1
|
Chen Y, Xiong Q, Dai Q, Liu G. Six Newly Sequenced Chloroplast Genomes From Quadriflagellate Chlamydomonadales (Chlorophyceae): Phylogeny and Comparative Genome Analyses. Genome Biol Evol 2025; 17:evaf074. [PMID: 40247659 PMCID: PMC12042916 DOI: 10.1093/gbe/evaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Several quadriflagellate genera were revealed as the members of deep branches in Chlamydomonadales. However, the phylogenetic relationships among these quadriflagellate genera remained unresolved, and little information is known about the chloroplast genome structure for the chlamydomonadalean early-diverging lineages due to the limited data. In this study, we conducted phylogenetic and comparative genomic analyses with 6 newly sequenced quadriflagellate chlamydomonadalean chloroplast genomes. Four phylogenetic inferences based on different datasets recovered the robust topology, with Staurocarteria-Hafniomonas as the earliest-diverging lineage, followed by Corbierea within Chlamydomonadales and Spermatozopsis included in Sphaeropleales. The amino acid dataset combined with the site-heterogeneous model received the highest support for key nodes and may better fit the inferences of the deep relationships in Chlamydomonadales. Moreover, Sp. similis chloroplast genome is also more structurally similar to its close relatives than to other quadriflagellate chlamydomonadaleans. Phylogeny and genome structure features both indicated the taxonomic position of Spermatozopsis should be reconsidered. The loss of large inverted repeats (IRs) was first reported in chlamydomonadaleans (Co. pseudopalmata), and may occur at least 4 times in Chlamydomonadales. Comparative genome analyses demonstrated the highly divergent large IRs and a high level of rearrangements across the entire genome. IR expansions/contractions and inversions contribute to changes in gene content and gene order in this region. This study provides a foundation for future research on the phylogenetic relationships as well as chloroplast genomic features and evolution of the entire Chlamydomonadales.
Collapse
Affiliation(s)
- Yangliang Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qian Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingyu Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Manigandan V, Muthukumar C, Shah C, Logesh N, Sivadas SK, Ramu K, Ramana Murthy MV. Phylogenetic affiliation of Pedinomonas noctilucae and green Noctiluca scintillans nutritional dynamics in the Gulf of Mannar, Southeastern Arabian Sea. Protist 2024; 175:126019. [PMID: 38309038 DOI: 10.1016/j.protis.2024.126019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The present investigation focused on studying the phylogenetic position of the green Noctiluca endosymbiont, Pedinomonas noctilucae, collected from the Gulf of Mannar, India. In this study, we re-examined the evolutionary position of this endosymbiotic algae using rbcL sequences. The phylogenetic analysis revealed that P. noctilucae is distantly related to the Pedinomonas species, and formed a monophyletic clade with Marsupiomandaceae. Based on the phylogenetic association of endosymbiont with Maruspiomonadales it was concluded that the endosymbiont belongs to an independent genus within the family Marsupiomonadaceae. At the site of the bloom, Noctiluca scintillans was found to exhibit a dense monospecific proliferation, with an average cell density of 27.l88 × 103 cells L-1. The investigation revealed that the green Noctiluca during its senescent phase primarily relied on autotrophic nutrition, which was confirmed by the presence of a high number of trophonts, vegetatively reproducing cells (1.45 × 103 cells L-1) and the absence of food vacuoles.
Collapse
Affiliation(s)
- Vajravelu Manigandan
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India.
| | - Chandrasekaran Muthukumar
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India
| | - Chinmay Shah
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India
| | - Natarajan Logesh
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India
| | - Sanitha K Sivadas
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India
| | - Karri Ramu
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India
| | - M V Ramana Murthy
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai 600 100, India
| |
Collapse
|
3
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Peltomaa E, Asikainen H, Blomster J, Pakkanen H, Rigaud C, Salmi P, Taipale S. Phytoplankton group identification with chemotaxonomic biomarkers: In combination they do better. PHYTOCHEMISTRY 2023; 209:113624. [PMID: 36871900 DOI: 10.1016/j.phytochem.2023.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Chemotaxonomic biomarkers are needed to monitor and evaluate the nutritional quality of phytoplankton communities. The biomolecules produced by different phytoplankton species do not always follow genetic phylogeny. Therefore, we analyzed fatty acids, sterols, and carotenoids from 57 freshwater phytoplankton strains to evaluate the usability of these biomolecules as chemotaxonomic biomarkers. We found 29 fatty acids, 34 sterols, and 26 carotenoids in our samples. The strains were grouped into cryptomonads, cyanobacteria, diatoms, dinoflagellates, golden algae, green algae, and raphidophytes, and the phytoplankton group explained 61%, 54%, and 89% of the variability of fatty acids, sterols, and carotenoids, respectively. Fatty acid and carotenoid profiles distinguished most phytoplankton groups, but not flawlessly. For example, fatty acids could not distinguish golden algae and cryptomonads, whereas carotenoids did not separate diatoms and golden algae. The sterol composition was heterogeneous but seemed to be useful for distinguishing different genera within a phytoplankton group. The chemotaxonomy biomarkers yielded optimal genetic phylogeny when the fatty acids, sterols, and carotenoids were used together in multivariate statistical analysis. Our results suggest that the accuracy of phytoplankton composition modeling could be enhanced by combining these three biomolecule groups.
Collapse
Affiliation(s)
- E Peltomaa
- Department of Forest Sciences, Latokartanonkaari 7, FI-00014, University of Helsinki, Finland.
| | - H Asikainen
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| | - J Blomster
- Ecosystems and Environment Research Group, Faculty of Biological and Environmental Sciences, Viikinkaari 1, FI-00014, University of Helsinki, Finland.
| | - H Pakkanen
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| | - C Rigaud
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| | - P Salmi
- Spectral Imaging Laboratory, Faculty of Information Technology, Mattilanniemi 2, FI-40014, University of Jyväskylä, Finland.
| | - S Taipale
- Department of Biological and Environmental Science, Survontie 9 C, FI-40014, University of Jyväskylä, Finland.
| |
Collapse
|
5
|
Wang L, Zhang S, Fang J, Jin X, Mamut R, Li P. The Chloroplast Genome of the Lichen Photobiont Trebouxiophyceae sp. DW1 and Its Phylogenetic Implications. Genes (Basel) 2022; 13:genes13101840. [PMID: 36292725 PMCID: PMC9601494 DOI: 10.3390/genes13101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lichens are symbiotic associations of algae and fungi. The genetic mechanism of the symbiosis of lichens and the influence of symbiosis on the size and composition of the genomes of symbiotic algae have always been intriguing scientific questions explored by lichenologists. However, there were limited data on lichen genomes. Therefore, we isolated and purified a lichen symbiotic alga to obtain a single strain (Trebouxiophyceae sp. DW1), and then obtained its chloroplast genome information by next-generation sequencing (NGS). The chloroplast genome is 129,447 bp in length, and the GC content is 35.2%. Repetitive sequences with the length of 30–35 bp account for 1.27% of the total chloroplast genome. The simple sequence repeats are all mononucleotide repeats. Codon usage analysis showed that the genome tended to use codon ending in A/U. By comparing the length of different regions of Trebouxiophyceae genomes, we found that the changes in the length of exons, introns, and intergenic sequences affect the size of genomes. Trebouxiophyceae had an unstable chloroplast genome structure, with IRs repeatedly losing during evolution. Phylogenetic analysis showed that Trebouxiophyceae is paraphyletic, and Trebouxiophyceae sp. DW1 is sister to the clade of Koliella longiseta and Pabia signiensis.
Collapse
Affiliation(s)
- Lidan Wang
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
| | - Shenglu Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Fang
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Reyim Mamut
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
- Correspondence: (R.M.); (P.L.)
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (R.M.); (P.L.)
| |
Collapse
|
6
|
Xu Y, Wang H, Sahu SK, Li L, Liang H, Günther G, Wong GKS, Melkonian B, Melkonian M, Liu H, Wang S. Chromosome-level genome of Pedinomonas minor (Chlorophyta) unveils adaptations to abiotic stress in a rapidly fluctuating environment. THE NEW PHYTOLOGIST 2022; 235:1409-1425. [PMID: 35560066 DOI: 10.1111/nph.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The Pedinophyceae (Viridiplantae) comprise a class of small uniflagellate algae with a pivotal position in the phylogeny of the Chlorophyta as the sister group of the 'core chlorophytes'. We present a chromosome-level genome assembly of the freshwater type species of the class, Pedinomonas minor. We sequenced the genome using Pacbio, Illumina and Hi-C technologies, performed comparative analyses of genome and gene family evolution, and analyzed the transcriptome under various abiotic stresses. Although the genome is relatively small (55 Mb), it shares many traits with core chlorophytes including number of introns and protein-coding genes, messenger RNA (mRNA) lengths, and abundance of transposable elements. Pedinomonas minor is only bounded by the plasma membrane, thriving in temporary habitats that frequently dry out. Gene family innovations and expansions and transcriptomic responses to abiotic stresses have shed light on adaptations of P. minor to its fluctuating environment. Horizontal gene transfers from bacteria and fungi have possibly contributed to the evolution of some of these traits. We identified a putative endogenization site of a nucleocytoplasmic large DNA virus and hypothesized that endogenous viral elements donated foreign genes to the host genome, their spread enhanced by transposable elements, located at gene boundaries in several of the expanded gene families.
Collapse
Affiliation(s)
- Yan Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongli Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Hongping Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Gerd Günther
- Private Laboratory, Knittkuhler Str. 61, Düsseldorf, 40629, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Barbara Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Michael Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
7
|
Repetti SI, Iha C, Uthanumallian K, Jackson CJ, Chen Y, Chan CX, Verbruggen H. Nuclear genome of a pedinophyte pinpoints genomic innovation and streamlining in the green algae. THE NEW PHYTOLOGIST 2022; 233:2144-2154. [PMID: 34923642 DOI: 10.1111/nph.17926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The genomic diversity underpinning high ecological and species diversity in the green algae (Chlorophyta) remains little known. Here, we aimed to track genome evolution in the Chlorophyta, focusing on loss and gain of homologous genes, and lineage-specific innovations of the core Chlorophyta. We generated a high-quality nuclear genome for pedinophyte YPF701, a sister lineage to others in the core Chlorophyta and incorporated this genome in a comparative analysis with 25 other genomes from diverse Viridiplantae taxa. The nuclear genome of pedinophyte YPF701 has an intermediate size and gene number between those of most prasinophytes and the remainder of the core Chlorophyta. Our results suggest positive selection for genome streamlining in the Pedinophyceae, independent from genome minimisation observed among prasinophyte lineages. Genome expansion was predicted along the branch leading to the UTC clade (classes Ulvophyceae, Trebouxiophyceae and Chlorophyceae) after divergence from their last common ancestor with pedinophytes, with genomic novelty implicated in a range of basic biological functions. Results emphasise multiple independent signals of genome minimisation within the Chlorophyta, as well as the genomic novelty arising before diversification in the UTC clade, which may underpin the success of this species-rich clade in a diversity of habitats.
Collapse
Affiliation(s)
- Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| | | | | | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| |
Collapse
|
8
|
Metz S, Huber P, Accattatis V, Lopes Dos Santos A, Bigeard E, Unrein F, Chambouvet A, Not F, Lara E, Devercelli M. Freshwater protists: unveiling the unexplored in a large floodplain system. Environ Microbiol 2021; 24:1731-1745. [PMID: 34783136 DOI: 10.1111/1462-2920.15838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022]
Abstract
Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2 . We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.
Collapse
Affiliation(s)
- Sebastian Metz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, F-29280, France.,Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil.,Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Victoria Accattatis
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| | | | - Estelle Bigeard
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | | | - Fabrice Not
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Madrid, 28014, Spain
| | - Melina Devercelli
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
9
|
Tetraselmis jejuensis sp. nov. (Chlorodendrophyceae), a Euryhaline Microalga Found in Supralittoral Tide Pools at Jeju Island, Korea. PLANTS 2021; 10:plants10071289. [PMID: 34202885 PMCID: PMC8309209 DOI: 10.3390/plants10071289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
We found the euryhaline microalga, Tetraselmis jejuensis sp. nov., which was adapted to supralittoral tide pools with salinities varying from 0.3–3.1%. Fifteen strains of T. jejuensis were isolated from Daejeong (DJ) and Yongduam (YO), and clonal cultures were established in the laboratory. Morphological characterization revealed that the cells have a compressed shape, four flagella emerging from a depression near the apex in two opposite pairs, a cup-shaped chloroplast containing one pyrenoid surrounded by starch, and eyespot regions not located near the flagellar base. T. jejuensis cells showed distinct characteristics compared to other Tetraselmis species. First, a regular subunit pattern with honeycomb-like structures was predominantly displayed on the surface in the middle of the cell body. Second, the pyrenoid was invaded by both cytoplasmic channels comprising electron-dense material separated from the cytoplasm, and two branches of small cytoplasmic channels (canaliculi) in various directions, which characterize the subgenus Tetrathele. Eyespot regions containing a large number of osmiophilic globules, packed closely together and arranged in subcircular close packing of diverse sizes, were dispersed throughout the chloroplast. In the phylogenetic analysis of small subunit (SSU) rDNA sequences, the 15 strains isolated from DJ and YO separated a newly branched clade in the Chlorodendrophyceae at the base of a clade comprising the T. carteriiformi/subcordiformis clade, T. chuii/suecica clade, and T. striata/convolutae clade. The strains in the diverging clade were considered to belong to the same species. The SSU rDNA sequences of the DJ and YO strains showed a maximum difference of 1.53% and 1.19% compared to Tetraselmis suecica (MK541745), the closest species of the family based on the phylogenetic analysis, respectively. Based on morphological, molecular, and physiological features, we suggest a new species in the genus Tetraselmis named Tetraselmis jejuensis, with the species name “jejuensis” referring to the collection site, Jeju Island, Korea.
Collapse
|
10
|
Cai C, Gu K, Zhao H, Steinhagen S, He P, Wichard T. Screening and verification of extranuclear genetic markers in green tide algae from the Yellow Sea. PLoS One 2021; 16:e0250968. [PMID: 34061855 PMCID: PMC8168861 DOI: 10.1371/journal.pone.0250968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/18/2021] [Indexed: 11/18/2022] Open
Abstract
Over the past decade, Ulva compressa, a cosmopolitan green algal species, has been identified as a component of green tides in the Yellow Sea, China. In the present study, we sequenced and annotated the complete chloroplast genome of U. compressa (alpha-numeric code: RD9023) and focused on the assessment of genome length, homology, gene order and direction, intron size, selection strength, and substitution rate. We compared the chloroplast genome with the mitogenome. The generated phylogenetic tree was analyzed based on single and aligned genes in the chloroplast genome of Ulva compared to mitogenome genes to detect evolutionary trends. U. compressa and U. mutabilis chloroplast genomes had similar gene queues, with individual genes exhibiting high homology levels. Chloroplast genomes were clustered together in the entire phylogenetic tree and shared several forward/palindromic/tandem repetitions, similar to those in U. prolifera and U. linza. However, U. fasciata and U. ohnoi were more divergent, especially in sharing complementary/palindromic repetitions. In addition, phylogenetic analyses of the aligned genes from their chloroplast genomes and mitogenomes confirmed the evolutionary trends of the extranuclear genomes. From phylogenetic analysis, we identified the petA chloroplast genes as potential genetic markers that are similar to the tufA marker. Complementary/forward/palindromic interval repetitions were more abundant in chloroplast genomes than in mitogenomes. Interestingly, a few tandem repetitions were significant for some Ulva subspecies and relatively more evident in mitochondria than in chloroplasts. Finally, the tandem repetition [GAAATATATAATAATA × 3, abbreviated as TRg)] was identified in the mitogenome of U. compressa and the conspecific strain U. mutabilis but not in other algal species of the Yellow Sea. Owing to the high morphological plasticity of U. compressa, the findings of this study have implications for the rapid non-sequencing detection of this species during the occurrence of green tides in the region.
Collapse
Affiliation(s)
- Chuner Cai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Gu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Hui Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Sophie Steinhagen
- Department of Marine Sciences-Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
11
|
Li X, Hou Z, Xu C, Shi X, Yang L, Lewis LA, Zhong B. Large Phylogenomic Data sets Reveal Deep Relationships and Trait Evolution in Chlorophyte Green Algae. Genome Biol Evol 2021; 13:6265471. [PMID: 33950183 PMCID: PMC8271138 DOI: 10.1093/gbe/evab101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022] Open
Abstract
The chlorophyte green algae (Chlorophyta) are species-rich ancient groups ubiquitous in various habitats with high cytological diversity, ranging from microscopic to macroscopic organisms. However, the deep phylogeny within core Chlorophyta remains unresolved, in part due to the relatively sparse taxon and gene sampling in previous studies. Here we contribute new transcriptomic data and reconstruct phylogenetic relationships of core Chlorophyta based on four large data sets up to 2,698 genes of 70 species, representing 80% of extant orders. The impacts of outgroup choice, missing data, bootstrap-support cutoffs, and model misspecification in phylogenetic inference of core Chlorophyta are examined. The species tree topologies of core Chlorophyta from different analyses are highly congruent, with strong supports at many relationships (e.g., the Bryopsidales and the Scotinosphaerales-Dasycladales clade). The monophyly of Chlorophyceae and of Trebouxiophyceae as well as the uncertain placement of Chlorodendrophyceae and Pedinophyceae corroborate results from previous studies. The reconstruction of ancestral scenarios illustrates the evolution of the freshwater-sea and microscopic–macroscopic transition in the Ulvophyceae, and the transformation of unicellular→colonial→multicellular in the chlorophyte green algae. In addition, we provided new evidence that serine is encoded by both canonical codons and noncanonical TAG code in Scotinosphaerales, and stop-to-sense codon reassignment in the Ulvophyceae has originated independently at least three times. Our robust phylogenetic framework of core Chlorophyta unveils the evolutionary history of phycoplast, cyto-morphology, and noncanonical genetic codes in chlorophyte green algae.
Collapse
Affiliation(s)
- Xi Li
- College of Life Sciences, Nanjing Normal University, China
| | - Zheng Hou
- College of Life Sciences, Nanjing Normal University, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, China
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
12
|
Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 2020; 4:1220-1231. [PMID: 32572216 PMCID: PMC7455551 DOI: 10.1038/s41559-020-1221-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.
Collapse
Affiliation(s)
- Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Birger Marin
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Haoyuan Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tanja Reder
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Zehra Çebi
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany.
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Martínez-Alberola F, Barreno E, Casano LM, Gasulla F, Molins A, Moya P, González-Hourcade M, Del Campo EM. The chloroplast genome of the lichen-symbiont microalga Trebouxia sp. Tr9 (Trebouxiophyceae, Chlorophyta) shows short inverted repeats with a single gene and loss of the rps4 gene, which is encoded by the nucleus. JOURNAL OF PHYCOLOGY 2020; 56:170-184. [PMID: 31578712 DOI: 10.1111/jpy.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The Trebouxiophyceae is the class of Chlorophyta algae from which the highest number of chloroplast genome (cpDNA) sequences has been obtained. Several species in this class participate in symbioses with fungi to form lichens. However, no cpDNA has been obtained from any Trebouxia lichen-symbiont microalgae, which are present in approximately half of all lichens. Here, we report the sequence of the completely assembled cpDNA from Trebouxia sp. TR9 and a comparative study with other Trebouxio-phyceae. The organization of the chloroplast genome of Trebouxia sp. TR9 has certain features that are unusual in the Trebouxiophyceae and other green algae. The most remarkable characteristics are the presence of long intergenic spacers, a quadripartite structure with short inverted repeated sequences (IRs), and the loss of the rps4 gene. The presence of long intergenic spacers accounts for a larger cpDNA size in comparison to other closely related Trebouxiophyceae. The IRs, which were thought to be lost in the Trebouxiales, are distinct from most of cpDNAs since they lack the rRNA operon and uniquely includes the rbcL gene. The functional transfer of the rps4 gene to the nuclear genome has been confirmed by sequencing and examination of the gene architecture, which includes three spliceosomal introns as well as the verification of the presence of the corresponding transcript. This is the first documented transfer of the rps4 gene from the chloroplast to the nucleus among Viridiplantae. Additionally, a fairly well-resolved phylogenetic reconstruction, including Trebouxia sp. TR9 along with other Trebouxiophyceae, was obtained based on a set of conserved chloroplast genes.
Collapse
Affiliation(s)
- Fernando Martínez-Alberola
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Eva Barreno
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Leonardo M Casano
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Francisco Gasulla
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Arantzazu Molins
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Patricia Moya
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | | | - Eva M Del Campo
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
14
|
Cheng S, Xian W, Fu Y, Marin B, Keller J, Wu T, Sun W, Li X, Xu Y, Zhang Y, Wittek S, Reder T, Günther G, Gontcharov A, Wang S, Li L, Liu X, Wang J, Yang H, Xu X, Delaux PM, Melkonian B, Wong GKS, Melkonian M. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell 2019; 179:1057-1067.e14. [DOI: 10.1016/j.cell.2019.10.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
|
15
|
One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019; 574:679-685. [PMID: 31645766 PMCID: PMC6872490 DOI: 10.1038/s41586-019-1693-2] [Citation(s) in RCA: 1005] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/12/2019] [Indexed: 11/08/2022]
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
16
|
Phylogenomics Provides New Insights into Gains and Losses of Selenoproteins among Archaeplastida. Int J Mol Sci 2019; 20:ijms20123020. [PMID: 31226841 PMCID: PMC6627142 DOI: 10.3390/ijms20123020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Selenoproteins that contain selenocysteine (Sec) are found in all kingdoms of life. Although they constitute a small proportion of the proteome, selenoproteins play essential roles in many organisms. In photosynthetic eukaryotes, selenoproteins have been found in algae but are missing in land plants (embryophytes). In this study, we explored the evolutionary dynamics of Sec incorporation by conveying a genomic search for the Sec machinery and selenoproteins across Archaeplastida. We identified a complete Sec machinery and variable sizes of selenoproteomes in the main algal lineages. However, the entire Sec machinery was missing in the Bangiophyceae-Florideophyceae clade (BV) of Rhodoplantae (red algae) and only partial machinery was found in three species of Archaeplastida, indicating parallel loss of Sec incorporation in different groups of algae. Further analysis of genome and transcriptome data suggests that all major lineages of streptophyte algae display a complete Sec machinery, although the number of selenoproteins is low in this group, especially in subaerial taxa. We conclude that selenoproteins tend to be lost in Archaeplastida upon adaptation to a subaerial or acidic environment. The high number of redox-active selenoproteins found in some bloom-forming marine microalgae may be related to defense against viral infections. Some of the selenoproteins in these organisms may have been gained by horizontal gene transfer from bacteria.
Collapse
|
17
|
Milyutina IA, Belevich TA, Ilyash LV, Troitsky AV. Insight into picophytoplankton diversity of the subarctic White Sea-The first recording of Pedinophyceae in environmental DNA. Microbiologyopen 2019; 8:e892. [PMID: 31184446 PMCID: PMC6813492 DOI: 10.1002/mbo3.892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Operational taxonomic units 94%-95% similar to the known Pedinophyceae were found as a result of high-through sequencing of 18S rDNA V4 amplicons of environmental DNA from the summer picophytoplankton samples from the White Sea. Partial sequence of a ribosomal operon (the 5,298 bp includes partial 18S and 28S rDNA, complete 5.8S rDNA, ITS1, and ITS2 sequences) and a partial 2,112 bp chloroplast 23S rDNA sequence White Sea Pedinophyceae was amplified from metagenomic DNA by specific primers and sequenced. A new phylotype was designated as uncultured Pedinophyceae WS. On Chlorophyta phylogenetic trees the discovered phylotype occupies a basal position in the Marsupiomonadales clade. The synapomorphic base substitutions in rRNA hairpins confirm the relationship of Pedinophyceae WS to Marsupiomonadales and its difference from known genera of the order. The obtained results extend knowledge of picophytoplankton diversity in subarctic waters.
Collapse
MESH Headings
- Arctic Regions
- Biodiversity
- Cluster Analysis
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Environmental/chemistry
- DNA, Environmental/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Phylogeny
- Phytoplankton/classification
- Phytoplankton/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Irina A. Milyutina
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | | | | | - Aleksey V. Troitsky
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
18
|
Fučíková K, Lewis PO, Neupane S, Karol KG, Lewis LA. Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae. PeerJ 2019; 7:e6899. [PMID: 31143537 PMCID: PMC6525593 DOI: 10.7717/peerj.6899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions.
Collapse
Affiliation(s)
- Karolina Fučíková
- Department of Natural Sciences, Assumption College, Worcester, MA, United States of America
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Suman Neupane
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Kenneth G Karol
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY, United States of America
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
19
|
Gong S, Li Z, Zhang F, Xiao Y, Cheng H. Symbiochlorum hainanensis gen. et sp. nov. (Ulvophyceae, Chlorophyta) isolated from bleached corals living in the South China Sea. JOURNAL OF PHYCOLOGY 2018; 54:811-817. [PMID: 30137670 DOI: 10.1111/jpy.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/06/2018] [Indexed: 05/19/2023]
Abstract
Light/scanning electron/transmission microscopy-based morphological analyses and multiple nucleotide sequences-based molecular phylogenetic analyses are used to identify and assess the phylogenetic position of a new unidentified green alga isolated from bleached corals living in the South China Sea. This new unidentified green alga is a unicellular marine alga and has uninucleate vegetative cells and multiple chloroplasts with a pyrenoid. It can form aplanosporangium covered by cell walls and reproduces by releasing autospore. These features differ substantially from those of the two genera Ignatius and Pseudocharacium. Those two genera have been accommodated in the Ignatius clade. Nucleotide sequences of the nuclear small subunit ribosomal RNA gene (18S rRNA), internal transcribed spacer 2 of ribosomal RNA gene (ITS2) and ribulose-1,5 bisphosphate carboxylase/oxygenase large subunit gene (rbcL, partial) are obtained and compared with published green algal sequences. The results from the morphology, ultrastructure, and multiple nucleotide sequences data support the placement of the new unidentified green alga in Ulvophyceae. This new unidentified isolate is described as Symbiochlorum hainanensis gen. et sp. nov., a new sister lineage to the Ignatius clade, Ulvophyceae, Chlorophyta.
Collapse
Affiliation(s)
- Sanqiang Gong
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fengli Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yilin Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Cheng
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
20
|
Sausen N, Malavasi V, Melkonian M. Molecular phylogeny, systematics, and revision of the type species of Lobomonas, L. francei (Volvocales, Chlorophyta) and closely related taxa. JOURNAL OF PHYCOLOGY 2018; 54:198-214. [PMID: 29278416 DOI: 10.1111/jpy.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
In the present study, three new strains of the rare volvocalean green alga Lobomonas were isolated from field-collected samples, one from Sardinia (Italy) and two from Argentina, and comparatively studied. The Sardinian and one of the Argentinian strains were identified as Lobomonas francei, the type species of the genus, whereas the second Argentinian strain corresponded to L. panduriformis. Two additional nominal species of Lobomonas from culture collections (L. rostrata and L. sphaerica) were included in the analysis and shown to be morphologically and molecularly identical to the L. francei strains. The presence, number, and shapes of cell wall lobes, the diagnostic criterion of Lobomonas, were shown to be highly variable depending on the chemical composition of the culture medium used. The analyses by SEM gave evidence that the cell wall lobes in Lobomonas originate at the junctions of adjacent cell wall plates by extrusion of gelatinous material. The four L. francei strains had identical nrRNA gene sequences and differed by only one or two substitutions in the ITS1 + ITS2 sequences. In the phylogenetic analyses, L. francei and L. panduriformis were sister taxa; however, another nominal Lobomonas species (L. monstruosa) did not belong to this genus. Lobomonas, together with taxa designated as Vitreochlamys, Tetraspora, and Paulschulzia, formed a monophyletic group that in the combined analyses was sister to the "Chlamydomonas/Volvox-clade." Based on these results, Lobomonas was revised, the diagnosis of the type species emended, a lectotype and an epitype designated, and several taxa synonymized with the type species.
Collapse
Affiliation(s)
- Nicole Sausen
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Str. 47 b, Cologne, 50674, Germany
| | - Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Str. 47 b, Cologne, 50674, Germany
| |
Collapse
|
21
|
Chloropicophyceae, a new class of picophytoplanktonic prasinophytes. Sci Rep 2017; 7:14019. [PMID: 29070840 PMCID: PMC5656628 DOI: 10.1038/s41598-017-12412-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/04/2017] [Indexed: 11/08/2022] Open
Abstract
Prasinophytes are a paraphyletic group of nine lineages of green microalgae that are currently classified either at the class or order level or as clades without formal taxonomic description. Prasinophyte clade VII comprises picoplanktonic algae that are important components of marine phytoplankton communities, particularly in moderately oligotrophic waters. Despite first being cultured in the 1960s, this clade has yet to be formally described. Previous phylogenetic analyses using the 18S rRNA gene divided prasinophyte clade VII into three lineages, termed A, B and C, the latter formed by a single species, Picocystis salinarum, that to date has only been found in saline lakes. Strains from lineages A and B cannot be distinguished by light microscopy and have very similar photosynthetic pigment profiles corresponding to the prasino-2A pigment group. We obtained phenotypic and genetic data on a large set of prasinophyte clade VII culture strains that allowed us to clarify the taxonomy of this important marine group. We describe two novel classes, the Picocystophyceae and the Chloropicophyceae, the latter containing two novel genera, Chloropicon and Chloroparvula, and eight new species of marine picoplanktonic green algae.
Collapse
|
22
|
Dahmen-Ben Moussa I, Chtourou H, Karray F, Sayadi S, Dhouib A. Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. BIORESOURCE TECHNOLOGY 2017; 238:325-332. [PMID: 28456040 DOI: 10.1016/j.biortech.2017.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 05/12/2023]
Abstract
The objective of this study was to investigate the accumulation of lipid and photosynthetic pigments from Tetraselmis marina. When the cells were grown in F/2-medium for seven days in the first stage, the carotenoid and lipid contents, and productivity were 44g/kg (DW), 27% and 31mg/L/d, respectively. After second stage of cultivation of T. marina for further 3-days under N-replete condition (4.41mM NaNO3) increased biomass concentration of 1900mg/L and lipid content of 50% were observed, with an enhanced lipid productivity of 86.36mg/L/d and SFA and MUFA fractions of 70.76 and 13.14%, respectively. However, under P-repletion (2.08mM NaH2PO4), its carotenoid content increased to 89.23g/kg and its PUFA for 65% of total lipids. Results showed that N and P-replete conditions decreased SOD activity and increased H2O2 and TBARS levels of T. marina. Thus, this native microalga strain could be a potent candidate for feed, food or biofuel production.
Collapse
Affiliation(s)
- Ines Dahmen-Ben Moussa
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia.
| | - Haifa Chtourou
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia
| | - Abdelhafidh Dhouib
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia
| |
Collapse
|
23
|
|
24
|
Nakada T, Tomita M. Morphology and phylogeny of a new wall-less freshwater volvocalean flagellate, Hapalochloris nozakii gen. et sp. nov. (Volvocales, Chlorophyceae). JOURNAL OF PHYCOLOGY 2017; 53:108-117. [PMID: 27767210 DOI: 10.1111/jpy.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
New strains of a wall-less unicellular volvocalean flagellate were isolated from a freshwater environment in Japan. Observations of the alga, described here as Hapalochloris nozakii Nakada, gen. et sp. nov., were made using light, fluorescence, and electron microscopy. Each vegetative cell had two flagella, four contractile vacuoles, and a spirally furrowed cup-shaped chloroplast with an axial pyrenoid, and mitochondria located in the furrows. Based on the morphology, H. nozakii was distinguished from other known wall-less volvocalean flagellates. Under electron microscopy, fibrous material, instead of a cell wall and dense cortical microtubules, was observed outside and inside the cell membrane, respectively. Based on the phylogenetic analyses of 18S rRNA gene sequences, H. nozakii was found to be closely related to Asterococcus, Oogamochlamys, Rhysamphichloris, and "Dunaliella" lateralis and was separated from other known wall-less flagellate volvocaleans, indicating independent secondary loss of the cell wall in H. nozakii. In the combined 18S rRNA and chloroplast gene tree, H. nozakii was sister to Lobochlamys.
Collapse
Affiliation(s)
- Takashi Nakada
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
25
|
Lopes Dos Santos A, Gourvil P, Tragin M, Noël MH, Decelle J, Romac S, Vaulot D. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME JOURNAL 2016; 11:512-528. [PMID: 27779617 DOI: 10.1038/ismej.2016.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
Prasinophytes clade VII is a group of pico/nano-planktonic green algae (division Chlorophyta) for which numerous ribosomal RNA (rRNA) sequences have been retrieved from the marine environment in the last 15 years. A large number of strains have also been isolated but have not yet received a formal taxonomic description. A phylogenetic analysis of available strains using both the nuclear 18S and plastidial 16S rRNA genes demonstrates that this group composes at least 10 different clades: A1-A7 and B1-B3. Analysis of sequences from the variable V9 region of the 18S rRNA gene collected during the Tara Oceans expedition and in the frame of the Ocean Sampling Day consortium reveal that clade VII is the dominant Chlorophyta group in oceanic waters, replacing Mamiellophyceae, which have this role in coastal waters. At some location, prasinophytes clade VII can even be the dominant photosynthetic eukaryote representing up to 80% of photosynthetic metabarcodes overall. B1 and A4 are the overall dominant clades and different clades seem to occupy distinct niches, for example, A6 is dominant in surface Mediterranean Sea waters, whereas A4 extend to high temperate latitudes. Our work demonstrates that prasinophytes clade VII constitute a highly diversified group, which is a key component of phytoplankton in open oceanic waters but has been neglected in the conceptualization of marine microbial diversity and carbon cycle.
Collapse
Affiliation(s)
- Adriana Lopes Dos Santos
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 Station Biologique de Roscoff, Roscoff, France
| | - Priscillia Gourvil
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 Station Biologique de Roscoff, Roscoff, France
| | - Margot Tragin
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 Station Biologique de Roscoff, Roscoff, France
| | | | - Johan Decelle
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 Station Biologique de Roscoff, Roscoff, France.,Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sarah Romac
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 Station Biologique de Roscoff, Roscoff, France
| | - Daniel Vaulot
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
26
|
Ganuza E, Sellers CE, Bennett BW, Lyons EM, Carney LT. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus. Front Microbiol 2016; 7:848. [PMID: 27379027 PMCID: PMC4913114 DOI: 10.3389/fmicb.2016.00848] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The “crash” of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The pH-shock treatment is highly selective against prokaryotes, and it is a cost-effective treatment that can be used throughout the scale up and production process. To our knowledge, the treatment described here is the first effective control of V. chlorellavorus and will be an important tool for the microalgal industry and biofuel research.
Collapse
Affiliation(s)
- Eneko Ganuza
- Microbiology Group, Heliae Development LLC, Gilbert, AZ, USA
| | | | - Braden W Bennett
- Molecular Ecology Group, Heliae Development LLC, Gilbert, AZ, USA
| | - Eric M Lyons
- Microbiology Group, Heliae Development LLC, Gilbert, AZ, USA
| | - Laura T Carney
- Molecular Ecology Group, Heliae Development LLC, Gilbert, AZ, USA
| |
Collapse
|
27
|
Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci Rep 2016; 6:25367. [PMID: 27157793 PMCID: PMC4860620 DOI: 10.1038/srep25367] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023] Open
Abstract
The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov.
Collapse
|
28
|
Wang L, Lin X, Goes JI, Lin S. Phylogenetic Analyses of Three Genes of Pedinomonas noctilucae, the Green Endosymbiont of the Marine Dinoflagellate Noctiluca scintillans, Reveal its Affiliation to the Order Marsupiomonadales (Chlorophyta, Pedinophyceae) under the Reinstated Name Protoeuglena noctilucae. Protist 2016; 167:205-16. [PMID: 27033730 DOI: 10.1016/j.protis.2016.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 11/16/2022]
Abstract
In the last decade, field studies in the northern Arabian Sea showed a drastic shift from diatom-dominated phytoplankton blooms to thick and widespread blooms of the green dinoflagellate, Noctiluca scintillans. Unlike the exclusively heterotrophic red form, which occurs widely in tropical to temperate coastal waters, the green Noctiluca contains a large number of endosymbiotic algal cells that can perform photosynthesis. These symbiotic microalgae were first described under the genus Protoeuglena Subrahmanyan and further transferred to Pedinomonas as P. noctilucae Sweeney. In this study, we used the 18S rDNA, rbcL and chloroplast 16S rDNA as gene markers, in combination with the previously reported morphological features, to re-examine the phylogenetic position of this endosymbiotic algal species. Phylogenetic trees inferred from these genes consistently indicated that P. noctilucae is distantly related to the type species of Pedinomonas. The sequences formed a monophyletic clade sister to the clade of Marsupiomonas necessitating the placement of the algal symbionts as an independent genus within the family Marsupiomonadaceae. Based on the phylogenetic affiliation and ecological characteristics of this alga as well as the priority rule of nomenclature, we reinstate the genus Protoeuglena and reclassify the endosymbiont as Protoeuglena noctilucae.
Collapse
Affiliation(s)
- Lu Wang
- Marine Biodiversity and Global Change Research Center and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Xin Lin
- Marine Biodiversity and Global Change Research Center and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Joaquim I Goes
- Lamont Doherty Earth Observatory at Columbia University, Palisades, New York 10964, USA
| | - Senjie Lin
- Marine Biodiversity and Global Change Research Center and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
29
|
Sun L, Fang L, Zhang Z, Chang X, Penny D, Zhong B. Chloroplast Phylogenomic Inference of Green Algae Relationships. Sci Rep 2016; 6:20528. [PMID: 26846729 PMCID: PMC4742797 DOI: 10.1038/srep20528] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.
Collapse
Affiliation(s)
- Linhua Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Fang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xin Chang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Bojian Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
30
|
Turmel M, de Cambiaire JC, Otis C, Lemieux C. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881. PLoS One 2016; 11:e0148934. [PMID: 26849226 PMCID: PMC4743939 DOI: 10.1371/journal.pone.0148934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/23/2016] [Indexed: 12/29/2022] Open
Abstract
The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Jean-Charles de Cambiaire
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
| |
Collapse
|
31
|
Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica. J Biosci 2015; 40:921-7. [PMID: 26648037 DOI: 10.1007/s12038-015-9576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first green alga, the 'ancestral green flagellate'. Relatively large-celled unicellular eukaryotic phytoflagellates (such as Tetraselmis and Scherffelia), traditionally placed in Prasinophyceae but now considered as members of Chlorodendrophyceae (core Chlorophyta), have retained some primitive characteristics of prasinophytes. These organisms share several ultrastructural features with the other core chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae as the evolutionary link between cellular individuality and cellular cooperation has been largely unstudied. Here, we show that clonal populations of a unicellular chlorophyte, Tetraselmis indica, consist of morphologically and ultrastructurally variant cells which arise through asymmetric cell division. These cells also differ in their physiological properties. The structural and physiological differences in the clonal cell population correlate to a certain extent with the longevity and function of cells.
Collapse
|
32
|
Sciuto K, Lewis LA, Verleyen E, Moro I, La Rocca N. Chodatodesmus australis sp. nov. (Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov. JOURNAL OF PHYCOLOGY 2015; 51:1172-1188. [PMID: 26987011 DOI: 10.1111/jpy.12355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The family Scenedesmaceae is a taxonomically complicated group due to its simple morphology, high phenotypic plasticity, and the presence of cryptic taxa. Over the years several taxonomic revisions, based on molecular data, affected the family. Here, we describe a new scenedesmacean species from Antarctica, Chodatodesmus australis, based on phylogenetic analyses of data from nuclear (ITS2 spacer, 18S rDNA), and plastid (rbcL, tufA) markers. Morphological (LM and SEM) and ultrastructural (TEM) observations, carried out both on the holotype of C. australis and on the generitype of Chodatodesmus, allow us to emend the original generic description of this genus. Our molecular and phylogenetic data also reveal the existence of a new monotypic genus, Flechtneria, inside the family Scenedesmaceae and lead to the taxonomic reassignment of some microalgal strains available in International Culture Collections to new taxa. Of the considered genomic regions, the tufA gene was the easiest to amplify and sequence and it showed the highest phylogenetic signal, even if the number of sequences already available for this marker in the public databases was considerably lower than for the other chosen loci. The rbcL gene also provided good phylogenetic signal, but its amplification and sequencing were generally more problematic. The nuclear markers gave lower phylogenetic signals, but the 18S rDNA allowed distinction at the genus level and the ITS2 spacer had the advantage that secondary structures could be considered in the analyses. The use of more than one molecular locus is suggested to obtain reliable results in the characterization of scenedesmacean strains.
Collapse
Affiliation(s)
- Katia Sciuto
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova, 35131, Italy
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043, USA
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 - S8, Gent, 9000, Belgium
| | - Isabella Moro
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova, 35131, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, via U. Bassi 58/B, Padova, 35131, Italy
| |
Collapse
|
33
|
Abstract
Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. Phytochromes are red-light photoreceptors in plants that regulate key life cycle processes, yet their evolutionary origins are not well understood. Using transcriptomic and genomic data, Li et al. find that canonical plant phytochromes originated in a common ancestor of land plants and charophyte algae.
Collapse
|
34
|
Turmel M, Otis C, Lemieux C. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae. Genome Biol Evol 2015; 7:2062-82. [PMID: 26139832 PMCID: PMC4524492 DOI: 10.1093/gbe/evv130] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/21/2023] Open
Abstract
Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
35
|
Melton JT, Leliaert F, Tronholm A, Lopez-Bautista JM. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta). PLoS One 2015; 10:e0121020. [PMID: 25849557 PMCID: PMC4388391 DOI: 10.1371/journal.pone.0121020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).
Collapse
Affiliation(s)
- James T. Melton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
- * E-mail:
| | - Frederik Leliaert
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium
| | - Ana Tronholm
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, United States of America
| | - Juan M. Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0345, United States of America
| |
Collapse
|
36
|
Leliaert F, Lopez-Bautista JM. The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin. BMC Genomics 2015; 16:204. [PMID: 25879186 PMCID: PMC4487195 DOI: 10.1186/s12864-015-1418-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/28/2015] [Indexed: 12/31/2022] Open
Abstract
Background Species of Bryopsidales form ecologically important components of seaweed communities worldwide. These siphonous macroalgae are composed of a single giant tubular cell containing millions of nuclei and chloroplasts, and harbor diverse bacterial communities. Little is known about the diversity of chloroplast genomes (cpDNAs) in this group, and about the possible consequences of intracellular bacteria on genome composition of the host. We present the complete cpDNAs of Bryopsis plumosa and Tydemania expeditiones, as well as a re-annotated cpDNA of B. hypnoides, which was shown to contain a higher number of genes than originally published. Chloroplast genomic data were also used to evaluate phylogenetic hypotheses in the Chlorophyta, such as monophyly of the Ulvophyceae (the class in which the order Bryopsidales is currently classified). Results Both DNAs are circular and lack a large inverted repeat. The cpDNA of B. plumosa is 106,859 bp long and contains 115 unique genes. A 13 kb region was identified with several freestanding open reading frames (ORFs) of putative bacterial origin, including a large ORF (>8 kb) closely related to bacterial rhs-family genes. The cpDNA of T. expeditiones is 105,200 bp long and contains 125 unique genes. As in B. plumosa, several regions were identified with ORFs of possible bacterial origin, including genes involved in mobile functions (transposases, integrases, phage/plasmid DNA primases), and ORFs showing close similarity with bacterial DNA methyltransferases. The cpDNA of B. hypnoides differs from that of B. plumosa mainly in the presence of long intergenic spacers, and a large tRNA region. Chloroplast phylogenomic analyses were largely inconclusive with respect to monophyly of the Ulvophyceae, and the relationship of the Bryopsidales within the Chlorophyta. Conclusions The cpDNAs of B. plumosa and T. expeditiones are amongst the smallest and most gene dense chloroplast genomes in the core Chlorophyta. The presence of bacterial genes, including genes typically found in mobile elements, suggest that these have been acquired through horizontal gene transfer, which may have been facilitated by the occurrence of obligate intracellular bacteria in these siphonous algae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1418-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik Leliaert
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA. .,Department of Biology, Marine Biology Research Group, Ghent University, Krijgslaan 281-S8, Ghent, 9000, Belgium.
| | | |
Collapse
|
37
|
Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, Wilhelm C, Goss R. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:92-103. [PMID: 25240793 DOI: 10.1016/j.jplph.2014.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 05/10/2023]
Abstract
In the present study the non-photochemical quenching (NPQ) of four biofilm-forming and two planktonic green algae was investigated by fluorescence measurements, determinations of the light-driven proton gradient and determination of the violaxanthin cycle activity by pigment analysis. It was observed that, despite the common need for efficient photoprotection, the structural basis of NPQ was heterogeneous in the different species. Three species, namely Chlorella saccharophila, Chlorella vulgaris and Bracteacoccus minor, exhibited a zeaxanthin-dependent NPQ, while in the three other species, Tetracystis aeria, Pedinomonas minor and Chlamydomonas reinhardtii violaxanthin de-epoxidation was absent or unrelated to the establishment of NPQ. Acclimation of the algae to high light conditions induced an increase of the NPQ activity, suggesting that a significant part of the overall NPQ was rather inducible than constitutively present in the green algae. Comparing the differences in the NPQ mechanisms with the phylogenetic position of the six algal species led to the conclusion that the NPQ heterogeneity observed in the present study was not related to the phylogeny of the algae but to the environmental selection pressure. Finally, the difference in the NPQ mechanisms in the different species is discussed within the frame of the current NPQ models.
Collapse
Affiliation(s)
- Theresa Quaas
- Department of Plant Physiology, University of Leipzig, Johannisallee 23, D-04103 Leipzig, Germany
| | - Silvia Berteotti
- Department of Plant Physiology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Plant Physiology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Kerstin Flieger
- Department of Plant Physiology, University of Leipzig, Johannisallee 23, D-04103 Leipzig, Germany
| | - Roberto Bassi
- Department of Plant Physiology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Christian Wilhelm
- Department of Plant Physiology, University of Leipzig, Johannisallee 23, D-04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Reimund Goss
- Department of Plant Physiology, University of Leipzig, Johannisallee 23, D-04103 Leipzig, Germany.
| |
Collapse
|
38
|
FuÄÃková K, Leliaert F, Cooper ED, Å kaloud P, D'Hondt S, De Clerck O, Gurgel CFD, Lewis LA, Lewis PO, Lopez-Bautista JM, Delwiche CF, Verbruggen H. New phylogenetic hypotheses for the core Chlorophyta based on chloroplast sequence data. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Lemieux C, Otis C, Turmel M. Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics 2014; 15:857. [PMID: 25281016 PMCID: PMC4194372 DOI: 10.1186/1471-2164-15-857] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022] Open
Abstract
Background Because they represent the earliest divergences of the Chlorophyta, the morphologically diverse unicellular green algae making up the prasinophytes hold the key to understanding the nature of the first viridiplants and the evolutionary patterns that accompanied the radiation of chlorophytes. Nuclear-encoded 18S rDNA phylogenies unveiled nine prasinophyte clades (clades I through IX) but their branching order is still uncertain. We present here the newly sequenced chloroplast genomes of Nephroselmis astigmatica (clade III) and of five picoplanktonic species from clade VI (Prasinococcus sp. CCMP 1194, Prasinophyceae sp. MBIC 106222 and Prasinoderma coloniale) and clade VII (Picocystis salinarum and Prasinophyceae sp. CCMP 1205). These chloroplast DNAs (cpDNAs) were compared with those of the six previously sampled prasinophytes (clades I, II, III and V) in order to gain information both on the relationships among prasinophyte lineages and on chloroplast genome evolution. Results Varying from 64.3 to 85.6 kb in size and encoding 100 to 115 conserved genes, the cpDNAs of the newly investigated picoplanktonic species are substantially smaller than those observed for larger-size prasinophytes, are economically packed and contain a reduced gene content. Although the Nephroselmis and Picocystis cpDNAs feature a large inverted repeat encoding the rRNA operon, gene partitioning among the single copy regions is remarkably different. Unexpectedly, we found that all three species from clade VI (Prasinococcales) harbor chloroplast genes not previously documented for chlorophytes (ndhJ, rbcR, rpl21, rps15, rps16 and ycf66) and that Picocystis contains a trans-spliced group II intron. The phylogenies inferred from cpDNA-encoded proteins are essentially congruent with 18S rDNA trees, resolving with robust support all six examined prasinophyte lineages, with the exception of the Pycnococcaceae. Conclusions Our results underscore the high variability in genome architecture among prasinophyte lineages, highlighting the strong pressure to maintain a small and compact chloroplast genome in picoplanktonic species. The unique set of six chloroplast genes found in the Prasinococcales supports the ancestral status of this lineage within the prasinophytes. The widely diverging traits uncovered for the clade-VII members (Picocystis and Prasinophyceae sp. CCMP 1205) are consistent with their resolution as separate lineages in the chloroplast phylogeny.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de biologie intégrative et des systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | | |
Collapse
|
40
|
Lemieux C, Otis C, Turmel M. Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae. BMC Evol Biol 2014; 14:211. [PMID: 25270575 PMCID: PMC4189289 DOI: 10.1186/s12862-014-0211-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/24/2014] [Indexed: 11/13/2022] Open
Abstract
Background The green algae represent one of the most successful groups of photosynthetic eukaryotes, but compared to their land plant relatives, surprisingly little is known about their evolutionary history. This is in great part due to the difficulty of recognizing species diversity behind morphologically similar organisms. The Trebouxiophyceae is a species-rich class of the Chlorophyta that includes symbionts (e.g. lichenized algae) as well as free-living green algae. Members of this group display remarkable ecological variation, occurring in aquatic, terrestrial and aeroterrestrial environments. Because a reliable backbone phylogeny is essential to understand the evolutionary history of the Trebouxiophyceae, we sought to identify the relationships among the major trebouxiophycean lineages that have been previously recognized in nuclear-encoded 18S rRNA phylogenies. To this end, we used a chloroplast phylogenomic approach. Results We determined the sequences of 29 chlorophyte chloroplast genomes and assembled amino acid and nucleotide data sets derived from 79 chloroplast genes of 61 chlorophytes, including 35 trebouxiophyceans. The amino acid- and nucleotide-based phylogenies inferred using maximum likelihood and Bayesian methods and various models of sequence evolution revealed essentially the same relationships for the trebouxiophyceans. Two major groups were identified: a strongly supported clade of 29 taxa (core trebouxiophyceans) that is sister to the Chlorophyceae + Ulvophyceae and a clade comprising the Chlorellales and Pedinophyceae that represents a basal divergence relative to the former group. The core trebouxiophyceans form a grade of strongly supported clades that include a novel lineage represented by the desert crust alga Pleurastrosarcina brevispinosa. The assemblage composed of the Oocystis and Geminella clades is the deepest divergence of the core trebouxiophyceans. Like most of the chlorellaleans, early-diverging core trebouxiophyceans are predominantly planktonic species, whereas core trebouxiophyceans occupying more derived lineages are mostly terrestrial or aeroterrestrial algae. Conclusions Our phylogenomic study provides a solid foundation for addressing fundamental questions related to the biology and ecology of the Trebouxiophyceae. The inferred trees reveal that this class is not monophyletic; they offer new insights not only into the internal structure of the class but also into the lifestyle of its founding members and subsequent adaptations to changing environments.
Collapse
Affiliation(s)
- Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Medicine, Pavillon Marchand, Québec, G1V 0A6, Canada.
| | | | | |
Collapse
|
41
|
Hoshina R. DNA analyses of a private collection of microbial green algae contribute to a better understanding of microbial diversity. BMC Res Notes 2014; 7:592. [PMID: 25182710 PMCID: PMC4167140 DOI: 10.1186/1756-0500-7-592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background DNA comparison is becoming the leading approach to the analysis of microbial diversity. For eukaryotes, the internal transcribed spacer 2 (ITS2) has emerged as a conspicuous molecule that is useful for distinguishing between species. Because of the small number of usable ITS data in GenBank, ITS2 sequence comparisons have only been used for limited taxa. However, major institutions with planktonic algal culture collections have now released small subunit (SSU) to ITS rDNA sequence data for their collections. This development has uplifted the level of molecular systematics for these algae. Results Forty-three strains of green algae isolated from German inland waters were investigated by using SSU-ITS rDNA sequencing. The strains were isolated through the direct plating method. Many of the strains went extinct during the years of culture. Thus, it could be expected that the surviving strains would be common, vigorous species. Nevertheless, 12 strains did not match any known species for which rDNA sequences had been determined. Furthermore, the identity of one strain was uncertain even at the genus level. Conclusions The aforementioned results show that long-forgotten and neglected collections may be of great significance in understanding microbial diversity, and that much work still needs to be done before the diversity of freshwater green algae can be fully described.
Collapse
Affiliation(s)
- Ryo Hoshina
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, 526-0829 Nagahama, Shiga, Japan.
| |
Collapse
|
42
|
Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. BMC Genomics 2014; 15:374. [PMID: 24885563 PMCID: PMC4035089 DOI: 10.1186/1471-2164-15-374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution. RESULTS The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny. CONCLUSIONS We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.
Collapse
|
43
|
Novis PM, Smissen R, Buckley TR, Gopalakrishnan K, Visnovsky G. Inclusion of chloroplast genes that have undergone expansion misleads phylogenetic reconstruction in the Chlorophyta. AMERICAN JOURNAL OF BOTANY 2013; 100:2194-2209. [PMID: 24148615 DOI: 10.3732/ajb.1200584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Chlorophytes comprise a substantial proportion of green plant diversity. However, sister-group relationships and circumscription of the classes Chlorophyceae, Trebouxiophyceae, and Ulvophyceae have been problematic to resolve. Some analyses support a sister relationship between the trebouxiophycean Leptosira and chlorophyceans, potentially altering the circumscription of two classes, also supported by a shared fragmentation in the chloroplast gene rpoB. We sought to determine whether the latter is a synapomorphy or whether the supporting analyses are vulnerable to systematic bias. METHODS We sequenced a portion of rpoB spanning the fragmented region in strains for which it had not previously been sampled: four Chlorophyceae, six counterclockwise (CCW) group (ulvophyceans and trebouxiophyceans) and one streptophyte. We then explored the effect of subsampling proteins and taxa on phylogenetic reconstruction from a data set of 41 chloroplast proteins. KEY RESULTS None of the CCW or streptophyte strains possessed the split in rpoB, including inferred near relatives of Leptosira, but it was found in all chlorophycean strains. We reconstructed alternative phylogenies (Leptosira + Chlorophyceae and Leptosira + Chlorellales) using two different protein groups (Rpo and Rps), both subject to coding-region expansion. A conserved region of RpoB remained suitable for analysis of more recent divergences. CONCLUSIONS The Rps sequences can explain earlier findings linking Leptosira with the Chlorophyceae and should be excluded from phylogenetic analyses attempting to resolve deep nodes because their expansion violates the assumptions of substitution models. We reaffirm that Leptosira is a trebouxiophycean and that fragmentation of rpoB has occurred at least twice in chlorophyte evolution.
Collapse
Affiliation(s)
- Phil M Novis
- Allan Herbarium, Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
| | | | | | | | | |
Collapse
|
44
|
Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A. A newly isolatedChlorellasp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 2013; 86:373-80. [DOI: 10.1111/1574-6941.12162] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Haim Treves
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Omri M. Finkel
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Simon M. Berkowicz
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Yoram Shotland
- Chemical Engineering; Shamoon College of Engineering; Beer Sheva Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences; Edmond J. Safra Campus - Givat Ram; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
45
|
Caisová L, Marin B, Melkonian M. A consensus secondary structure of ITS2 in the chlorophyta identified by phylogenetic reconstruction. Protist 2013; 164:482-96. [PMID: 23770573 DOI: 10.1016/j.protis.2013.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The definition of species plays a pivotal role in biology. It has been proposed that Compensatory Base Changes (CBCs) in the fast-evolving Internal Transcribed Spacer 2 (ITS2) correlate with speciation and thus can be used to distinguish species. The applicability of CBC - based species concepts using ITS2, however, rests on the homology of the investigated ITS2 positions. We studied the ITS2 molecule of 147 strains of Chlorophyceae (Chlorophyta, Viridiplantae) including 26 new sequences in the order Chaetophorales, and compared their secondary structures to ITS2 in the sister class Ulvophyceae, represented by the order Ulvales. Using a phylogenetic/comparative approach, it was possible to identify 1) the first consensus structure model of the ITS2 molecule that can be applied to two classes of green algae [Ulvophyceae (Ulvales), Chlorophyceae] and 2) landmarks (the spacer regions separating the ITS2 Helices) for more robust prediction of the secondary structures in green algae. Moreover, we found that CBCs in homologous positions in these 147 strains (representing 115 validly described species) are either completely absent or mostly associated with internal branches representing higher order taxonomic levels (genera, families, orders). As reported for the Ulvales, CBCs are not diagnostic at the species level in the dataset used.
Collapse
Affiliation(s)
- Lenka Caisová
- Universität zu Köln, Biozentrum Köln, Botanisches Institut, Zülpicher Str. 47b, 50674 Köln, Germany.
| | | | | |
Collapse
|
46
|
Škaloud P, Kalina T, Nemjová K, De Clerck O, Leliaert F. Morphology and Phylogenetic Position of the Freshwater Green Microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). JOURNAL OF PHYCOLOGY 2013; 49:115-129. [PMID: 27008394 DOI: 10.1111/jpy.12021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/22/2012] [Indexed: 06/05/2023]
Abstract
The green algal family Chlorochytriaceae comprises relatively large coccoid algae with secondarily thickened cell walls. Despite its morphological distinctness, the family remained molecularly uncharacterized. In this study, we investigated the morphology and phylogenetic position of 16 strains determined as members of two Chlorochytriaceae genera, Chlorochytrium and Scotinosphaera. The phylogenetic reconstructions were based on the analyses of two data sets, including a broad, concatenated alignment of small subunit rDNA and rbcL sequences, and a 10-gene alignment of 32 selected taxa. All analyses revealed the distant relation of the two genera, segregated in two different classes: Chlorophyceae and Ulvophyceae. Chlorochytrium strains were inferred in two distinct clades of the Stephanosphaerinia clade within the Chlorophyceae. Whereas clade A morphologically fits the description of Chlorochytrium, the strains of clade B coincide with the circumscription of the genus Neospongiococcum. The Scotinosphaera strains formed a distinct and highly divergent clade within the Ulvophyceae, warranting the recognition of a new order, Scotinosphaerales. Morphologically, the order is characterized by large cells bearing local cell wall thickenings, pyrenoid matrix dissected by numerous anastomosing cytoplasmatic channels, sporogenesis comprising the accumulation of secondary carotenoids in the cell periphery and almost simultaneous cytokinesis. The close relationship of the Scotinosphaerales with other early diverging ulvophycean orders enforces the notion that nonmotile unicellular freshwater organisms have played an important role in the early diversification of the Ulvophyceae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Tomáš Kalina
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Katarína Nemjová
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Olivier De Clerck
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| | - Frederik Leliaert
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| |
Collapse
|
47
|
Barsanti L, Frassanito AM, Passarelli V, Evangelista V, Etebari M, Paccagnini E, Lupetti P, Lenzi P, Verni F, Gualtieri P. Tetraflagellochloris mauritanica gen. et sp. nov. (Chlorophyceae), a New Flagellated Alga from the Mauritanian Desert: Morphology, Ultrastructure, and Phylogenetic Framing. JOURNAL OF PHYCOLOGY 2013; 49:178-193. [PMID: 27008399 DOI: 10.1111/j.1529-8817.2012.01232.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/14/2012] [Indexed: 06/05/2023]
Abstract
Morphological, ultrastructural, and molecular-sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non-coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion. Lipid vacuoles are present in the cytoplasm. Microspectroscopy indicated the presence of chlorophylls a and b, with lutein as the major carotenoid in the chloroplast, while the eyespot spectrum has a shape typical of green-algal eyespots. The cell has four flagella, two of them long and two considerably shorter. Sequence data from the 18S rRNA gene and ITS2 were obtained and compared with published sequences for green algae. Results from morphological and ultrastructural examinations and sequence analysis support the placement of this alga in the Chlorophyceae, as Tetraflagellochloris mauritanica L. Barsanti et A. Barsanti, gen. et sp. nov.
Collapse
Affiliation(s)
- Laura Barsanti
- Istituto di Biofisica, CNR, Via Moruzzi 1, Pisa, 56124, Italy
| | | | | | | | - Maryam Etebari
- Dipartimento di Biologia Evolutiva, Università di Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Eugenio Paccagnini
- Dipartimento di Biologia Evolutiva, Università di Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Pietro Lupetti
- Dipartimento di Biologia Evolutiva, Università di Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Paola Lenzi
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Franco Verni
- Dipartimento di Biologia, Unità di Protistologia, Università di Pisa, Via Volta 4, Pisa, 56126, Italy
| | - Paolo Gualtieri
- Istituto di Biofisica, CNR, Via Moruzzi 1, Pisa, 56124, Italy
| |
Collapse
|
48
|
Fontaine KM, Beck A, Stocker-Wörgötter E, Piercey-Normore MD. Photobiont Relationships and Phylogenetic History of Dermatocarpon luridum var. luridum and Related Dermatocarpon Species. PLANTS (BASEL, SWITZERLAND) 2012; 1:39-60. [PMID: 27137639 PMCID: PMC4844266 DOI: 10.3390/plants1020039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/11/2012] [Accepted: 09/25/2012] [Indexed: 11/17/2022]
Abstract
Members of the genus Dermatocarpon are widespread throughout the Northern Hemisphere along the edge of lakes, rivers and streams, and are subject to abiotic conditions reflecting both aquatic and terrestrial environments. Little is known about the evolutionary relationships within the genus and between continents. Investigation of the photobiont(s) associated with sub-aquatic and terrestrial Dermatocarpon species may reveal habitat requirements of the photobiont and the ability for fungal species to share the same photobiont species under different habitat conditions. The focus of our study was to determine the relationship between Canadian and Austrian Dermatocarpon luridum var. luridum along with three additional sub-aquatic Dermatocarpon species, and to determine the species of photobionts that associate with D. luridum var. luridum. Culture experiments were performed to identify the photobionts. In addition, the question of the algal sharing potential regarding different species of Dermatocarpon was addressed. Specimens were collected from four lakes in northwestern Manitoba, Canada and three streams in Austria. Three Canadian and four Austrian thalli of D. luridum var. luridum were selected for algal culturing. The nuclear Internal Transcribed Spacer (ITS) rDNA gene of the fungal partner along with the algal ITS rDNA gene was sequenced to confirm the identity of the lichen/photobiont and afterwards the same data sets were used in phylogenetic analyses to assess algal sharing. The green algal photobiont was identified as Diplosphaera chodatii (Trebouxiophyceae). The phylogenetic analyses of Canadian and Austrian D. luridum var. luridum revealed that ITS sequences are identical despite the vast geographic distance. Phylogenetic placement of D. luridum var. decipiens and D. arnoldianum suggested that a re-examination of the species status might be necessary. This study concluded that additional photobiont culture experiments should be conducted to answer the question of whether multiple photobionts are present within the genus Dermatocarpon.
Collapse
Affiliation(s)
- Kyle M Fontaine
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Andreas Beck
- Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München, Germany.
| | - Elfie Stocker-Wörgötter
- Department of Organismic Biology, Ecology and Diversity of Plants, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria.
| | | |
Collapse
|