1
|
Steinholtz L, Bodén R, Wall A, Lubberink M, Fällmar D, Persson J. Alterations in gamma-aminobutyric acid and glutamate neurotransmission linked to intermittent theta-burst stimulation in depression: a sham-controlled study. Transl Psychiatry 2025; 15:133. [PMID: 40199850 PMCID: PMC11978943 DOI: 10.1038/s41398-025-03371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are implicated in the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS), though findings from magnetic resonance spectroscopy (MRS) are inconsistent. Furthermore, the relationship between GABAA-receptor availability and rTMS outcomes remains largely unexplored. In this study, GABA and glutamate levels in the dorsal anterior cingulate cortex (dACC) were measured using a 1H-MRS MEGA-PRESS sequence in 42 patients with bipolar or unipolar depression, both before and after a sham-controlled, double-blind clinical trial involving intermittent theta-burst stimulation (iTBS) over the dorsomedial prefrontal cortex. A subset of 28 patients also underwent [11C]flumazenil positron emission tomography (PET) to measure whole-brain GABAA-receptor availability and mean receptor availability in the nucleus accumbens and dACC. Depressive symptoms were assessed using the self-rated Montgomery Åsberg Depression Rating Scale (MADRS-S). The results indicated no significant changes in neurotransmitter levels or GABAA-receptor availability post-iTBS in either the active or sham conditions. However, changes in MADRS-S scores after active iTBS were positively correlated with changes in GABA levels in the dACC (r(13) = 0.54, p = 0.04) and baseline GABAA-receptor availability in the nucleus accumbens (r(11) = 0.66, p = 0.02). These correlations were absent in the sham group. The findings suggest that a reduction in GABA within targeted frontostriatal circuits can be part of the antidepressant mechanism of iTBS, challenging previous research. Additionally, they indicate a potential predictive role for frontostriatal GABAA-receptor availability in the treatment of depression using dorsomedial prefrontal iTBS.
Collapse
Affiliation(s)
- Linda Steinholtz
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Robert Bodén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Wall
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden
- Department of Surgical Sciences, Molecular Imaging and Medical Physics, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Molecular Imaging and Medical Physics, Uppsala University, Uppsala, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Jonas Persson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
4
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. The impact of spectral basis set composition on estimated levels of cingulate glutamate and its associations with different personality traits. BMC Psychiatry 2024; 24:320. [PMID: 38664663 PMCID: PMC11044602 DOI: 10.1186/s12888-024-05646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/28/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND 1H-MRS is increasingly used in basic and clinical research to explain brain function and alterations respectively. In psychosis research it is now one of the main tools to investigate imbalances in the glutamatergic system. Interestingly, however, the findings are extremely variable even within patients of similar disease states. One reason may be the variability in analysis strategies, despite suggestions for standardization. Therefore, our study aimed to investigate the extent to which the basis set configuration- which metabolites are included in the basis set used for analysis- would affect the spectral fit and estimated glutamate (Glu) concentrations in the anterior cingulate cortex (ACC), and whether any changes in levels of glutamate would be associated with psychotic-like experiences and autistic traits. METHODS To ensure comparability, we utilized five different exemplar basis sets, used in research, and two different analysis tools, r-based spant applying the ABfit method and Osprey using the LCModel. RESULTS Our findings revealed that the types of metabolites included in the basis set significantly affected the glutamate concentration. We observed that three basis sets led to more consistent results across different concentration types (i.e., absolute Glu in mol/kg, Glx (glutamate + glutamine), Glu/tCr), spectral fit and quality measurements. Interestingly, all three basis sets included phosphocreatine. Importantly, our findings also revealed that glutamate levels were differently associated with both schizotypal and autistic traits depending on basis set configuration and analysis tool, with the same three basis sets showing more consistent results. CONCLUSIONS Our study highlights that scientific results may be significantly altered depending on the choices of metabolites included in the basis set, and with that emphasizes the importance of carefully selecting the configuration of the basis set to ensure accurate and consistent results, when using MR spectroscopy. Overall, our study points out the need for standardized analysis pipelines and reporting.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Okada N, Yahata N, Koshiyama D, Morita K, Sawada K, Kanata S, Fujikawa S, Sugimoto N, Toriyama R, Masaoka M, Koike S, Araki T, Kano Y, Endo K, Yamasaki S, Ando S, Nishida A, Hiraiwa-Hasegawa M, Edden RAE, Sawa A, Kasai K. Longitudinal trajectories of anterior cingulate glutamate and subclinical psychotic experiences in early adolescence: the impact of bullying victimization. Mol Psychiatry 2024; 29:939-950. [PMID: 38182806 PMCID: PMC11176069 DOI: 10.1038/s41380-023-02382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Center for Research on Counseling and Support Services, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Sugimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University Mizonokuchi Hospital, Futago 5-1-1, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Yukiko Kano
- Department Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Endo
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway Street, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Genetic Medicine, and Pharmacology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Klar J, Slotboom J, Lerch S, Koenig J, Wiest R, Kaess M, Kindler J. Higher striatal glutamate in male youth with internet gaming disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:301-309. [PMID: 37505291 PMCID: PMC10914841 DOI: 10.1007/s00406-023-01651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Internet gaming disorder (IGD) was included in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as a research diagnosis, but little is known about its pathophysiology. Alterations in frontostriatal circuits appear to play a critical role in the development of addiction. Glutamate is considered an essential excitatory neurotransmitter in addictive disorders. This study's aim was to investigate striatal glutamate in youth with IGD compared to healthy controls (HC). Using a cross-sectional design, 25 adolescent male subjects fulfilling DSM-5 criteria for IGD and 26 HC, matched in age, education, handedness and smoking, were included in the analysis. A structural MPRAGE T1 sequence followed by a single-voxel magnetic resonance spectroscopy MEGA-PRESS sequence (TR = 1500 ms, TE = 68 ms, 208 averages) with a voxel size of 20 mm3 were recorded on 3 T Siemens Magnetom Prisma scanner. The voxel was placed in the left striatum. Group comparison of the relative glutamate and glutamine (Glx) was calculated using regression analysis. IGD subjects met an average of 6.5 of 9 DSM-5 IGD criteria and reported an average of 29 h of weekly gaming. Regression analysis showed a significant group effect for Glx, with higher Glx levels in IGD as compared to HC (coef. = .086, t (50) = 2.17, p = .035). Our study is the first to show higher levels of Glx in the striatum in youth with IGD. The elevation of Glx in the striatum may indicate hyperactivation of the reward system in IGD. Thus, results confirm that neurochemical alterations can be identified in early stages of behavioral addictions.
Collapse
Affiliation(s)
- Johanna Klar
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Stefan Lerch
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Clinic and Polyclinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Frank SM, Becker M, Malloni WM, Sasaki Y, Greenlee MW, Watanabe T. Protocol to conduct functional magnetic resonance spectroscopy in different age groups of human participants. STAR Protoc 2023; 4:102493. [PMID: 37572324 PMCID: PMC10448431 DOI: 10.1016/j.xpro.2023.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
We present a protocol to conduct functional magnetic resonance spectroscopy (fMRS) in human participants before, during, and after training on a visual task. We describe steps for participant setup, volume-of-interest placement, fMRS measurement, and post-scan tests. We discuss the design, analysis, and interpretation of fMRS experiments. This protocol can be adapted to investigate the dynamics of chief excitatory and inhibitory neurotransmitters (glutamate and γ-aminobutyric acid, GABA, respectively) while participants perform or learn perceptual, motor, or cognitive tasks. For complete details on the use and execution of this protocol, please refer to Frank et al. (2022).1.
Collapse
Affiliation(s)
- Sebastian M Frank
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Markus Becker
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Wilhelm M Malloni
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Yuka Sasaki
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| | - Mark W Greenlee
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Takeo Watanabe
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA.
| |
Collapse
|
8
|
Yaakub SN, White TA, Roberts J, Martin E, Verhagen L, Stagg CJ, Hall S, Fouragnan EF. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat Commun 2023; 14:5318. [PMID: 37658076 PMCID: PMC10474159 DOI: 10.1038/s41467-023-40998-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is an emerging non-invasive technique for focally modulating human brain function. The mechanisms and neurochemical substrates underlying TUS neuromodulation in humans and how these relate to excitation and inhibition are still poorly understood. In 24 healthy controls, we separately stimulated two deep cortical regions and investigated the effects of theta-burst TUS, a protocol shown to increase corticospinal excitability, on the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and functional connectivity. We show that theta-burst TUS in humans selectively reduces GABA levels in the posterior cingulate, but not the dorsal anterior cingulate cortex. Functional connectivity increased following TUS in both regions. Our findings suggest that TUS changes overall excitability by reducing GABAergic inhibition and that changes in TUS-mediated neuroplasticity last at least 50 mins after stimulation. The difference in TUS effects on the posterior and anterior cingulate could suggest state- or location-dependency of the TUS effect-both mechanisms increasingly recognized to influence the brain's response to neuromodulation.
Collapse
Affiliation(s)
- Siti N Yaakub
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Tristan A White
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Jamie Roberts
- Department of Clinical Measurement and Innovation, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Stephen Hall
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Elsa F Fouragnan
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
9
|
Zimmermann J, Zölch N, Coray R, Bavato F, Friedli N, Baumgartner MR, Steuer AE, Opitz A, Werner A, Oeltzschner G, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. Chronic 3,4-Methylenedioxymethamphetamine (MDMA) Use Is Related to Glutamate and GABA Concentrations in the Striatum But Not the Anterior Cingulate Cortex. Int J Neuropsychopharmacol 2023; 26:438-450. [PMID: 37235749 PMCID: PMC10289146 DOI: 10.1093/ijnp/pyad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND 3,4-Methylenedioxymethamphetamine (MDMA) is a widely used recreational substance inducing acute release of serotonin. Previous studies in chronic MDMA users demonstrated selective adaptations in the serotonin system, which were assumed to be associated with cognitive deficits. However, serotonin functions are strongly entangled with glutamate as well as γ-aminobutyric acid (GABA) neurotransmission, and studies in MDMA-exposed rats show long-term adaptations in glutamatergic and GABAergic signaling. METHODS We used proton magnetic resonance spectroscopy (MRS) to measure the glutamate-glutamine complex (GLX) and GABA concentrations in the left striatum and medial anterior cingulate cortex (ACC) of 44 chronic but recently abstinent MDMA users and 42 MDMA-naïve healthy controls. While the Mescher-Garwood point-resolved-spectroscopy sequence (MEGA-PRESS) is best suited to quantify GABA, recent studies reported poor agreement between conventional short-echo-time PRESS and MEGA-PRESS for GLX measures. Here, we applied both sequences to assess their agreement and potential confounders underlying the diverging results. RESULTS Chronic MDMA users showed elevated GLX levels in the striatum but not the ACC. Regarding GABA, we found no group difference in either region, although a negative association with MDMA use frequency was observed in the striatum. Overall, GLX measures from MEGA-PRESS, with its longer echo time, appeared to be less confounded by macromolecule signal than the short-echo-time PRESS and thus provided more robust results. CONCLUSION Our findings suggest that MDMA use affects not only serotonin but also striatal GLX and GABA concentrations. These insights may offer new mechanistic explanations for cognitive deficits (e.g., impaired impulse control) observed in MDMA users.
Collapse
Affiliation(s)
- Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicole Friedli
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Annett Werner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Erich Seifritz
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (Drs Zölch and Seifritz), University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
- Biopsychology, Faculty of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Rodríguez-Nieto G, Levin O, Hermans L, Weerasekera A, Sava AC, Haghebaert A, Huybrechts A, Cuypers K, Mantini D, Himmelreich U, Swinnen SP. Organization of neurochemical interactions in young and older brains as revealed with a network approach: Evidence from proton magnetic resonance spectroscopy ( 1H-MRS). Neuroimage 2023; 266:119830. [PMID: 36566925 DOI: 10.1016/j.neuroimage.2022.119830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with alterations in the brain including structural and metabolic changes. Previous research has focused on neurometabolite level differences associated to age in a variety of brain regions, but the relationship among metabolites across the brain has been much less studied. Investigating these relationships can reveal underlying neurometabolic processes, their interdependency, and their progress throughout the lifespan. Using 1H-MRS, we investigated the relationship among metabolite concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-Inositol (mIns) and glutamate-glutamine complex (Glx) in seven voxel locations, i.e., bilateral sensorimotor cortex, bilateral striatum, pre-supplementary motor area, right inferior frontal gyrus and occipital cortex. These measurements were performed on 59 human participants divided in two age groups: young adults (YA: 23.2 ± 4.3; 18-34 years) and older adults (OA: 67.5 ± 3.9; 61-74 years). Our results showed age-related differences in NAA, Cho, and mIns across brain regions, suggesting the presence of neurodegeneration and altered gliosis. Moreover, associative patterns among NAA, Cho and Cr were observed across the selected brain regions, which differed between young and older adults. Whereas most of metabolite concentrations were inhomogeneous across different brain regions, Cho levels were shown to be strongly related across brain regions in both age groups. Finally, we found metabolic associations between homologous brain regions (SM1 and striatum) in the OA group, with NAA showing a significant correlation between bilateral sensorimotor cortices (SM1) and mIns levels being correlated between the bilateral striata. We posit that a network perspective provides important insights regarding the potential interactions among neurochemicals underlying metabolic processes at a local and global level and their relationship with aging.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium.
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Lize Hermans
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Akila Weerasekera
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Biomedical MRI Unit, Group Biomedical Sciences, KU Leuven, Belgium; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Haghebaert
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Astrid Huybrechts
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Koen Cuypers
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; REVAL Research Institute, Hasselt University, Diepenbeek, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| |
Collapse
|
11
|
Krishnamurthy LC, Paredes Spir I, Rocha NO, Soher BJ, Auerbach EJ, Crosson BA, Krishnamurthy V. The association between language-based task-functional magnetic resonance imaging hemodynamics and baseline GABA+ and glutamate-glutamine measured in pre-supplementary motor area: A pilot study in an aging model. Front Psychiatry 2022; 13:904845. [PMID: 36046162 PMCID: PMC9421126 DOI: 10.3389/fpsyt.2022.904845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a natural phenomenon that elicits slow and progressive cerebrovascular and neurophysiological changes that eventually lead to cognitive decline. The objective of this pilot study is to examine the association of GABA+ and glutamate-glutamine (Glx) complex with language-based blood oxygen level dependent (BOLD) hemodynamics in an aging model. More specifically, using standard BOLD we will first attempt to validate whether previously reported findings for BOLD amplitude and resting neurochemical relationships hold in an aging model. Secondly, we will investigate how our recently established neurosensitized task-BOLD energetics relate to resting GABA+ and Glx, especially accounting for titration of task difficulty. To support the above endeavors, we optimize the baseline fitting for edited magnetic resonance spectroscopy (MRS) difference spectra to sensitize GABA+ and Glx concentrations to aging-related differences. We identify a spline-knot spacing of 0.6ppm to yield the optimal aging-related differences in GABA+ and Glx. The optimized MRS values were then graduated to relate to task-BOLD hemodynamics. Our results did not replicate previous findings that relate task-BOLD amplitude and resting GABA+ and Glx. However, we did identify neurochemistry relationships with the vascularly-driven dispersion component of the hemodynamic response function, specifically in older participants. In terms of neuro-sensitized BOLD energetics and the underlying role of GABA+ and Glx, our data suggests that the task demands are supported by both neurometabolites depending on the difficulty of the task stimuli. Another novelty is that we developed task-based functional parcellation of pre-SMA using both groups. In sum, we are the first to demonstrate that multimodal task-fMRI and MRS studies are beneficial to improve our understanding of the aging brain physiology, and to set the platform to better inform approaches for clinical care in aging-related neurovascular diseases. We also urge future studies to replicate our findings in a larger population incorporating a lifespan framework.
Collapse
Affiliation(s)
- Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Isabella Paredes Spir
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Natalie O. Rocha
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Brian J. Soher
- Center for Advanced MR Development, Department of Radiology, Duke University, Durham, NC, United States
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Edward J. Auerbach
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Bruce A. Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Craven AR, Bhattacharyya PK, Clarke WT, Dydak U, Edden RAE, Ersland L, Mandal PK, Mikkelsen M, Murdoch JB, Near J, Rideaux R, Shukla D, Wang M, Wilson M, Zöllner HJ, Hugdahl K, Oeltzschner G. Comparison of seven modelling algorithms for γ-aminobutyric acid-edited proton magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2022; 35:e4702. [PMID: 35078266 PMCID: PMC9203918 DOI: 10.1002/nbm.4702] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/01/2023]
Abstract
Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.
Collapse
Affiliation(s)
- Alexander R. Craven
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
- NORMENT Center of ExcellenceHaukeland University HospitalBergenNorway
| | | | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- MRC Brain Network Dynamics UnitUniversity of OxfordOxfordUK
| | - Ulrike Dydak
- School of Health SciencesPurdue UniversityIndianaWest LafayetteUSA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Lars Ersland
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
| | - Pravat K. Mandal
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research CentreGurgaonIndia
- Florey Institute of Neuroscience and Mental HealthParkvilleMelbourneVictoriaAustralia
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Jamie Near
- Centre d'Imagerie CérébraleDouglas Mental Health University InstituteMontrealCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | - Reuben Rideaux
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Deepika Shukla
- NeuroImaging and NeuroSpectroscopy (NINS) Laboratory, National Brain Research CentreGurgaonIndia
- Perinatal Trials Unit FoundationBengaluruIndia
- Centre for Perinatal NeuroscienceImperial College LondonLondonUK
| | - Min Wang
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Martin Wilson
- Centre for Human Brain Health and School of PsychologyUniversity of BirminghamBirminghamUK
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Kenneth Hugdahl
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
- Department of RadiologyHaukeland University HospitalBergenNorway
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| |
Collapse
|
13
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
14
|
Peek AL, Leaver AM, Foster S, Puts NA, Oeltzschner G, Henderson L, Galloway G, Ng K, Refshauge K, Rebbeck T. Increase in ACC GABA+ levels correlate with decrease in migraine frequency, intensity and disability over time. J Headache Pain 2021; 22:150. [PMID: 34903165 PMCID: PMC8903525 DOI: 10.1186/s10194-021-01352-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules (“GABA+”) using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. Methods We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. Results The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = − 0.51, p = 0.03), intensity (r = − 0.51, p = 0.03) and disability (r = − 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). Conclusion The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01352-1.
Collapse
Affiliation(s)
- Aimie L Peek
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia. .,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia.
| | - Andrew M Leaver
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Sheryl Foster
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Radiology, Westmead Hospital, Hawkesbury Road, Westmead, New South Wales, 2145, Australia
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, UK
| | - Georg Oeltzschner
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Luke Henderson
- School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Graham Galloway
- The University of Queensland, St Lucia, Queensland, 4072, Australia.,Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Karl Ng
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Neurology, Royal North Shore Hospital, Reserve Road, St Leonards, New South Wales, 2065, Australia
| | - Kathryn Refshauge
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Trudy Rebbeck
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Basu SK, Pradhan S, du Plessis AJ, Ben-Ari Y, Limperopoulos C. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neuroimage 2021; 238:118215. [PMID: 34058332 PMCID: PMC8404144 DOI: 10.1016/j.neuroimage.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., United States; Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Yehezkel Ben-Ari
- Division of Neurology, Children's National Hospital, Washington, D.C., United States; Neurochlore, Marseille, France
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States.
| |
Collapse
|
16
|
Bell T, Boudes ES, Loo RS, Barker GJ, Lythgoe DJ, Edden RAE, Lebel RM, Wilson M, Harris AD. In vivo Glx and Glu measurements from GABA-edited MRS at 3 T. NMR IN BIOMEDICINE 2021; 34:e4245. [PMID: 31990112 PMCID: PMC7384936 DOI: 10.1002/nbm.4245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/29/2023]
Abstract
In vivo quantification of glutamate (Glu) and γ-aminobutyric acid (GABA) using MRS is often achieved using two separate sequences: a short-echo point resolved spectroscopy (PRESS) acquisition for Glu and a Mescher-Garwood PRESS (MEGA-PRESS) acquisition for GABA. The purpose of this study was to examine the agreement of Glu and Glx (the combined signal of glutamate + glutamine) quantified from two different GABA-edited MEGA-PRESS acquisitions (GABA plus macromolecules, GABA+, TE = 68 ms, and macromolecule suppressed, MMSup, TE = 80 ms) with Glu and Glx quantified from a short-echo PRESS (PRESS-35, TE = 35 ms) acquisition. Fifteen healthy male volunteers underwent a single scan session, in which data were acquired using the three acquisitions (GABA+, MMSup and PRESS-35) in both the sensorimotor and anterior cingulate cortices using a voxel size of 3 × 3 × 3 cm3 . Glx and Glu were quantified from the MEGA-PRESS data using both the OFF sub-spectra and the difference (DIFF) spectra. Agreement was assessed using correlation analyses, Bland-Altman plots and intraclass correlation coefficients. Glx quantified from the OFF sub-spectra from both the GABA+ and MMSup acquisitions showed poor agreement with PRESS-35 in both brain regions. In the sensorimotor cortex, Glu quantified from the OFF sub-spectra of GABA+ showed moderate agreement with PRESS-35 data, but this finding was not replicated in the anterior cingulate cortex. Glx and Glu quantified using the DIFF spectra of either MEGA-PRESS sequence were in poor agreement with the PRESS-35 data in both brain regions. In conclusion, Glx and Glu measured from MEGA-PRESS data generally showed poor agreement with Glx and Glu measured using PRESS-35.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Elodie S Boudes
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Rachelle S Loo
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Richard AE Edden
- Russel H Morgan Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, USA
- F.M. Kirby Centre for Functional MRI, Kennedy Krieger Institute, Baltimore, USA
| | | | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Calgary, Canada
| |
Collapse
|
17
|
Dwyer GE, Craven AR, Bereśniewicz J, Kazimierczak K, Ersland L, Hugdahl K, Grüner R. Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T. Front Hum Neurosci 2021; 15:644079. [PMID: 33841118 PMCID: PMC8024522 DOI: 10.3389/fnhum.2021.644079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
The blood oxygen level dependent (BOLD) effect that provides the contrast in functional magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through this, may be used as an indirect measure of cerebral blood flow related to neural activity. By acquiring MR-spectra interleaved with frames without water suppression, it may be possible to image the BOLD effect and associated metabolic changes simultaneously through changes in the linewidth of the unsuppressed water peak. The purpose of this study was to implement this approach with the MEGA-PRESS sequence, widely considered to be the standard sequence for quantitative measurement of GABA at field strengths of 3 T and lower, to observe how changes in both glutamate (measured as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants whilst undergoing intrascanner visual stimulation in the form of a red and black radial checkerboard, alternating at 8 Hz, in 90 s blocks comprising 30 s of visual stimulation followed by 60 s of rest. Results show very strong agreement between the changes in the linewidth of the unsuppressed water signal and the canonical haemodynamic response function as well as a strong, negative, but not statistically significant, correlation with the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from this experiment suggest that the unsuppressed water signal provides a reliable measure of the BOLD effect and that correlations with associated changes in GABA and Glx levels may also be measured. However, discrepancies between metabolite levels as measured from the difference and OFF spectra raise questions regarding the reliability of the respective methods.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Justyna Bereśniewicz
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Kazimierczak
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Cheng H, Wang A, Newman S, Dydak U. An investigation of glutamate quantification with PRESS and MEGA-PRESS. NMR IN BIOMEDICINE 2021; 34:e4453. [PMID: 33617070 DOI: 10.1002/nbm.4453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Glutamate is an important neurotransmitter. Although many studies have measured glutamate concentration in vivo using magnetic resonance spectroscopy (MRS), researchers have not reached a consensus on the accuracy of glutamate quantification at the field strength of 3 T. Besides, there is not an optimal MRS protocol for glutamate measurement. In this work, both simulation and phantom scans indicate that glutamate can be estimated with reasonable accuracy (<10% error on average) using the standard Point-RESolved Spectroscopy (PRESS) technique with TE 30 ms; glutamine, however, is likely underestimated, which is also suggested by results from human scans using the same protocol. The phantom results show an underestimation of glutamate and glutamine for PRESS with long TE and MEGA-PRESS off-resonance spectra. Despite the underestimation, there is a high correlation between the measured values and the true values (r > 0.8). Our results suggest that the quantification of glutamate and glutamine is reliable but can be off by a scaling factor, depending on the imaging technique. The outputs from all three PRESS sequences (TE = 30, 68 and 80 ms) are also highly correlated with each other (r > 0.7) and moderately correlated (r > 0.5) with the results from the MEGA-PRESS difference spectra with moderate to good shimming (linewidth < 16 Hz).
Collapse
Affiliation(s)
- Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program of Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Amanda Wang
- Northwestern University, Evanston, Illinois, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program of Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Kaminski J, Mascarell-Maricic L, Fukuda Y, Katthagen T, Heinz A, Schlagenhauf F. Glutamate in the Dorsolateral Prefrontal Cortex in Patients With Schizophrenia: A Meta-analysis of 1H-Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 89:270-277. [PMID: 33129486 DOI: 10.1016/j.biopsych.2020.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND To date, there is no systematic overview of glutamate in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. Here, we meta-analyzed case-control studies of high-field proton magnetic resonance spectroscopy (1H-MRS) investigating glutamate in DLPFC. Additionally, we estimated variance ratios to investigate homo/heterogeneity. METHODS Preregistration of the study was performed on September 20, 2019. The predefined literature search on PubMed comprised articles with search terms (magnetic resonance spectroscopy OR MRS) AND (glutamate OR glut∗ OR GLX) AND (schizophrenia OR psychosis OR schizophren∗). Meta-analyses with a fixed- and random-effects model with inverse variance method, DerSimonian-Laird estimator for τ2, and Cohen's d were calculated. For differences in variability, we calculated a random-effects model for measures of variance ratios. The primary study outcome was the difference in glutamate in the DLPFC in cases versus controls. Secondary outcomes were differences in variability. RESULTS The quantitative analysis comprised 429 cases and 365 controls. Overall, we found no group difference (d = 0.03 [95% confidence interval (CI), -0.20 to 0.26], z = 0.28, p = .78). Sensitivity analysis revealed an effect for medication status (Q = 8.35, p = .039), i.e., increased glutamate in antipsychotic-naïve patients (d = 0.46 [95% CI, 0.08 to 0.84], z = 2.37, p = .018). Concerning variance ratios, we found an effect of medication status (Q = 16.95, p < .001) due to lower coefficient of variation ratio (CVR) in medication-naïve patients (logCVR = -0.49 [95% CI, -0.78 to -0.20], z = -3.33, p < .001). In studies with medicated patients, we found higher CVR (logCVR = 0.22 [95% CI, 0.06 to 0.39], z = 2.67; p = .008). CONCLUSIONS We carefully interpret the higher levels and lower variability in cortical glutamate in antipsychotic-naïve patients as a possible key factor resulting from a putative allostatic mechanism. We conclude that care has to be taken when evaluating metabolite levels in clinical samples in which medication might confound findings.
Collapse
Affiliation(s)
- Jakob Kaminski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Lea Mascarell-Maricic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Yu Fukuda
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Teresa Katthagen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Andreas Heinz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Florian Schlagenhauf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| |
Collapse
|
20
|
Reduced excitatory neurotransmitter levels in anterior insulae are associated with abdominal pain in irritable bowel syndrome. Pain 2020; 160:2004-2012. [PMID: 31045748 PMCID: PMC6727903 DOI: 10.1097/j.pain.0000000000001589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a visceral pain condition with psychological comorbidity. Brain imaging studies in IBS demonstrate altered function in anterior insula (aINS), a key hub for integration of interoceptive, affective, and cognitive processes. However, alterations in aINS excitatory and inhibitory neurotransmission as putative biochemical underpinnings of these functional changes remain elusive. Using quantitative magnetic resonance spectroscopy, we compared women with IBS and healthy women (healthy controls [HC]) with respect to aINS glutamate + glutamine (Glx) and γ-aminobutyric acid (GABA+) concentrations and addressed possible associations with symptoms. Thirty-nine women with IBS and 21 HC underwent quantitative magnetic resonance spectroscopy of bilateral aINS to assess Glx and GABA+ concentrations. Questionnaire data from all participants and prospective symptom-diary data from patients were obtained for regression analyses of neurotransmitter concentrations with IBS-related and psychological parameters. Concentrations of Glx were lower in IBS compared with HC (left aINS P < 0.05, right aINS P < 0.001), whereas no group differences were detected for GABA+ concentrations. Lower right-lateralized Glx concentrations in patients were substantially predicted by longer pain duration, while less frequent use of adaptive pain-coping predicted lower Glx in left aINS. Our findings provide first evidence for reduced excitatory but unaltered inhibitory neurotransmitter levels in aINS in IBS. The results also indicate a functional lateralization of aINS with a stronger involvement of the right hemisphere in perception of abdominal pain and of the left aINS in cognitive pain regulation. Our findings suggest that glutaminergic deficiency may play a role in pain processing in IBS.
Collapse
|
21
|
Roalf DR, Sydnor VJ, Woods M, Wolk DA, Scott JC, Reddy R, Moberg PJ. A quantitative meta-analysis of brain glutamate metabolites in aging. Neurobiol Aging 2020; 95:240-249. [PMID: 32866885 DOI: 10.1016/j.neurobiolaging.2020.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Glutamate (Glu) is a key molecule in cellular metabolism, the most abundant excitatory neurotransmitter in the brain, and the principal neurotransmitter of cortical efferents. Glutamate dysfunction, on the other hand, is common in neurodegenerative disorders, and likely contributes to age-related declines in behavioral and cognitive functioning. Nonetheless, the extant literature measuring age-related changes in brain glutamate in vivo has yet to be comprehensively and quantitatively summarized. This meta-analysis examines proton spectroscopy (1HMRS) measures of Glu-related brain metabolites across 589 healthy young and older adults. Glu (Cohen's d = -0.82) and Glu+glutamine (Cohen's d = -0.51) concentrations were significantly lower in older compared with younger adults, whereas the concentration of glutamine (d = 0.43) was significantly higher in older individuals. Notably, 1HMRS methodological choices impacted effect sizes for age-related Glu differences. Glu metabolite change appears to be a robust marker of aging-related neurological change; however, additional studies are needed to elucidate age-related trajectories of glutamatergic alterations and their relationship to cognitive phenotypes.
Collapse
Affiliation(s)
- David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison Woods
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Cobb Scott
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Ravinder Reddy
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul J Moberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Basu SK, Pradhan S, Jacobs MB, Said M, Kapse K, Murnick J, Whitehead MT, Chang T, du Plessis AJ, Limperopoulos C. Age and Sex Influences Gamma-aminobutyric Acid Concentrations in the Developing Brain of Very Premature Infants. Sci Rep 2020; 10:10549. [PMID: 32601466 PMCID: PMC7324587 DOI: 10.1038/s41598-020-67188-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are principal neurotransmitters essential for late gestational brain development and may play an important role in prematurity-related brain injury. In vivo investigation of GABA in the preterm infant with standard proton magnetic resonance spectroscopy (1H-MRS) has been limited due to its low concentrations in the developing brain, and overlap in the spectrum by other dominant metabolites. We describe early postnatal profiles of in vivo GABA and glutamate concentrations in the developing preterm brain measured by using the J-difference editing technique, Mescher-Garwood point resolved spectroscopy. We prospectively enrolled very preterm infants born ≤32 weeks gestational age and non-sedated 1H-MRS (echo time 68 ms, relaxation time 2000 ms, 256 signal averages) was acquired on a 3 Tesla magnetic resonance imaging scanner from a right frontal lobe voxel. Concentrations of GABA + (with macromolecules) was measured from the J-difference spectra; whereas glutamate and composite glutamate + glutamine (Glx) were measured from the unedited (OFF) spectra and reported in institutional units. We acquired 42 reliable spectra from 38 preterm infants without structural brain injury [median gestational age at birth of 28.0 (IQR 26.0, 28.9) weeks; 19 males (50%)] at a median postmenstrual age of 38.4 (range 33.4 to 46.4) weeks. With advancing post-menstrual age, the concentrations of glutamate OFF increased significantly, adjusted for co-variates (generalized estimating equation β = 0.22, p = 0.02). Advancing postnatal weeks of life at the time of imaging positively correlated with GABA + (β = 0.06, p = 0.02), glutamate OFF (β = 0.11, p = 0.02) and Glx OFF (β = 0.12, p = 0.04). Male infants had higher GABA + (1.66 ± 0.07 vs. 1.33 ± 0.11, p = 0.01) concentrations compared with female infants. For the first time, we report the early ex-utero developmental profile of in vivo GABA and glutamate stratified by age and sex in the developing brain of very preterm infants. This data may provide novel insights into the pathophysiology of neurodevelopmental disabilities reported in preterm infants even in the absence of structural brain injury.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C, US
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Marni B Jacobs
- Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Mariam Said
- Neonatology, Children's National Hospital, Washington, D.C, US
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Kushal Kapse
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US
| | - Jonathan Murnick
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Matthew T Whitehead
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Taeun Chang
- Division of Neurology, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C, US
- The George Washington University School of Medicine, Washington, D.C, US
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C, US.
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C, US.
- The George Washington University School of Medicine, Washington, D.C, US.
| |
Collapse
|
23
|
Weerasekera A, Levin O, Clauwaert A, Heise KF, Hermans L, Peeters R, Mantini D, Cuypers K, Leunissen I, Himmelreich U, Swinnen SP. Neurometabolic Correlates of Reactive and Proactive Motor Inhibition in Young and Older Adults: Evidence from Multiple Regional 1H-MR Spectroscopy. Cereb Cortex Commun 2020; 1:tgaa028. [PMID: 34296102 PMCID: PMC8152832 DOI: 10.1093/texcom/tgaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/13/2022] Open
Abstract
Suboptimal inhibitory control is a major factor contributing to motor/cognitive deficits in older age and pathology. Here, we provide novel insights into the neurochemical biomarkers of inhibitory control in healthy young and older adults and highlight putative neurometabolic correlates of deficient inhibitory functions in normal aging. Age-related alterations in levels of glutamate–glutamine complex (Glx), N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mIns) were assessed in the right inferior frontal gyrus (RIFG), pre-supplementary motor area (preSMA), bilateral sensorimotor cortex (SM1), bilateral striatum (STR), and occipital cortex (OCC) with proton magnetic resonance spectroscopy (1H-MRS). Data were collected from 30 young (age range 18–34 years) and 29 older (age range 60–74 years) adults. Associations between age-related changes in the levels of these metabolites and performance measures or reactive/proactive inhibition were examined for each age group. Glx levels in the right striatum and preSMA were associated with more efficient proactive inhibition in young adults but were not predictive for reactive inhibition performance. Higher NAA/mIns ratios in the preSMA and RIFG and lower mIns levels in the OCC were associated with better deployment of proactive and reactive inhibition in older adults. Overall, these findings suggest that altered regional concentrations of NAA and mIns constitute potential biomarkers of suboptimal inhibitory control in aging.
Collapse
Affiliation(s)
- Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Amanda Clauwaert
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Lize Hermans
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals KU Leuven, 3000, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Inge Leunissen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| |
Collapse
|
24
|
Rabinovitch A, Aviram I, Biton Y, Braunstein D. Explaining recent postictal epilepsy EEG results by the G-lymphatic clearance hypothesis. Med Hypotheses 2020; 137:109600. [DOI: 10.1016/j.mehy.2020.109600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
|
25
|
Neurometabolic correlates of 6 and 16 weeks of treatment with risperidone in medication-naive first-episode psychosis patients. Transl Psychiatry 2020; 10:15. [PMID: 32066680 PMCID: PMC7026447 DOI: 10.1038/s41398-020-0700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Antipsychotic medications are the cornerstone of treatment in schizophrenia spectrum disorders. In first-episode psychosis, the recommended time for an antipsychotic medication trial is up to 16 weeks, but the biological correlates of shorter and longer antipsychotic treatment trials in these cohorts remain largely unknown. We enrolled 29 medication-naive first-episode patients (FEP) and 22 matched healthy controls (HC) in this magnetic resonance spectroscopy (MRS) study, examining the levels of combined glutamate and glutamine (commonly referred to as Glx) in the bilateral medial prefrontal cortex (MPFC) with a PRESS sequence (TR/TE = 2000/80 ms) before initiation of antipsychotic treatment, after 6 and 16 weeks of treatment with risperidone. Data were quantified in 18 HC and 20 FEP at baseline, for 19 HC and 15 FEP at week 6, and for 14 HC and 16 FEP at week 16. At baseline, none of the metabolites differed between groups. Metabolite levels did not change after 6 or 16 weeks of treatment in patients. Our data suggest that metabolite levels do not change after 6 or 16 weeks of treatment with risperidone in FEP. It is possible that our choice of sequence parameters and the limited sample size contributed to negative findings reported here. On the other hand, longer follow-up may be needed to detect treatment-related metabolic changes with MRS. In summary, our study adds to the efforts in better understanding glutamatergic neurometabolism in schizophrenia, especially as it relates to antipsychotic exposure.
Collapse
|
26
|
Song Y, Gong T, Edden RAE, Wang G. Feasibility of Measuring GABA Levels in the Upper Brainstem in Healthy Volunteers Using Edited MRS. Front Psychiatry 2020; 11:813. [PMID: 32922319 PMCID: PMC7456914 DOI: 10.3389/fpsyt.2020.00813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To assess the feasibility of small-voxel MEGA-PRESS in detecting gamma-aminobutyric acid (GABA) levels of the upper brainstem in healthy volunteers. MATERIALS AND METHODS Forty-two healthy volunteers, aged between 20 and 76 years were enrolled in this study, and underwent a 3.0T MRI scan using an eight-channel phased-array head coil. The MEGA-PRESS sequence was used to edit GABA signal from a 10x25x30 mm3 voxel in the upper brain stem. The detected signal includes contributions from macromolecules (MM) and homocarnosine and is therefore referred to as GABA+. All the data were processed using Gannet. RESULTS Thirty-four cases were successful in measuring GABA in the upper brainstem and 8 cases failed (based on poor modeling of spectra). The GABA+ levels were 2.66 ± 0.75 i.u. in the upper brainstem of healthy volunteers, ranging from 1.50 to 4.40 i.u. The normalized fitting residual (FitErr in Gannet) was 12.1 ± 2.8%, ranging from 7.4% to 19.1%; it was below 15.5% in 30 cases (71%). CONCLUSIONS It is possible to measure GABA levels in the upper brainstem using MEGA-PRESS with a relatively small ROI, with a moderate between-subject variance of under 30%.
Collapse
Affiliation(s)
- Yulu Song
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinn, China
| | - Tao Gong
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinn, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Guangbin Wang
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinn, China
| |
Collapse
|