1
|
Thakur B, Verma R, Bhatia A. Mutations in Necroptosis-Related Genes Reported in Breast Cancer: A Cosmic and Uniport Database-Based Study. Clin Breast Cancer 2024:S1526-8209(24)00356-2. [PMID: 39794252 DOI: 10.1016/j.clbc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Breast cancer (BC) now holds the top position as the primary reason of cancer-related fatalities worldwide, overtaking lung cancer. BC is classified into diverse categories depending on histopathological type, hormone receptor status, and gene expression profile, with ongoing evolution in their classifications. Cancer initiates and advances when there is a disruption in cell death pathways. In BC, the primary cell death pathway, apoptosis, experiences dysregulation across multiple stages. Ongoing studies aim to discover therapeutic targets that enhance cancer cell susceptibility to apoptosis. However, resistance to this therapy remains a significant challenge in treating BC. If apoptosis is hindered, investigating alternative pathways for cell death that can effectively eradicate BC cells during treatment becomes a valuable endeavor. In this context, necroptosis is gaining considerable focus as an alternative cell death pathway. Necroptosis represents a programmed version of necrosis which shares its key regulators with apoptosis. When apoptosis is hampered, necroptosis serves as an alternative cell death pathway even in physiological conditions like formation of limbs during embryonic development. Additionally, it comes into play during bacterial and viral infections when the apoptosis machinery is hijacked and inhibited by proteins from these pathogens. Studies reveal that in BC, mutations significantly impact molecules in the apoptosis pathway, contributing to the onset, advancement, and multiplication of cancer cells. Although some studies do indicate that the functionality of necroptosis pathway may be compromised in malignancy the status of its key molecules remains largely unknown. In this article, we aim to gather the known mutations present in key molecules of necroptosis among various subtypes of BC, utilizing data from the Cosmic and UniProt databases. The same may help to enhance the development of therapeutic strategies to effectively induce necroptosis in apoptosis-resistant BCs.
Collapse
Affiliation(s)
- Banita Thakur
- Department of General Surgery, Stanford university, CA, USA
| | - Rohit Verma
- Department of Neurosurgery, Stanford University, CA, USA
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| |
Collapse
|
2
|
Younis SS, Salama AM, Elmehy DA, Heabah NA, Rabah HM, Elakshar SH, Awad RA, Gamea GA. Trichinella spiralis Larval Extract as a Biological Anti-Tumor Therapy in a Murine Model of Ehrlich Solid Carcinoma. Parasite Immunol 2024; 46:e13035. [PMID: 38712475 DOI: 10.1111/pim.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.
Collapse
Affiliation(s)
- Salwa S Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amina M Salama
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia A Elmehy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nehal A Heabah
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanem M Rabah
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sara H Elakshar
- Department of Clinical Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa A Awad
- Department of Clinical Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A Gamea
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Xia J, Zhou X. Necroptosis-related KLRB1 was a potent tumor suppressor and immunotherapy determinant in breast cancer. Heliyon 2024; 10:e27294. [PMID: 38509875 PMCID: PMC10951529 DOI: 10.1016/j.heliyon.2024.e27294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Breast cancer is a multifaceted and diverse illness that impacts millions of people globally. Identifying the underlying causes of BRCA and creating efficient treatment plans are urgent. Necroptosis is widely involved in cancer development. However, the specific roles of necroptosis in cancer immunotherapy of breast cancer have not been explored. In this study, we aim to establish the connection between necroptosis and immunotherapy in BRCA. TCGA, METABRIC, GSE103091, GSE159956, and GSE96058 were included for bioinformatics analysis. NMF and CoxBoost algorithms were used to develop the necroptosis-related patterns and model, respectively. A necroptosis-related model was developed and determined KLRB1 as a critical tumor suppressor by in vitro validation. The mutation characteristics, immune characteristics, and molecular functions of KLRB1 were explored. We further examined how necroptosis-related KLRB1 functions in BRCA as a powerful tumor suppressor and regulates the activity of macrophages by in vitro validation, including CCK8, EdU, and Transwell assays. KLRB1 was also revealed to be an immunotherapy determinant.
Collapse
Affiliation(s)
- Jie Xia
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Zhou
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zheng Q, Shi S, Zhang N, Chen H. A novel cuproptosis-related genes model in breast cancer prognosis. Medicine (Baltimore) 2023; 102:e34507. [PMID: 37543823 PMCID: PMC10402946 DOI: 10.1097/md.0000000000034507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/07/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous malignancy with an urgent need to build a proper model to predict its prognosis. Cuproptosis is a recently discovered form of cell death, mediated by protein fatty acylation and tightly associated with mitochondrial metabolism. The role of cuproptosis-related genes (CRGs) in BRCA remains to be explored. We aimed to investigate the applications of CRGs in BRCA prognosis in different clinical contexts, including chemotherapy and immunotherapy, via bioinformatics analysis of the messenger RNA profiles and clinical data obtained from public databases. Molecular subtyping of CRGs was performed through consistent clustering analysis. Differentially expressed genes between different CRG clusters were identified. The differentially expressed genes were then used to build a risk assessment model using least absolute shrinkage and selection operator regression to predict patient survival with BRCA. The model was then validated with the data from the Molecular Taxonomy of Breast Cancer International Consortium, GSE96058, and GSE20685. Differences in somatic mutations, copy number variations, hallmark pathways, drug responses, and prognosis of immunotherapy and chemotherapy were analyzed by comparing the high-risk and low-risk groups. Patients with high-risk scores showed worse overall survival than those with low-risk scores. The results indicated significant differences between the 2 groups immune-related biological pathways and the variable immune status. It also suggests the differential sensitivity to chemotherapy between the 2 groups. The CRGs model showed the promise to predict the prognosis of BRCA patients and shed light on their treatment.
Collapse
Affiliation(s)
- Qun Zheng
- Center of Clinical Reproductive Medicine, Jinhua People’s Hospital, Jinhua, Zhejiang Province, P. R. China
| | - Shuai Shi
- Center of Clinical Reproductive Medicine, Jinhua People’s Hospital, Jinhua, Zhejiang Province, P. R. China
| | - Ning Zhang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, P. R. China
| | - Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang Province, P. R. China
| |
Collapse
|
5
|
Herdiana Y, Sriwidodo S, Sofian FF, Wilar G, Diantini A. Nanoparticle-Based Antioxidants in Stress Signaling and Programmed Cell Death in Breast Cancer Treatment. Molecules 2023; 28:5305. [PMID: 37513179 PMCID: PMC10384004 DOI: 10.3390/molecules28145305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex and heterogeneous disease, and oxidative stress is a hallmark of BC. Oxidative stress is characterized by an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense mechanisms. ROS has been implicated in BC development and progression by inducing DNA damage, inflammation, and angiogenesis. Antioxidants have been shown to scavenge ROS and protect cells from oxidative damage, thereby regulating signaling pathways involved in cell growth, survival, and death. Plants contain antioxidants like ascorbic acid, tocopherols, carotenoids, and flavonoids, which have been found to regulate stress signaling and PCD in BC. Combining different antioxidants has shown promise in enhancing the effectiveness of BC treatment. Antioxidant nanoparticles, when loaded with antioxidants, can effectively target breast cancer cells and enhance their cellular uptake. Notably, these nanoparticles have shown promising results in inducing PCD and sensitizing breast cancer cells to chemotherapy, even in cases where resistance is observed. This review aims to explore how nanotechnology can modulate stress signaling and PCD in breast cancer. By summarizing current research, it underscores the potential of nanotechnology in enhancing antioxidant properties for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Jemal M, Molla TS, Asmamaw Dejenie T. Ketogenic Diets and their Therapeutic Potential on Breast Cancer: A Systemic Review. Cancer Manag Res 2021; 13:9147-9155. [PMID: 34934359 PMCID: PMC8684375 DOI: 10.2147/cmar.s339970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/27/2021] [Indexed: 12/05/2022] Open
Abstract
Breast cancer remains a major cause of morbidity and mortality in women, and there is still a lack of complementary approaches to significantly improve the efficacy of standard therapies. For many kinds of cancers, the usual standard care is the combination of surgery, radiation, and chemotherapy. However, this standard therapy is not effective alone. Therefore, new approaches that increase therapeutic effectiveness are urgently needed. The ketogenic diet is a novel therapeutic approach for certain types of cancers, as indicated by several preclinical and clinical evidences. The ketogenic diet, which consists of a high-fat, low-carbohydrate diet with adequate protein, appears to sensitize most cancers to standard therapy by utilizing the reprogrammed metabolism of cancer cells, making it a promising candidate for adjuvant cancer treatment. The majority of preclinical and clinical studies argue that the use of a ketogenic diet in combination with standard therapies is based on its potential to improve the antitumor effects of conventional chemotherapy, its overall good safety and tolerability, and quality of life improvement. According to new evidence, a ketogenic diet lowers the level of glucose and insulin in the blood, which are necessary for tumor growth. Thus, the ketogenic diet has emerged as a potential treatment option for a variety of cancers, including breast cancer. Besides, implementation of a Ketogenic diet in the clinic could improve progression-free and overall survival for patients with breast cancer. This review summarizes the composition and metabolism of ketogenic diets and their potential mechanisms in breast carcinogenesis in addition to their therapeutic potential on breast cancer.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia
| | - Tewodros Shibabaw Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia
| |
Collapse
|
8
|
Anticancer and Antimicrobial Activity Evaluation of Cowpea-Porous-Starch-Formulated Silver Nanoparticles. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.1155/2021/5525690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Health issues involving inadequate treatment of diseases such as cancer and microbial infections continue to be the subject of much ongoing recent research. Biosynthesized silver nanoparticles (AgNPs) were characterized using Transmission Electron Microscopy (TEM), Zeta Sizer, Ultraviolet (UV), and Fourier Transform Infrared (FTIR) spectroscopy. Their antimicrobial activity was evaluated on selected Gram-positive and Gram-negative bacterial strains, using the disc diffusion and broth dilution assays. Cell viability profiles were evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptosis studies on selected human noncancer and cancer cells. The biosynthesized AgNPs were evaluated to be spherical clusters, with sizes between 40 and 70 nm. The absorption peak at 423 nm and the presence of polyphenols confirmed the synthesis and stabilization of these tested AgNPs. The AgNPs showed a good stability of −23.9 ± 1.02 mV. Good antimicrobial activity (6.0–18.0 mm) was seen on all tested bacteria at a minimum inhibitory concentration (MIC) ranging from 5 to 16 μg/ml, with the highest activity seen against Gram-negative Escherichia coli (18 ± 0.5 mm), and the lowest activity was seen against Gram-positive Listeria monocytogenes (6.0 ± 0.4 mm) after treatment with the AgNPs. These NPs showed a concentration-dependent and cell-specific cytotoxicity with low IC50 values (41.7, 56.3, and 63.8 μg/ml). The NPs were well tolerated by tested cells as indicated by a more than 50% cell viability at the high dose tested and low apoptotic indices (<0.2). These findings indicated that these biosynthesized AgNPs showed great potential as effective antibacterial agents and anticancer drug delivery modalities.
Collapse
|
9
|
Li X, Dong G, Xiong H, Diao H. A narrative review of the role of necroptosis in liver disease: a double-edged sword. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:422. [PMID: 33842643 PMCID: PMC8033311 DOI: 10.21037/atm-20-5162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic liver injuries lead to hepatocyte death and turnover. When injuries become chronic, continuous cell death and transformation lead to chronic inflammation, fibrosis, cirrhosis, and eventually carcinoma. A therapeutic strategy of great significance for liver disease is to control hepatocyte death in acute and chronic injuries. This strategy prevents hepatocytes from causing liver failure and inhibits both secondary inflammation and fibrosis. Both apoptosis and necrosis have been proven to occur in the liver, but the role of necroptosis in liver diseases is controversial. Necroptosis, which has features of necrosis and apoptosis, is a regulatory process that occurs in some cell types when caspases are inhibited. The signaling pathway of necroptosis is characterized by the activation of receptor-interacting proteins kinase (RIPK) and mixed lineage kinase domain-like (MLKL). Necroptosis is associated with a variety of inflammatory diseases and has been the focus of research in recent years. The incidence of necroptosis in liver tissues has been studied recently in several liver injury models, but the results of the studies are not consistent. The purpose of this review is to summarize the published data on the involvement of necroptosis in liver injury, focusing on the controversies, issues remaining to be discussed, and potential therapeutic applications in this area.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Zou Y, Fineberg S, Pearlman A, Feinman RD, Fine EJ. The effect of a ketogenic diet and synergy with rapamycin in a mouse model of breast cancer. PLoS One 2020; 15:e0233662. [PMID: 33270630 PMCID: PMC7714189 DOI: 10.1371/journal.pone.0233662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effects of diet in cancer, in general, and breast cancer in particular, are not well understood. Insulin inhibition in ketogenic, high fat diets, modulate downstream signaling molecules and are postulated to have therapeutic benefits. Obesity and diabetes have been associated with higher incidence of breast cancer. Addition of anti-cancer drugs together with diet is also not well studied. METHODS Two diets, one ketogenic, the other standard mouse chow, were tested in a spontaneous breast cancer model in 34 mice. Subgroups of 3-9 mice were assigned, in which the diet were implemented either with or without added rapamycin, an mTOR inhibitor and potential anti-cancer drug. RESULTS Blood glucose and insulin concentrations in mice ingesting the ketogenic diet (KD) were significantly lower, whereas beta hydroxybutyrate (BHB) levels were significantly higher, respectively, than in mice on the standard diet (SD). Growth of primary breast tumors and lung metastases were inhibited, and lifespans were longer in the KD mice compared to mice on the SD (p<0.005). Rapamycin improved survival in both mouse diet groups, but when combined with the KD was more effective than when combined with the SD. CONCLUSIONS The study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti-cancer drug, permitting dose reduction for comparable effect. Further, the ketogenic diet in this model produces superior cancer control than standard mouse chow whether with or without added rapamycin.
Collapse
Affiliation(s)
- Yiyu Zou
- Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Susan Fineberg
- Montefiore Medical Center, Bronx, NY, United States of America
| | - Alexander Pearlman
- Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard D. Feinman
- SUNY Downstate Health Sciences Center, Brooklyn, NY, United States of America
| | - Eugene J. Fine
- Albert Einstein College of Medicine, Bronx, NY, United States of America
- Montefiore Medical Center, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Patterns of cell death induced by metformin in human MCF-7 breast cancer cells. Pathol Res Pract 2020; 216:153199. [PMID: 32932214 DOI: 10.1016/j.prp.2020.153199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022]
Abstract
The ability to evade apoptosis is an important mechanism of drug resistance and tumor progression in breast cancer. The induction of different pathways of cell death could be an important strategy to limit tumor progression. Metformin, a drug used to treat type two diabetes, has demonstrated promising results in breast cancer experiments. However, little is known about the patterns of cell death induced by this drug. We analyzed the involvement of apoptosis, necroptosis and ferroptosis in the toxicity of metformin in MCF-7 cells, evaluating proliferation, viability and oxidative stress. It was used different inhibitors of cell death: Z-VAD, a pan-caspase inhibitor that blocks apoptosis; Necrostatin-1, which inhibits RIPK1 activity and blocks necroptosis; and the iron chelator, deferoxamine, that chelates iron and prevents ferroptosis. The participation of oxidative stress was analyzed through the evaluation of total thiols, reduced glutathione (GSH) and malondialdehyde (MDA). Our results showed that metformin increased cell death, reduced proliferation, thiol and GSH and increased MDA in cells. After the association between metformin and Z-VAD or Necrostatin-1, the drug toxicity was abolished. Ferroptosis did not significantly enrolled in metformin action against MCF-7 cells. The preservation of cellular antioxidants was found in all situations that cell death was blocked. Together, these results reveals that metformin induces necroptosis and apoptosis in MCF-7 cells and oxidative stress generation play a role in these two pathways of cell death. This information could help future studies to improve strategies to breast cancer treatment.
Collapse
|
12
|
Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle 2020; 19:1089-1104. [PMID: 32286137 PMCID: PMC7217368 DOI: 10.1080/15384101.2020.1743911] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/14/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Pyroptosis is a form of programmed cell death initiated by inflammasomes and is critical for immunity. SIRT1, a NAD+-dependent deacetylase, plays multiple roles in inflammatory response and immunity. Metformin can activate SIRT1 to participate in different biological processes and exert its anticancer effects. However, the mechanism by which metformin activates SIRT1 to drive cancer cell pyroptosis has not been reported. In this study, we treated cancer cells with metformin for diverse periods of time (0-24 h) and found that cell viability was decreased obviously. Interestingly, pyroptosis occurred when cancer cells were treated with metformin for the indicated time (4, 8 and 12 h), which was elucidated by the cell swelling and bubbles blowing in the membrane. Metformin also increased the release of lactate dehydrogenase (LDH, an indication of pyroptotic cell cytotoxicity) remarkably. The underlying mechanisms were that metformin enhanced AMPK/SIRT1 pathway and further increased NF-κB p65 expression to stimulate Bax activation and cytochrome c release, triggering caspase3 cleavage of GSDME, which is a characteristic pyroptotic marker. Depletion of SIRT1 inhibited metformin-induced these protein expression, revealing that metformin promotes AMPK/SIRT1/NF-κB signaling to drive cancer cell pyroptosis. Meantime, metformin induced mitochondrial dysfunction to trigger activation of caspase3 and generation of GSDME-N. Moreover, mitochondrial dysfunction activated AMPK/SIRT1 pathway to cause pyroptotic death upon metformin treatment. This research firstly reveals that metformin as a sensitizer amplifies AMPK/SIRT1/NF-κB signaling to induce caspase3/GSDME-mediated cancer cell pyroptosis. Induction of cellular pyroptosis by metformin is considered as a novel therapeutic option against various cancers.
Collapse
Affiliation(s)
- Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Bian
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yang Zhang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
13
|
Lee J, Chun HW, Pham TH, Yoon JH, Lee J, Choi MK, Ryu HW, Oh SR, Oh J, Yoon DY. Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest. J Microbiol Biotechnol 2020; 30:279-286. [PMID: 31838829 PMCID: PMC9728372 DOI: 10.4014/jmb.1909.09059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anticancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Jintak Lee
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Woo Chun
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Hwan Yoon
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiyon Lee
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Myoung-Kwon Choi
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 8116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 8116, Republic of Korea
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-444-4218 Fax: +82-2-444-4218 E-mail:
| |
Collapse
|