOI: 10.1242/jcs.183152] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023] Open
Abstract
Leishmania promastigote parasites have a flagellum, which protrudes from the flagellar pocket at the cell anterior, yet, surprisingly, have homologs of many flagellum attachment zone (FAZ) proteins – proteins used in the related Trypanosoma species to laterally attach the flagellum to the cell body from the flagellar pocket to the cell posterior. Here, we use seven Leishmania mexicana cell lines that expressed eYFP fusions of FAZ protein homologs to show that the Leishmania flagellar pocket includes a FAZ structure. Electron tomography revealed a precisely defined 3D organisation for both the flagellar pocket and FAZ, with striking similarities to those of Trypanosoma brucei. Expression of two T. brucei FAZ proteins in L. mexicana showed that T. brucei FAZ proteins can assemble into the Leishmania FAZ structure. Leishmania therefore have a previously unrecognised FAZ structure, which we show undergoes major structural reorganisation in the transition from the promastigote (sandfly vector) to amastigote (in mammalian macrophages). Morphogenesis of the Leishmania flagellar pocket, a structure important for pathogenicity, is therefore intimately associated with a FAZ; a finding with implications for understanding shape changes involving component modules during evolution. Summary:Leishmania parasites have a highly structured flagellar pocket, including a structure homologous to the Trypanosoma brucei flagellum attachment zone, which undergoes structural adaptations in different life cycle stages.
Collapse
Affiliation(s)
- Richard J Wheeler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Jack D Sunter
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
50
|
Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun 2015; 6:8964. [PMID: 26667778 PMCID: PMC4682162 DOI: 10.1038/ncomms9964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0. Whether basal bodies are pre-committed to form 9+2 motile or 9+0 sensory axonemes and whether interconversion occurs between the two types of axonemes is not clear. Here, the authors used the unicellular eukaryote Leishmania as a model system to demonstrate that 9+0 axonemes can be formed de novo or by restructuring of 9+2 axonemes.
Collapse
|