1
|
Awad WA, Ruhnau D, Doupovec B, Hess C, Schatzmayr D, Hess M, Grenier B. Exposure of broiler chickens to deoxynivalenol and Campylobacter jejuni induces substantial changes in intestinal gene expression. Sci Rep 2025; 15:13531. [PMID: 40253521 PMCID: PMC12009378 DOI: 10.1038/s41598-025-97672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
The mycotoxin deoxynivalenol (DON) is of high importance among feed contaminants because of its frequent occurrence in toxicologically relevant concentrations worldwide. Cereal crops, the main component of chicken diet, are commonly contaminated with DON, resulting in frequent exposure of chickens to DON. Likewise, Campylobacter (C.), a pathogen of major public and animal health concern, is frequently found in chicken flocks and poses a threat to the One Health approach. Campylobacter colonizes the gastrointestinal (GI) tract of poultry with a high bacterial load in the caeca. However, the mechanism of C. jejuni colonization in chickens is still not understood albeit it is well known that C. jejuni resides primarily in the mucosal layer of the chicken intestine. Therefore, in the actual study we focused on the effect of exposure to DON and/or C. jejuni on expression profiles of intestinal mucins (MUC1, MUC2), β-defensins (Gallinacin (GAL) 10, 12), cytokines (Toll-like receptor 2 (TLR2), Interleukin (IL) 6, 8, Interferon-γ (IFN)-γ), inducible nitric oxide synthase 2 (iNOS2), as well as selected tight junction proteins (Claudin 5 (CLDN5), Occludin (OCLN), and zonula occludens-1 (ZO1) via RT-qPCR. For this, a total of 150 one-day-old Ross 308 broiler chickens were randomly allocated to six different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, several changes in gene expression patterns were demonstrated. A significant (P ≤ 0.05) downregulation of MUC2 mRNA expression was observed in birds fed DON5 and DON10 diet, as well as in birds co-exposed to DON5 and C. jejuni at 7 dpi. Furthermore, at 14 dpi, MUC2 mRNA expression was significantly (P ≤ 0.05) downregulated in birds fed DON (5 mg and 10 mg/kg diet) with and without C. jejuni and in birds infected solely with C. jejuni. The actual study also demonstrated that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via downregulation of OCLD mRNA expression. In addition, Campylobacter infection induced an increased expression of the antimicrobial peptide GAL12 and the IL8 gene, indicating that C. jejuni can initiate an immune response in the chicken gut in a proinflammatory manner. Similarly, DON with and without C. jejuni induced upregulation of GAL10 and GAL12 mRNA expression at 7 dpi. Moreover, no change in iNOS2 mRNA expression was observed in both the jejunum and the cecum at either 7 dpi or 14 dpi, suggesting unchanged NO production during exposure/infection. In conclusion, we confirmed that DON contamination corresponding to the currently applicable EU guidance value of 5 mg DON/kg feed affects the intestinal gene expression profiles of broilers, mainly in a dose-independent manner. Furthermore, DON exposure interacted synergistically with C. jejuni challenge regarding mucins, innate immunity gene expression in either the jejunum or the cecum, suggesting immunomodulatory activity of both foodborne agents (DON and C. jejuni).
Collapse
Affiliation(s)
- Wageha A Awad
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Daniel Ruhnau
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Barbara Doupovec
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Claudia Hess
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
- Current address: LVA GmbH, Klosterneuburg, Austria
| | - Dian Schatzmayr
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Michael Hess
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Bertrand Grenier
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| |
Collapse
|
2
|
Wang S, Liu Y, Liu S, Qin Z, Lu J, Zhang R, Yuan H. Consensus gene co-expression analysis across multiple intestinal tissues to identify key genes and pathways associated with abdominal fat deposition in broilers. Br Poult Sci 2025; 66:155-165. [PMID: 39466128 DOI: 10.1080/00071668.2024.2410367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
1. Abdominal fat deposition (AFD) is regulated by multiple intestinal tissues, and changes in the function of intestinal tissues are associated with AFD. Currently, integration of transcriptomic data across multiple intestinal tissues to explore excessive AFD has rarely been reported in broilers.2. In this study, a consensus gene co-expression network across the duodenum, jejunum, ileum and caecum of high- and low-abdominal fat broiler lines (HL and LL) was constructed using a publicly available transcriptomic data set. Combining the results of functional enrichment analyses and differential gene expression analyses, this investigated the genes and biological pathways across the four intestinal tissues that might influence AFD.3. In one expression module, NDUFA5, NDUFS6, NDUFA4, NDUFS4, ATP5H, ATP5J and ATP5C1 were significantly enriched in the oxidative phosphorylation pathway, with GPX2 and GSR significantly enriched in the glutathione metabolism pathway. These genes were significantly downregulated in the four intestinal tissues of the HL compared to LL chickens, which may be associated with AFD by increasing intestinal permeability.4. Lipid metabolism relevant genes were identified in other modules (ALDH7A1, ACSBG1, THEM4 and DECR1), which may be linked to AFD through regulation of lipid metabolism. Interestingly, in the first module, 12 genes were significantly enriched in the proteasome pathway and significantly downregulated in the four intestinal tissues in HL birds compared to LL birds, indicating a link between the proteasome and AFD.
Collapse
Affiliation(s)
- S Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Y Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - S Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Z Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - J Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - R Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - H Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Meinen-Jochum J, Skow CJ, Mellata M. Layer segmented filamentous bacteria colonize and impact gut health of broiler chickens. mSphere 2024; 9:e0049224. [PMID: 39422489 PMCID: PMC11580430 DOI: 10.1128/msphere.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In commercial poultry farms, chicks hatch away from their progenitors from which they acquire key host-specific microbiota, like segmented filamentous bacteria (SFB) involved in gut maturation in early life. This study investigated whether providing chicken SFB to newly hatched broilers would increase their gut maturation and resistance to bacteria relevant to broiler and human health. One-day-old Ross308 broilers were orally treated with either phosphate-buffered saline (CON) or layer-derived SFB (D-SFB). On days 5, 10, 17, and 24, feces were collected to detect and enumerate SFB and Enterobacteriaceae. On days 8, 15, 22, and 29, birds were euthanized, intestinal samples were collected to detect and enumerate SFB through quantitative PCR (qPCR) and microscopy and expression of genes associated with gut immune function through reverse transcription-qPCR. This study showed that, despite their host specificity, layer SFB can colonize their genetically distinct relative broilers. Ileal SFB colonization was accelerated by a week with the SFB treatment and covered the proximal, medial, and distal sections of the ileum. Colonization of the ileum by SFB in early life highly activated gene expression of intestinal barrier proteins and cytokines, e.g., IL-10 and IFNγ but not IL-17. SFB treatment reduced the level of Enterobacteriaceae in the gut and provided superior resistance to intestinal and extraintestinal pathogens as tested in vitro. Overall, early gut colonization of SFB is imperative for the maturation of the gut immune system and the establishment of a homeostatic gut environment. Improving our understanding of gut immune maturation in food-producing animals is crucial for both human and animal health.IMPORTANCEIn commercial farms, newly hatched chicks may lack host-specific microbiota that help mature their gut immune system for lifelong health benefits. Here, introducing an avian segmented filamentous bacteria (SFB) to commercially sourced chickens orally at hatch accelerated SFB colonization of the ileum. Remarkably, SFB from layers were able to colonize broilers and enhance gut immune maturation, and this immunomodulation impacted the ability to increase intestinal and extraintestinal resistance to bacteria relevant to poultry and human health. With the antibiotic restrictions in animal production, strategies that will help mitigate infections are urgently needed. In summary, we developed a live prophylactic for newly hatched chicks to improve animal health and food safety. Due to the host specificity of SFB, our data highlight the importance of investigating the molecular mechanism of SFB interaction in their own host.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Caleb J. Skow
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Awad WA, Grenier B, Ruhnau D, Hess C, Schatzmayr D, Hess M. Diametral influence of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) on the growth of Campylobacter jejuni with consequences on the bacterial transcriptome. BMC Microbiol 2024; 24:306. [PMID: 39152378 PMCID: PMC11328440 DOI: 10.1186/s12866-024-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Bertrand Grenier
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Dian Schatzmayr
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| |
Collapse
|
5
|
Gupta S, Biswas P, Das B, Mondal S, Gupta P, Das D, Mallick AI. Selective depletion of Campylobacter jejuni via T6SS dependent functionality: an approach for improving chickens gut health. Gut Pathog 2024; 16:38. [PMID: 38997758 PMCID: PMC11245787 DOI: 10.1186/s13099-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The targeted depletion of potential gut pathogens is often challenging because of their intrinsic ability to thrive in harsh gut environments. Earlier, we showed that Campylobacter jejuni (C. jejuni) exclusively uses the Type-VI Secretion System (T6SS) to target its prey such as Escherichia coli (E. coli), and phenotypic differences between T6SS-negative and T6SS-positive C. jejuni isolates toward bile salt sensitivity. However, it remains unclear how the target-driven T6SS functionality prevails in a polymicrobial gut environment. Here, we investigated the fate of microbial competition in an altered gut environment via bacterial T6SS using a T6SS-negative and -positive C. jejuni or its isogenic mutant of the hemolysin-coregulated protein (hcp). We showed that in the presence of bile salt and prey bacteria (E. coli), T6SS-positive C. jejuni experiences enhanced intracellular stress leading to cell death. Intracellular tracking of fluorophore-conjugated bile salts confirmed that T6SS-mediated bile salt influx into C. jejuni can enhance intracellular oxidative stress, affecting C. jejuni viability. We further investigated whether the T6SS activity in the presence of prey (E. coli) perturbs the in vivo colonization of C. jejuni. Using chickens as primary hosts of C. jejuni and non-pathogenic E. coli as prey, we showed a marked reduction of C. jejuni load in chickens cecum when bile salt solution was administered orally. Analysis of local antibody responses and pro-inflammatory gene expression showed a reduced risk of tissue damage, indicating that T6SS activity in the complex gut environment can be exploited as a possible measure to clear the persistent colonization of C. jejuni in chickens.
Collapse
Affiliation(s)
- Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
6
|
Sujiyanto, White CS, Bauer LL, Dilger RN. The dual sugar test (lactulose plus mannitol) is an unreliable indicator of feed withdrawal-associated changes in intestinal permeability in broiler chickens. Poult Sci 2024; 103:103336. [PMID: 38103531 PMCID: PMC10765102 DOI: 10.1016/j.psj.2023.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Despite its importance in poultry research, there is lack of standardized and practical techniques to measure intestinal permeability in a noninvasive manner. Therefore, this research sought to standardize a procedure using lactulose (Lac) and mannitol (Man) to measure intestinal barrier function in broilers. Twenty-one-day-old male and female Ross 308 birds were orally gavaged (either 2 mL/kg BW or fixed 3 mL per bird) with a solution containing 5 to 25 g Lac and 1 to 5 g Man dissolved in pure water to reach 100 mL of final solution. Feed withdrawal (FW; 2-24-h duration) prior to dosing with Lac and Man (LacMan) was mainly used to induce graded intestinal permeability. Blood samples were collected at 60-, 90-, or 120-min after LacMan dosing using serum or plasma (K2EDTA and/or Na-Heparin) blood tubes. Lac and Man concentrations were quantified by HPLC. Plasma samples collected 90-min after LacMan dosing elicited the least variable response (22.4% vs. 22.8% or 23.4% CV when compared with 60- and 120-min sampling time-points, respectively), and both markers were detectable after administering a solution containing the lowest concentration of Lac and Man. However, analytical problems arose when using Na-Heparin anticoagulant as high glucose levels interfered with Lac quantification. Upon improving the chromatographic technique, it became evident that a 24-h FW increased (P < 0.01) Lac concentrations. In the last trial, a more severe glucose interference was observed, resulting in no Lac detection within an entire treatment group. Twelve hours of FW increased (P < 0.01) Man concentration in the plasma of birds receiving the solution containing 3 g Man, but had no effect on the birds receiving the solution containing 5 g Man. A 24-h FW did not affect the Man concentrations in birds receiving the solution containing either 3 or 5 g Man. With inconsistency of Lac detection throughout our trials, it was concluded that the combination of Lac and Man is an unreliable marker to predict intestinal barrier function in broilers.
Collapse
Affiliation(s)
- Sujiyanto
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Laura L Bauer
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Ryan N Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Gloanec N, Guyard-Nicodème M, Brunetti R, Quesne S, Keita A, Chemaly M, Dory D. Plasmid DNA Prime/Protein Boost Vaccination against Campylobacter jejuni in Broilers: Impact of Vaccine Candidates on Immune Responses and Gut Microbiota. Pharmaceutics 2023; 15:pharmaceutics15051397. [PMID: 37242639 DOI: 10.3390/pharmaceutics15051397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Campylobacter infections, traced to poultry products, are major bacterial foodborne zoonoses, and vaccination is a potential solution to reduce these infections. In a previous experimental trial using a plasmid DNA prime/recombinant protein boost vaccine regimen, two vaccine candidates (YP437 and YP9817) induced a partially protective immune response against Campylobacter in broilers, and an impact of the protein batch on vaccine efficacy was suspected. This new study was designed to evaluate different batches of the previously studied recombinant proteins (called YP437A, YP437P and YP9817P) and to enhance the immune responses and gut microbiota studies after a C. jejuni challenge. Throughout the 42-day trial in broilers, caecal Campylobacter load, specific antibodies in serum and bile, the relative expression of cytokines and β-defensins, and caecal microbiota were assessed. Despite there being no significant reduction in Campylobacter in the caecum of vaccinated groups, specific antibodies were detected in serum and bile, particularly for YP437A and YP9817P, whereas the production of cytokines and β-defensins was not significant. The immune responses differed according to the batch. A slight change in microbiota was demonstrated in response to vaccination against Campylobacter. The vaccine composition and/or regimen must be further optimised.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
- UFR of Life Sciences Environment, University of Rennes 1, 35700 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Raphaël Brunetti
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Ségolène Quesne
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Alassane Keita
- SELEAC-Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Marianne Chemaly
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Daniel Dory
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| |
Collapse
|
8
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
9
|
Chagneau S, Gaucher ML, Thériault WP, Fravalo P, Thibodeau A. Observations supporting hypothetical commensalism and competition between two Campylobacter jejuni strains colonizing the broiler chicken gut. Front Microbiol 2023; 13:1071175. [PMID: 36817113 PMCID: PMC9937062 DOI: 10.3389/fmicb.2022.1071175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Campylobacter jejuni is the most prevalent bacterial foodborne pathogen in humans. Given the wide genetic diversity of C. jejuni strains found in poultry production, a better understanding of the relationships between these strains within chickens could lead to better control of this pathogen on farms. In this study, 14-day old broiler chickens were inoculated with two C. jejuni strains (103 or 107 CFU of D2008b and 103 CFU of G2008b, alone or together) that were previously characterized in vitro and that showed an opposite potential to compete for gut colonization in broilers. Liver samples and ileal and cecal contents were collected and used to count total C. jejuni and to quantify the presence of each strain using a strain specific qPCR or PCR approach. Ileal tissue samples were also collected to analyze the relative expression level of tight junction proteins. While a 103 CFU inoculum of D2008b alone was not sufficient to induce intestinal colonization, this strain benefited from the G2008b colonization for its establishment in the gut and its extraintestinal spread. When the inoculum of D2008b was increased to 107 CFU - leading to its intestinal and hepatic colonization - a dominance of G2008b was measured in the gut and D2008b was found earlier in the liver for birds inoculated by both strains. In addition, a transcript level decrease of JAM2, CLDN5 and CLDN10 at 7 dpi and a transcript level increase of ZO1, JAM2, OCLN, CLDN10 were observed at 21 dpi for groups of birds having livers contaminated by C. jejuni. These discoveries suggest that C. jejuni would alter the intestinal barrier function probably to facilitate the hepatic dissemination. By in vitro co-culture assay, a growth arrest of D2008b was observed in the presence of G2008b after 48 h of culture. Based on these results, commensalism and competition seem to occur between both C. jejuni strains, and the dynamics of C. jejuni intestinal colonization and liver spread in broilers appear to be strain dependent. Further in vivo experimentations should be conducted to elucidate the mechanisms of commensalism and competition between strains in order to develop adequate on-farm control strategies.
Collapse
Affiliation(s)
- Sophie Chagneau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,*Correspondence: Sophie Chagneau, ✉
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - William P. Thériault
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire Agroalimentaire du Conservatoire National des Arts et Métiers, Paris, France
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Alexandre Thibodeau, ✉
| |
Collapse
|
10
|
Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
von Buchholz JS, Ruhnau D, Hess C, Aschenbach JR, Hess M, Awad WA. Paracellular intestinal permeability of chickens induced by DON and/or C. jejuni is associated with alterations in tight junction mRNA expression. Microb Pathog 2022; 168:105509. [PMID: 35367310 DOI: 10.1016/j.micpath.2022.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Toxins, antigens, and harmful pathogens continuously challenge the intestinal mucosa. Therefore, regulation of the intestinal barrier is crucial for the maintenance of mucosal homeostasis and gut health. Intercellular complexes, namely, tight junctions (TJs), regulate paracellular permeability. TJs are mainly composed of claudins (CLDN), occludin (OCLN), tight junction associated MARVEL-domain proteins (TAMPS), the scaffolding zonula occludens (ZO) proteins and junction-adhesion molecules (JAMs). Different studies have shown that a Campylobacter infection can lead to a phenomenon so-called "leaky gut", including the translocation of luminal bacteria to the underlying tissue and internal organs. Based on the effects of C. jejuni on the chicken gut, we hypothesize that impacts on TJ proteins play a crucial role in the destructive effects of the intestinal barrier. Likewise, the mycotoxin deoxynivalenol (DON) can also alter gut permeability in chickens. Albeit DON and C. jejuni are widely distributed, no data are available on their effect on the tight junctions' barrier in the broiler intestine and consequences for permeability. Therefore, the aim of this study was to analyze the interaction between DON and C. jejuni on the gut barrier by linking permeability with gene expression of TJ proteins and to determine the relationships between the measurements. Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, we demonstrate that the co-exposure with DON has considerable consequences on gut permeability as well as on gut TJ mRNA expression. Co-exposure of DON and C. jejuni enhanced the negative effect on paracellular permeability of the intestine, which was also noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain time points in both jejunum and caecum. Furthermore, the increased paracellular permeability was associated with significant changes in TJ mRNA expression in the small and large intestine. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via up-regulation of pore-forming tight junctions (CLDN7 and CLDN10), as well as the cytosolic TJ protein occludin (OCLN) that can shift to various paracellular locations and are therefore able to alter the epithelial permeability. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni affects the paracellular permeability of the gut by altering the tight junction proteins. Furthermore, analysing of correlations between TJs revealed that the mRNA expression levels of most tight junctions were correlated with each other in both jejunum and caecum. Finally, the findings indicate that the molecular composition of tight junctions can be used as a marker for gut health and integrity.
Collapse
Affiliation(s)
- J Sophia von Buchholz
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
12
|
Ruhnau D, Hess C, Doupovec B, Grenier B, Schatzmayr D, Hess M, Awad W. Deepoxy-deoxynivalenol (DOM-1), a derivate of deoxynivalenol (DON), exhibits less toxicity on intestinal barrier function, Campylobacter jejuni colonization and translocation in broiler chickens. Gut Pathog 2021; 13:44. [PMID: 34217373 PMCID: PMC8254355 DOI: 10.1186/s13099-021-00440-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. Methods A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. Results A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds’ performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. Conclusion Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wageha Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|