1
|
Naseri N, Beck D, Ferschmann L, Aksnes ER, Havdahl A, Jalbrzikowski M, Norbom LB, Tamnes CK. MRI-based cortical gray/white matter contrast in young adults who endorse psychotic experiences or are at genetic risk for psychosis. Psychiatry Res Neuroimaging 2025; 349:111981. [PMID: 40073681 DOI: 10.1016/j.pscychresns.2025.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Research has reported group-level differences in cortical grey/white matter contrast (GWC) in individuals with psychotic disorders. However, no studies to date have explored GWC in individuals at elevated risk for psychosis. In this study, we examined brain microstructure differences between young adults with psychotic-like experiences or a high genetic risk for psychosis and unaffected individuals. Moreover, we investigated the association between GWC and the number of and experiences of psychosis-like symptoms. The sample was obtained from the Avon Longitudinal Study of Parents and Children (ALSPAC): the psychotic experiences study, consisting of young adults with psychotic-like symptoms (n = 119) and unaffected individuals (n = 117), and the schizophrenia recall-by-genotype study, consisting of individuals with a high genetic risk for psychosis (n = 95) and those with low genetic risk for psychosis (n = 95). Statistical analyses were performed using FSL's Permutation Analysis of Linear Models (PALM), controlling for age and sex. The results showed no statistically significant differences in GWC between any of the groups and no significant associations between GWC and the number and experiences of psychosis-like symptoms. In conclusion, the results indicate there are no differences in GWC in individuals with high, low or no risk for psychosis.
Collapse
Affiliation(s)
- Nasimeh Naseri
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway.
| | - Dani Beck
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway
| | - Eira R Aksnes
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexandra Havdahl
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway; MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medicine School, University of Bristol, Bristol, UK
| | - Maria Jalbrzikowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Linn B Norbom
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, Pob 1094, Blindern, N-0317 Oslo, Forskningveien 3A, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
2
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Microstructural Alterations in the Midbrain in Early Psychosis Associates with Clinical Symptom Scores. eNeuro 2025; 12:ENEURO.0361-24.2025. [PMID: 40032532 PMCID: PMC11927052 DOI: 10.1523/eneuro.0361-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Early psychosis (EP) is a critical period for psychotic disorders during which the brain undergoes rapid and significant functional and structural changes ( Shinn et al., 2017). The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in health and disease. Here we focus on HCP-EP subjects (i.e., those within 5 years of the initial psychotic episode) to determine macro- and microstructural alterations in EP (HCP-EP sample, n = 179: EP, n = 123, controls, n = 56) and their association with clinical outcomes (i.e., symptoms severity) in HCP-EP. We carried out analyses of deformation-based morphometry (DBM), scalar indices from the diffusion tensor imaging (DTI), and tract-based spatial statistics (TBSS). Lastly, we conducted correlation analyses focused on the midbrain (DBM and DTI) to examine associations between its structure and clinical symptoms. Our results show that the midbrain displays robust alteration in its structure (DBM and DTI) in the voxel-based analysis. Complimentary alterations were also observed for the hippocampus and putamen. A seed-based analysis centered around the midbrain confirms the voxel-based analysis of DBM and DTI. TBSS displays structural differences within the midbrain and complementary alterations in the corticospinal tract and cingulum. Correlations between the midbrain structures and behavior showed that the quantified features correlate with cognition and clinical scores. Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and provide a path for future investigations to inform specific brain-based biomarkers of EP.
Collapse
Affiliation(s)
- Zicong Zhou
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Kylie Jones
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
3
|
Sui YV, Bertisch H, Goff DC, Samsonov A, Lazar M. Quantitative magnetization transfer and g-ratio imaging of white matter myelin in early psychotic spectrum disorders. Mol Psychiatry 2025:10.1038/s41380-024-02883-0. [PMID: 39779900 DOI: 10.1038/s41380-024-02883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort. We utilized quantitative magnetization transfer (qMT) imaging combined with advanced diffusion imaging to estimate specific myelin-related biophysical properties in 51 young adult PSD patients compared with 38 age-matched healthy controls. The macromolecular proton fraction (MPF) obtained from qMT was used as a specific marker of myelin content. Additionally, MPF was employed along with diffusion metrics of axonal density (vic) and extra-cellular volume fraction to derive the g-ratio, a measure of relative myelin sheath thickness defined as the ratio of inner to outer axonal diameter. Compared to controls, we observed a widespread MPF reduction and localized g-ratio increase in patients, primarily those with a diagnosis of schizophrenia or depressive schizoaffective disorder. No between-group differences were noted in vic, suggesting similar axonal densities across groups. Correlation analysis revealed that lower MPF was significantly related to poorer working memory performance in PSD, while the HC group showed a positive association for working memory with both g-ratio and vic. The pattern of changes observed in our multimodal imaging markers suggests that PSD, depending on symptomatology, is characterized by specific alterations in white matter integrity and myelin-axonal geometry of major white matter tracts, which may impact working memory function. These findings provide a more detailed view of myelin-related white matter changes in early stages of PSD.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Hilary Bertisch
- Department of Psychiatry, Northwell Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Donald C Goff
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute, Orangeburg, NY, USA
| | - Alexey Samsonov
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Tomyshev AS, Dudina AN, Ilina EV, Iuzbashian PG, Voronova EI, Magomedagaev MM, Kostyuk GP, Andriushchenko AV, Romanov DV, Smulevich AB, Lebedeva IS. MRI Study of the Brain Structural Characteristic in Persecutory Delusions. Bull Exp Biol Med 2025; 178:376-380. [PMID: 39945953 DOI: 10.1007/s10517-025-06340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 02/28/2025]
Abstract
The structural MRI of the cortex, subcortical structures, hippocampal subfields, and brainstem regions in patients with persecutory delusions in schizophrenia (ICD-10 code: F20) and delusional disorder (ICD-10 code: F22.0) were analyzed. Patients demonstrated multiple regions of decreased cortical gray matter thickness, reduced volumes of the left thalamus and some hippocampal sub-fields compared to mentally healthy subjects. No alterations in brainstem structures were found. The results were analyzed within the framework of the transnosological model of delusions.
Collapse
Affiliation(s)
| | - A N Dudina
- Mental Health Research Center, Moscow, Russia
| | - E V Ilina
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - P G Iuzbashian
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E I Voronova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - M M Magomedagaev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - G P Kostyuk
- Psychiatric Hospital No. 1 named after N. A. Alexeev, Department of Health of Moscow, Moscow, Russia
| | - A V Andriushchenko
- Psychiatric Hospital No. 1 named after N. A. Alexeev, Department of Health of Moscow, Moscow, Russia
| | - D V Romanov
- Mental Health Research Center, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A B Smulevich
- Mental Health Research Center, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | | |
Collapse
|
5
|
Zhu Y, Maikusa N, Radua J, Sämann PG, Fusar-Poli P, Agartz I, Andreassen OA, Bachman P, Baeza I, Chen X, Choi S, Corcoran CM, Ebdrup BH, Fortea A, Garani RR, Glenthøj BY, Glenthøj LB, Haas SS, Hamilton HK, Hayes RA, He Y, Heekeren K, Kasai K, Katagiri N, Kim M, Kristensen TD, Kwon JS, Lawrie SM, Lebedeva I, Lee J, Loewy RL, Mathalon DH, McGuire P, Mizrahi R, Mizuno M, Møller P, Nemoto T, Nordholm D, Omelchenko MA, Raghava JM, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Smigielski L, Sugranyes G, Takahashi T, Tamnes CK, Tang J, Theodoridou A, Tomyshev AS, Uhlhaas PJ, Værnes TG, van Amelsvoort TAMJ, Waltz JA, Westlye LT, Zhou JH, Thompson PM, Hernaus D, Jalbrzikowski M, Koike S. Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk. Mol Psychiatry 2024; 29:1465-1477. [PMID: 38332374 PMCID: PMC11189817 DOI: 10.1038/s41380-024-02426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
Collapse
Affiliation(s)
- Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos III, Universitat de Barcelona, Barcelona, Spain
| | | | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Bachman
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mental Illness Research, Education, and Clinical Center, James J Peters VA Medical Center, New York City, NY, USA
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Ranjini Rg Garani
- Douglas Research Center; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Birte Yding Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Karsten Heekeren
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Tina D Kristensen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Romina Mizrahi
- Douglas Research Center; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Maria A Omelchenko
- Department of Youth Psychiatry, Mental Health Research Center, Moscow, Russian Federation
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Jan I Røssberg
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tor G Værnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore County, Baltimore, MD, USA
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Micro-Structural Alterations in the Midbrain in Early Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588901. [PMID: 38645197 PMCID: PMC11030414 DOI: 10.1101/2024.04.10.588901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Introduction Early psychosis (EP) is a critical period in the course of psychotic disorders during which the brain is thought to undergo rapid and significant functional and structural changes 1 . Growing evidence suggests that the advent of psychotic disorders is early alterations in the brain's functional connectivity and structure, leading to aberrant neural network organization. The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in healthy and disease populations; within HCP, there is a specific dataset that focuses on the EP subjects (i.e., those within five years of the initial psychotic episode) (HCP-EP), which is the focus of our study. Given the critically important role of the midbrain function and structure in psychotic disorders (cite), and EP in particular (cite), we specifically focused on the midbrain macro- and micro-structural alterations and their association with clinical outcomes in HCP-EP. Methods We examined macro- and micro-structural brain alterations in the HCP-EP sample (n=179: EP, n=123, Controls, n=56) as well as their associations with behavioral measures (i.e., symptoms severity) using a stepwise approach, incorporating a multimodal MRI analysis procedure. First, Deformation Based Morphometry (DBM) was carried out on the whole brain 3 Tesla T1w images to examine gross brain anatomy (i.e., seed-based and voxel-based volumes). Second, we extracted Fractional Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffusivity (MD) indices from the Diffusion Tensor Imaging (DTI) data; a midbrain mask was created based on FreeSurfer v.6.0 atlas. Third, we employed Tract-Based Spatial Statistics (TBSS) to determine microstructural alterations in white matter tracts within the midbrain and broader regions. Finally, we conducted correlation analyses to examine associations between the DBM-, DTI- and TBSS-based outcomes and the Positive and Negative Syndrome Scale (PANSS) scores. Results DBM analysis showed alterations in the hippocampus, midbrain, and caudate/putamen. A DTI voxel-based analysis shows midbrain reductions in FA and AD and increases in MD; meanwhile, the hippocampus shows an increase in FA and a decrease in AD and MD. Several key brain regions also show alterations in DTI indices (e.g., insula, caudate, prefrontal cortex). A seed-based analysis centered around a midbrain region of interest obtained from freesurfer segmentation confirms the voxel-based analysis of DTI indices. TBSS successfully captured structural differences within the midbrain and complementary alterations in other main white matter tracts, such as the corticospinal tract and cingulum, suggesting early altered brain connectivity in EP. Correlations between these quantities in the EP group and behavioral scores (i.e., PANSS and CAINS tests) were explored. It was found that midbrain volume noticeably correlates with the Cognitive score of PA and all DTI metrics. FA correlates with the several dimensions of the PANSS, while AD and MD do not show many associations with PANSS or CAINS. Conclusions Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and complimentary alteration in EP. Our work provides a path for future investigations to inform specific brain-based biomarkers of EP and their relationships to clinical manifestations of the psychosis course.
Collapse
|
7
|
Rasser PE, Ehlkes T, Schall U. Fronto-temporal cortical grey matter thickness and surface area in the at-risk mental state and recent-onset schizophrenia: a magnetic resonance imaging study. BMC Psychiatry 2024; 24:33. [PMID: 38191320 PMCID: PMC10775434 DOI: 10.1186/s12888-024-05494-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Studies to date examining cortical thickness and surface area in young individuals At Risk Mental State (ARMS) of developing psychosis have revealed inconsistent findings, either reporting increased, decreased or no differences compared to mentally healthy individuals. The inconsistencies may be attributed to small sample sizes, varying age ranges, different ARMS identification criteria, lack of control for recreational substance use and antipsychotic pharmacotherapy, as well as different methods for deriving morphological brain measures. METHODS A surfaced-based approach was employed to calculate fronto-temporal cortical grey matter thickness and surface area derived from magnetic resonance imaging (MRI) data collected from 44 young antipsychotic-naïve ARMS individuals, 19 young people with recent onset schizophrenia, and 36 age-matched healthy volunteers. We conducted group comparisons of the morphological measures and explored their association with symptom severity, global and socio-occupational function levels, and the degree of alcohol and cannabis use in the ARMS group. RESULTS Grey matter thickness and surface areas in ARMS individuals did not significantly differ from their age-matched healthy counterparts. However, reduced left-frontal grey matter thickness was correlated with greater symptom severity and lower function levels; the latter being also correlated with smaller left-frontal surface areas. ARMS individuals with more severe symptoms showed greater similarities to the recent onset schizophrenia group. The morphological measures in ARMS did not correlate with the lifetime level of alcohol or cannabis use. CONCLUSIONS Our findings suggest that a decline in function levels and worsening mental state are associated with morphological changes in the left frontal cortex in ARMS but to a lesser extent than those seen in recent onset schizophrenia. Alcohol and cannabis use did not confound these findings. However, the cross-sectional nature of our study limits our ability to draw conclusions about the potential progressive nature of these morphological changes in ARMS.
Collapse
Affiliation(s)
- Paul E Rasser
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tim Ehlkes
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
| | - Ulrich Schall
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- Centre for Brain & Mental Health Research, McAuley Centre, Mater Hospital, Waratah, NSW, 2298, Australia.
| |
Collapse
|
8
|
Hua JPY, Loewy RL, Stuart B, Fryer SL, Niendam TA, Carter CS, Vinogradov S, Mathalon DH. Cortical and subcortical brain morphometry abnormalities in youth at clinical high-risk for psychosis and individuals with early illness schizophrenia. Psychiatry Res Neuroimaging 2023; 332:111653. [PMID: 37121090 PMCID: PMC10362971 DOI: 10.1016/j.pscychresns.2023.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Neuroimaging studies have documented morphometric brain abnormalities in schizophrenia, but less is known about them in individuals at clinical high-risk for psychosis (CHR-P), including how they compare with those observed in early schizophrenia (ESZ). Accordingly, we implemented multivariate profile analysis of regional morphometric profiles in CHR-P (n = 89), ESZ (n = 93) and healthy controls (HC; n = 122). ESZ profiles differed from HC and CHR-P profiles, including 1) cortical thickness: significant level reduction and regional non-parallelism reflecting widespread thinning, except for entorhinal and pericalcarine cortex, 2) basal ganglia volume: significant level increase and regional non-parallelism reflecting larger caudate and pallidum, and 3) ventricular volume: significant level increase with parallel regional profiles. CHR-P and ESZ cerebellar profiles showed significant non-parallelism with HC profiles. Regional profiles did not significantly differ between groups for cortical surface area or subcortical volume. Compared to CHR-P followed for ≥18 months without psychosis conversion (n = 31), CHR-P converters (n = 17) showed significant non-parallel ventricular volume expansion reflecting specific enlargement of lateral and inferolateral regions. Antipsychotic dosage in ESZ was significantly correlated with frontal cortical thinning. Results suggest that morphometric abnormalities in ESZ are not present in CHR-P, except for ventricular enlargement, which was evident in CHR-P who developed psychosis.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States; Department of Psychological Sciences, University of Missouri, Columbia, 65211, MO, United States
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, 95616, CA, United States
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, 95616, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55455, MN, United States
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States.
| |
Collapse
|
9
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Aberizk K, Collins MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Mathalon DH, McGlashan TH, Perkins DO, Tsuang MT, Woods SW, Cannon TD, Walker EF. Life Event Stress and Reduced Cortical Thickness in Youth at Clinical High Risk for Psychosis and Healthy Control Subjects. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:171-179. [PMID: 33930604 PMCID: PMC8551305 DOI: 10.1016/j.bpsc.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND A decline in cortical thickness during early life appears to be a normal neuromaturational process. Accelerated cortical thinning has been linked with conversion to psychosis among individuals at clinical high risk for psychosis (CHR-P). Previous research indicates that exposure to life event stress (LES) is associated with exaggerated cortical thinning in both healthy and clinical populations, and LES is also linked with conversion to psychosis in CHR-P. To date, there are no reports on the relationship of LES with cortical thickness in CHR-P. This study examines this relationship and whether LES is linked with cortical thinning to a greater degree in individuals at CHR-P who convert to psychosis compared with individuals at CHR-P who do not convert and healthy control subjects. METHODS Controlling for age and gender (364 male, 262 female), this study examined associations between LES and baseline cortical thickness in 436 individuals at CHR-P (375 nonconverters and 61 converters) and 190 comparison subjects in the North American Prodrome Longitudinal Study. RESULTS Findings indicate that prebaseline cumulative LES is associated with reduced baseline cortical thickness in several regions among the CHR-P and control groups. Evidence suggests that LES is a risk factor for thinner cortex to the same extent across diagnostic groups, while CHR-P status is linked with thinner cortex in select regions after accounting for LES. CONCLUSIONS This research provides additional evidence to support the role of LES in cortical thinning in both healthy youth and those at CHR-P. Potential underlying mechanisms of the findings and implications for future research are discussed.
Collapse
Affiliation(s)
- Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, Georgia.
| | - Meghan A Collins
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, San Diego, California
| | | | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, California; San Francisco VA Medical Center, San Francisco, California
| | | | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Di Biase MA, Cetin-Karayumak S, Lyall AE, Zalesky A, Cho KIK, Zhang F, Kubicki M, Rathi Y, Lyons MG, Bouix S, Billah T, Anticevic A, Schleifer C, Adkinson BD, Ji JL, Tamayo Z, Addington J, Bearden CE, Cornblatt BA, Keshavan MS, Mathalon DH, McGlashan TH, Perkins DO, Cadenhead KS, Tsuang MT, Woods SW, Stone WS, Shenton ME, Cannon TD, Pasternak O. White matter changes in psychosis risk relate to development and are not impacted by the transition to psychosis. Mol Psychiatry 2021; 26:6833-6844. [PMID: 34024906 PMCID: PMC8611104 DOI: 10.1038/s41380-021-01128-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development.
Collapse
Affiliation(s)
- Maria A Di Biase
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica G Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan Anticevic
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | | | - Brendan D Adkinson
- Yale Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jie Lisa Ji
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Zailyn Tamayo
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Jean Addington
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Barbara A Cornblatt
- Department of Psychiatry and Psychology, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Psychology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
- The Zucker Hillside Hospital, New York, NY, USA
| | - Matcheri S Keshavan
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel H Mathalon
- University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center, San Francisco, CA, USA
| | - Thomas H McGlashan
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Diana O Perkins
- Department of Psychology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
- University of North Carolina (UNC), Chapel Hill, NC, USA
| | - Kristen S Cadenhead
- Department of Psychiatry, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Scott W Woods
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - William S Stone
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyrone D Cannon
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
MRI-Based Markers of Changes in the Supragranular Cortical Layer in Individuals at Clinically High Risk of Endogenous Psychosis. Bull Exp Biol Med 2021; 171:483-488. [PMID: 34553301 DOI: 10.1007/s10517-021-05256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/20/2022]
Abstract
We analyzed morphometric MRI parameters indirectly attesting to structural changes in the supragranular layer in 33 non-converted individuals at clinical high risk for endogenous psychosis (follow-up period of 6.7±0.6 years) and in 34 sex- and age-matched healthy controls. In the group of clinical high-risk individuals, changes indicative of potential predominance of supragranular thinning in comparison with a decrease of infragranular cortical layer thickness were revealed. The results are discussed in the context of the concepts of resilience and risk markers of developing endogenous psychosis.
Collapse
|
13
|
Jalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, et alJalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, Suzuki M, Theodoridou A, Tomyshev AS, Tor J, Værnes TG, Velakoulis D, Venegoni GD, Vinogradov S, Wenneberg C, Westlye LT, Yamasue H, Yuan L, Yung AR, van Amelsvoort TAMJ, Turner JA, van Erp TGM, Thompson PM, Hernaus D. Association of Structural Magnetic Resonance Imaging Measures With Psychosis Onset in Individuals at Clinical High Risk for Developing Psychosis: An ENIGMA Working Group Mega-analysis. JAMA Psychiatry 2021; 78:753-766. [PMID: 33950164 PMCID: PMC8100913 DOI: 10.1001/jamapsychiatry.2021.0638] [Show More Authors] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 01/10/2023]
Abstract
Importance The ENIGMA clinical high risk (CHR) for psychosis initiative, the largest pooled neuroimaging sample of individuals at CHR to date, aims to discover robust neurobiological markers of psychosis risk. Objective To investigate baseline structural neuroimaging differences between individuals at CHR and healthy controls as well as between participants at CHR who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-PS-). Design, Setting, and Participants In this case-control study, baseline T1-weighted magnetic resonance imaging (MRI) data were pooled from 31 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. CHR status was assessed using the Comprehensive Assessment of At-Risk Mental States or Structured Interview for Prodromal Syndromes. MRI scans were processed using harmonized protocols and analyzed within a mega-analysis and meta-analysis framework from January to October 2020. Main Outcomes and Measures Measures of regional cortical thickness (CT), surface area, and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR group vs control group) and conversion status (CHR-PS+ group vs CHR-PS- group vs control group). Results Of the 3169 included participants, 1428 (45.1%) were female, and the mean (SD; range) age was 21.1 (4.9; 9.5-39.9) years. This study included 1792 individuals at CHR and 1377 healthy controls. Using longitudinal clinical information, 253 in the CHR-PS+ group, 1234 in the CHR-PS- group, and 305 at CHR without follow-up data were identified. Compared with healthy controls, individuals at CHR exhibited widespread lower CT measures (mean [range] Cohen d = -0.13 [-0.17 to -0.09]), but not surface area or subcortical volume. Lower CT measures in the fusiform, superior temporal, and paracentral regions were associated with psychosis conversion (mean Cohen d = -0.22; 95% CI, -0.35 to 0.10). Among healthy controls, compared with those in the CHR-PS+ group, age showed a stronger negative association with left fusiform CT measures (F = 9.8; P < .001; q < .001) and left paracentral CT measures (F = 5.9; P = .005; q = .02). Effect sizes representing lower CT associated with psychosis conversion resembled patterns of CT differences observed in ENIGMA studies of schizophrenia (ρ = 0.35; 95% CI, 0.12 to 0.55; P = .004) and individuals with 22q11.2 microdeletion syndrome and a psychotic disorder diagnosis (ρ = 0.43; 95% CI, 0.20 to 0.61; P = .001). Conclusions and Relevance This study provides evidence for widespread subtle, lower CT measures in individuals at CHR. The pattern of CT measure differences in those in the CHR-PS+ group was similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread disruptions in CT coupled with abnormal age associations in those at CHR may point to disruptions in postnatal brain developmental processes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Juan H Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- EPIC Lab, Department of Psychosis Studies, King's College London, London, United Kingdom
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Christine I Hooker
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Esther Via
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
| | - Paul E Rasser
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, Australia
- Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Newcastle, Australia
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Wenche Ten Velden Hegelstad
- Faculty of Social Sciences, University of Stavanger, Stavanger, Norway
- TIPS Centre for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
| | | | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore
| | - Romina Mizrahi
- Douglas Research Center, Montreal, Quebec, Canada
- McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, New York, New York
| | - Franz Resch
- Clinic for Child and Adolescent Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imke L J Lemmers-Jansen
- Faculty of Behavioural and Movement Sciences, Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, United Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - G Paul Amminger
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kimberley Atkinson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Helen Baldwin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Cali F Bartholomeusz
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Sabrina Catalano
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W L Chee
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Montserrat Dolz
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam University Medical Centre, Amsterdam, the Netherlands
- Arkin, Amsterdam, the Netherlands
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen M Haut
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Child and Adolescent Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kiyoto Kasai
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Mallory J Klaunig
- Department of Psychology, University of Maryland, Baltimore County, Baltimore
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Tina D Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Xiaoqian Ma
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Patrick McGorry
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Lier, Norway
| | - Tomas Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Daniel Muñoz-Samons
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ketil Oppedal
- Stavanger Medical Imaging Laboratory, Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - Lijun Ouyang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jose C Pariente
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jayachandra M Raghava
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, University of Copenhagen, Glostrup, Denmark
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Brian J Roach
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Jan I Røssberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, Australia
- Priority Research Centre Grow Up Well, The University of Newcastle, Newcastle, Australia
| | - Jason Schiffman
- Department of Psychology, University of Maryland, Baltimore County, Baltimore
- Department of Psychological Science, University of California, Irvine
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Andre Schmidt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Mikkel E Sørensen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Jordina Tor
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Tor G Værnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Gloria D Venegoni
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Liu Yuan
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Alison R Yung
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | | | - Theo G M van Erp
- Center for the Neurobiology of Learning and Memory, Irvine, California
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Fortea A, Batalla A, Radua J, van Eijndhoven P, Baeza I, Albajes-Eizagirre A, Fusar-Poli P, Castro-Fornieles J, De la Serna E, Luna LP, Carvalho AF, Vieta E, Sugranyes G. Cortical gray matter reduction precedes transition to psychosis in individuals at clinical high-risk for psychosis: A voxel-based meta-analysis. Schizophr Res 2021; 232:98-106. [PMID: 34029948 DOI: 10.1016/j.schres.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023]
Abstract
Gray matter and cortical thickness reductions have been documented in individuals at clinical high-risk for psychosis and may be more pronounced in those who transition to psychosis. However, these findings rely on small samples and are inconsistent across studies. In this review and meta-analysis we aimed to investigate neuroanatomical correlates of clinical high-risk for psychosis and potential predictors of transition, using a novel meta-analytic method (Seed-based d Mapping with Permutation of Subject Images) and cortical mask, combining data from surface-based and voxel-based morphometry studies. Individuals at clinical high-risk for psychosis who later transitioned to psychosis were compared to those who did not and to controls, and included three statistical maps. Overall, individuals at clinical high-risk for psychosis did not differ from controls, however, within the clinical high-risk for psychosis group, transition to psychosis was associated with less cortical gray matter in the right temporal lobe (Hedges' g = -0.377), anterior cingulate and paracingulate (Hedges' g = -0.391). These findings have the potential to help refine prognostic and etiopathological research in early psychosis.
Collapse
Affiliation(s)
- Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Rosselló 153, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Center for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behavior, Center for Cognitive Neuroimaging, Nijmegen, the Netherlands.
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Anton Albajes-Eizagirre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Medicina i Recerca Traslacional, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Elena De la Serna
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| | - Licia P Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Division of Neuroradiology, 600 N Wolfe Street Phipps B100F, 21287 Baltimore, MD, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Center of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; Fundació Clínic per a la Recerca Biomèdica (FCRB), Esther Koplowitz Centre, Rosselló 153, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
15
|
Tomyshev AS, Lebedeva IS, Kananovich PS, Pomytkin AN, Bazhenova DA, Kaleda VG. Multimodal MRI of Conduction Tracts and Anatomy of the Cerebral Gray Matter in Familial Risk of Affective Disorders and Schizophrenia. Bull Exp Biol Med 2020; 169:614-618. [PMID: 32986216 DOI: 10.1007/s10517-020-04939-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/27/2022]
Abstract
The present study analyzed diffusion characteristics of white matter tracts and grey matter anatomy in 48 mentally healthy participants, including first-degree relatives of patients with schizophrenia (N=13) and affective spectrum disorders (N=13). The subgroup with familial risk of schizophrenia displayed abnormalities in the structural connectivity and increased cortical thickness in the superior frontal gyrus. No differences in the analyzed characteristics were revealed in the subgroup with familial risk for affective disorders. The results are discussed within the framework of the concepts of endophenotypes and processes reflecting compensatory and protective mechanisms.
Collapse
Affiliation(s)
- A S Tomyshev
- Research Center of Mental Health, Moscow, Russia.
| | - I S Lebedeva
- Research Center of Mental Health, Moscow, Russia
| | | | - A N Pomytkin
- Research Center of Mental Health, Moscow, Russia
| | - D A Bazhenova
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V G Kaleda
- Research Center of Mental Health, Moscow, Russia
| |
Collapse
|