1
|
Ghasemi HA, Azizollahi M, Ajoudani Lahroudi M, Taherpour K, Hajkhodadadi I, Akhavan-Salamat H, Afsar A, Khodaei-Motlagh M, Rahmatnejad E. Guanidinoacetic acid in laying hen diets with varying dietary energy: Productivity, antioxidant status, yolk fatty acid profile, hepatic lipid metabolism, and gut health. Poult Sci 2025; 104:105159. [PMID: 40267570 PMCID: PMC12051624 DOI: 10.1016/j.psj.2025.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
This study aimed to investigate the effects of GAA supplementation in diets differing in ME levels on productive performance, egg quality, blood parameters, yolk fatty acid profiles, hepatic expression of genes related to lipid metabolism, gut morphology, and nutrient digestibility in laying hens during their post-peak production phase. Over a 12-week period (52-64 weeks of age), 288 laying hens were randomly assigned to 6 treatments. Each treatment consisted of 8 replicates, with 6 hens per replicate. The experimental treatments were assigned in a 2 × 3 factorial arrangement, comprising 2 levels of dietary ME (a recommended level and a low level, the latter characterized by a 100 kcal/kg reduction in ME) and 3 levels of GAA supplementation (0, 0.6, and 1.2 g/kg). The results showed significant interaction effects (P < 0.05) between GAA supplementation and dietary ME levels on laying rate, egg mass, feed conversion ratio, crude protein digestibility, and AMEn. In hens fed the low-ME diet, GAA supplementation, particularly at 1.2 g/kg, significantly improved laying performance. Moreover, at both 0.6 and 1.2 g/kg under low-ME conditions, GAA significantly enhanced crude protein digestibility and AMEn. The low-ME diet was associated with decreased expression of key lipogenic genes, including sterol regulatory element-binding transcription factor 1 (SREBF1), acetyl-coenzyme A carboxylase (ACC), and fatty acid synthase (FAS), alongside increased expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1). Regardless of ME content, GAA supplementation linearly improved eggshell strength, enhanced the polyunsaturated-to-saturated fatty acid ratio in the yolk, elevated serum levels of creatine and total antioxidant capacity, improved intestinal morphology, and increased radical scavenging activity in the yolk (P < 0.05). Furthermore, GAA supplementation linearly increased the relative mRNA expression of several metabolic genes, including SREBF1, ACC, PPARα, and ApoB (P < 0.05). In conclusion, GAA supplementation enhanced productive performance in low-ME diets and exerted positive effects on egg characteristics and lipid metabolism, regardless of dietary ME content.
Collapse
Affiliation(s)
- Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran.
| | - Mohammad Azizollahi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Mahdi Ajoudani Lahroudi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Hossein Akhavan-Salamat
- Department of Animal Science, Faculty of Agriculture, Khoy Branch, Islamic Azad University, Khoy, Iran
| | - Ali Afsar
- Evonik Iran PJS, 1436935313 Tehran, Iran
| | - Mahdi Khodaei-Motlagh
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| |
Collapse
|
2
|
Zhou N, Zhang Y, Jiang Y, Gu W, Zhao S, Vongsangnak W, Zhang Y, Xu Q, Zhang Y. Quantitative Proteomics Analysis Reveals XDH Related with Ovarian Oxidative Stress Involved in Broodiness of Geese. Animals (Basel) 2025; 15:182. [PMID: 39858182 PMCID: PMC11759152 DOI: 10.3390/ani15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Studies have demonstrated significant alterations in ovarian oxidative stress levels, ovarian degeneration, and follicular atresia during the broody period in geese. The results of this study showed that during the broody period, geese exhibited degraded ovarian tissues, disrupted follicular development, a thinner granulosa cell layer, and lower levels of ovarian hormones E2, P4, and AMH. Antioxidant activity (GSH, CAT, SOD, T-AOC, and the content of H2O2) and the mRNA expression levels of antioxidant genes (GPX, SOD-1, SOD-2, CAT, COX-2, and Hsp70) were significantly higher in pre-broody geese compared to laying geese, while the expression of apoptosis-related genes (p53, Caspase-3, and Caspase-9) increased and the anti-apoptotic gene Bcl-2 decreased. Additionally, proteomic analysis identified 703 differentially expressed proteins (DEPs), primarily concentrated in the GO categories of the biological process (biological regulation, response to stimulus, etc.) and enriched in the KEGG pathways (PI3K-Akt signaling pathway, etc.). Among them, XDH was central to the regulatory network. Furthermore, Western blotting revealed higher expression of XDH in the ovaries of pre-broody geese than those of laying geese. Pearson correlation analysis indicated a significant correlation between XDH expression and oxidative stress markers in the ovaries of geese (r > 0.75). Overall, these results demonstrated that geese experience ovarian atrophy and remarkably increased oxidative stress during the broody period, suggesting that XDH may be a key driver of broodiness in geese.
Collapse
Affiliation(s)
- Ning Zhou
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Yaoyao Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Youluan Jiang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Wang Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Shuai Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| |
Collapse
|
3
|
Xu M, Liu L, Fan Z, Niu L, Ning W, Cheng H, Li M, Huo W, Zhou P, Deng H, Chen W, Che L. Effect of different dietary oil sources on the performance, egg quality and antioxidant capacity during the late laying period. Poult Sci 2025; 104:104615. [PMID: 39637658 PMCID: PMC11664395 DOI: 10.1016/j.psj.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigated the effects of different dietary ratios of linseed and soybean oils on the performance, egg quality, and antioxidant capacity of late-phase laying hens. A total of 360 70-week-old Jinghong laying hens were randomly assigned to four groups of six replicates each, with 15 chickens per replicate. Diets with linseed oil to soybean oil ratios of 3:0 (T1), 2:1 (T2), 1:2 (T3), and 0:3 (T4) were fed for 4 weeks. No significant differences in egg weight, feed intake of laying hens, egg production, or feed-to-egg ratio (P > 0.05) were observed among the groups. Compared with the T4 group, the T2 group had a significantly higher number of 8-10 mm follicles. Moreover, albumen height and Haugh units were significantly higher in the T3 group than in the T4 group (P < 0.05), although significant differences were not observed among the T1, T2, and T3 groups. With an increase in linseed oil addition to the feed, the content of n-3 polyunsaturated fatty acids in chicken eggs significantly increased (P < 0.05). Compared to the T4 group, the addition of linseed oil to the diet significantly reduced the blood malondialdehyde content and increased the blood glutathione peroxidase (GSH-PX) and superoxide dismutase enzyme activity. The GSH-PX activity and total antioxidant capacity in the oviducts of the T3 group were significantly higher than those of the T4 group (P < 0.05). The protein expression levels of Nrf2, HO-1, and NQO-1 in the oviduct tissues were significantly higher in the T3 group than in the T4 group (P < 0.05). This study showed that a linseed oil to soybean oil ratio of 1:2 in the T3 group enhanced egg quality by reducing oxidative stress and improving the oviduct microenvironment.
Collapse
Affiliation(s)
- Mengmeng Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Le Liu
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, China
| | - Zongze Fan
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, China
| | - Lizhu Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wenxi Ning
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - He Cheng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Mengyun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wenying Huo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Pan Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongyu Deng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wen Chen
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, China
| | - Long Che
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
4
|
Dong HL, Wu XY, Wang FY, Chen HX, Feng SL, Zhou CY, Zhao ZQ, Si LF. Mechanism of activation of TLR4/NF-κB/NLRP3 signaling pathway induced by heat stress disrupting the filtration barrier in broiler. BMC Vet Res 2024; 20:584. [PMID: 39732713 DOI: 10.1186/s12917-024-04411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/28/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively. RESULTS The ELISA results demonstrated that in comparison to the TN group, serum CORT content of broilers in the HS group was all remarkably elevated (P < 0.01); the levels of IL-6 and TNF-α in the serum were remarkably elevated (P < 0.05 or P < 0.01); serum CAT and SOD activities were all remarkably reduced (P < 0.05 or P < 0.01), and serum LDH activity and MDA content were all remarkably decreased (P < 0.05); serum BUN and CRE levels were remarkably elevated (P < 0.01). Pathological sections and transmission electron microscopy demonstrated that the structure of the renal filtration barrier in the HS group damaged gradually with the prolongation of heat stress in comparison to the TN group, but the damage was reduced at 42 days of age; the levels of TLR4, MyD88, NF-κB, NF-κB-p65, NLRP3, caspase-1 and IL-1β mRNAs were all up-regulated (P < 0.05 or P < 0.01) in renal tissues of the HS group, indicating that heat stress caused damage to the morphological structure and function of the renal filtration barrier and that TLR4/NF-κB/NLRP3 pathway was also affected by heat stress, leading to increased activity (P < 0.05 or P < 0.01). CONCLUSIONS It demonstrated that heat stress caused detrimental effects on both the morphological structure and function of the renal filtration barrier, and the initiation of the TLR4/NF-κB/NLRP3 signaling pathway exacerbated the inflammatory damage, leading to increased thermal damage to renal tissues and glomerular filtration barriers; however, with the prolongation of heat stress, broilers gradually developed heat tolerance, and the damage to the renal tissues and filtration barriers triggered by heat stress was mitigated.
Collapse
Affiliation(s)
- Hui-Li Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xing-Yue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Fei-Yao Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Hao-Xiang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Si-Liang Feng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Chen-Yang Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhan-Qin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Li-Fang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
5
|
Razmaitė V, Šiukščius A, Pileckas V, Bliznikas S. Effects of Dietary Resveratrol and Black Soldier Fly ( Hermetia illucens) Larvae Meal Supplements on Quail Egg Production, Quality, and Consumer Acceptance. Animals (Basel) 2024; 15:42. [PMID: 39794986 PMCID: PMC11718990 DOI: 10.3390/ani15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
This study aimed to examine the effects of supplementing a basal diet with resveratrol and black soldier fly (Hermetiaillucens) larvae meal on Manchurian Golden quail egg production and quality as well as consumer attitudes towards the quail eggs and their acceptability. Quail were allotted three treatments for a laying period of 3 months. The dietary treatment groups were those of a basal diet, a basal diet with 250 mg/kg resveratrol pliusACE, and a diet supplemented with 10% black soldier fly larvae meal (BSF). The BSF larvae meal supplement increased the live weight of the quail, but the differences in the mean egg production and egg external parameters between the experimental groups were insignificant. The egg yolk from the quail fed with resveratrol and BSF supplementation demonstrated lower (p < 0.001 and p < 0.01) pH compared with the quail fed a basal diet. Egg yolk colour showed lower (p < 0.05) lightness and lower (p < 0.01) yellowness and colour saturation in the group of quail fed with resveratrol supplement compared with BSF supplement. Resveratrol inclusion in the basal diet resulted in increased (p < 0.001) protein content in the yolk. BSF inclusion in the diet showed the effect by increasing (p < 0.001) dry matter in albumen. The total monounsaturated fatty acids, polyunsaturated fatty acids, and cholesterol content were not affected by the dietary treatment. The inclusion of BSF larvae meal in the diet increased the proportion of total saturated fatty acids and lowered the proportion of total trans fatty acids in yolk lipids and demonstrated less favourable ratios of fatty acids and nutritional indices, except for the peroxidisability index, and showed higher oxidative status (p < 0.05), flavour score, and overall egg acceptance compared with the quail fed on a basal diet.
Collapse
Affiliation(s)
- Violeta Razmaitė
- Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, LT-82317 Baisogala, Lithuania; (A.Š.); (V.P.); (S.B.)
| | | | | | | |
Collapse
|
6
|
Sun HX, Guo RB, Gu TT, Zong YB, Xu WW, Chen L, Tian Y, Li GQ, Lu LZ, Zeng T. Investigating the correlation between phenotypes, adrenal transcriptome, and serum metabolism in laying ducks exhibiting varying behaviours under the same stressor. Animal 2024; 18:101343. [PMID: 39442284 DOI: 10.1016/j.animal.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Laying ducks in cage environments face various stressors, including the fear of novelty, which negatively affects their behaviour and performance. The reasons behind the variation in behaviour under identical stress conditions are not well understood. This study investigated how different behaviours affect production performance, immune response, antioxidant capabilities, adrenal gene expression, and serum metabolite profiles in caged laying ducks subjected to the same stressor. Overall, 42-week-old laying ducks (N = 300) were selected, fed for 60 days, and simultaneously underwent behavioural tests. Based on their behavioural responses, 24 ducks were chosen and categorised into two groups: high-active avoidance (HAA) and low-active avoidance (LAA). The study utilised phenotypic, genetic, and metabolomic analyses, coupled with bioinformatics, to identify crucial biological processes, genes, and metabolites. The results indicated that ΔW (BW gain) and average daily egg weight (ADEW) were significantly lower in the HAA group compared to the LAA group (P < 0.05). By contrast, the feed-to-egg ratio was higher in the HAA group than in the LAA group (P < 0.05). Levels of serum immunoglobulin A, total antioxidant capacity, and the activities of enzymes like superoxide dismutase and catalase (CAT) were significantly lower in the HAA than in the LAA group (P < 0.05), whereas serum ACTH levels were significantly higher in HAA than in the LAA group (P < 0.05). The adrenal transcriptome analysis revealed 148 differentially expressed genes in the HAA group, with 97 up-regulated and 51 down-regulated. Moreover, enrichment analysis highlighted significant differences in two metabolic pathways: neuroactive ligand-receptor interaction and oxidative phosphorylation (P < 0.05). Serum metabolomics identified 11 differentially accumulated metabolites between the groups, with variations in up and down-regulation. Integrative analysis of phenotype, transcriptome, and metabolome data showed a strong correlation between the exosome component 3 (EXOSC3) gene, phenotypic traits, and differential metabolites. Thus, we deduced that the differences in average daily egg weight among ducks could be linked to variations in gabapentin and EXOSC3 gene expressions, affecting serum CAT levels.
Collapse
Affiliation(s)
- H X Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 430064, PR China
| | - R B Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; College of Animal Science, Zhejiang A&F University, Hangzhou, 310021 PR China
| | - T T Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Y B Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - W W Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - L Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Y Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - G Q Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - L Z Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - T Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Al-Khalaifah HS, Ibrahim D, Kamel AES, Al-Nasser A, Abdelwarith AA, Roushdy EM, Sheraiba NI, Shafik BM, El-Badry SM, Younis EM, Mamdouh M, Yassin EMM, Davies SJ, Kishawy ATY. Enhancing impact of dietary nano formulated quercetin on laying performance: egg quality, oxidative stability of stored eggs, intestinal immune and antioxidants related genes expression. BMC Vet Res 2024; 20:494. [PMID: 39472914 PMCID: PMC11520861 DOI: 10.1186/s12917-024-04327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Nutritional interventions with natural antioxidants can provide a pragmatic solution for modifying hens' performance and maintaining oxidative stability of eggs during storage. Quercetin is the most abundant flavonoids with potent antioxidant and immune stimulant activities. The concept of incorporating of quercetin, as potent antioxidant and immunostimulant, into effective nano-carriers (QNPs) has promoted their bioavailability and stability thus, their effectiveness for the first time were assessed on laying hens' performance and immunity, eggs quality during storage. Four hundred 12-weeks-old Hy-line brown laying hens were distributed to four experimental groups: control group fed basal diets, and other 3 groups fed basal diets fortified with 100, 200 and 300 mg/kg QNPs for 60 weeks. RESULTS Laying performance and quality of laid eggs were improved as expressed by elevated laying rate, egg mass %, eggs weight and yolk weight in QNPs200 and 300. Fortification of QNPs300 remarkably decreased layers serum total cholesterol concurrently with decreased egg yolk saturated fatty acids and cholesterol while increased polyunsaturated fatty acids. Over- 45 days storage period, QNPs enhanced phospholipids, total phenolics and flavonoids, total antioxidant activity (T-AOC) simultaneous with decreased MDA content in eggs. Furthermore, enhanced immune response was detected in both in serum and intestine of QNPs fed hens as reflected by higher lysozymes activity, IgM, IgG and phagocytic index and demotion of NO together with AvBD 6-12, IL-10, IgM and ATg 5-7-12 upregulation and downregulation of IL-1β and TNF-α especially at QNPs200 and 300. Intestinal redox balance was modified via decreasing H2O2 and MDA simultaneous with upregulation of catalase, SOD, GSH-Px, HO-1 and NQO1 in groups fed higher doses of QNPs. CONCLUSIONS QNPs supplementation provides a new nutritional strategy towards increasing hen performance, fortification of eggs with natural antioxidants that prevents egg quality deterioration during storage.
Collapse
Affiliation(s)
- Hanan S Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Asmaa El-Sayed Kamel
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | | | - Elshimaa M Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Nagwa I Sheraiba
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat city, 32897, Egypt
| | - Basant M Shafik
- Department of Animal Wealth Development, Animal and Poultry Production, Faculty of Veterinary Medicine, Benha University, P.O. Box 13736, Toukh city, Qalyubia, Egypt
| | - Sara M El-Badry
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44519, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, 11451, Saudi Arabia
| | - Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, P.O. Box 13736, Toukh city, Qalyubia, Egypt
| | - Engy Mohamed Mohamed Yassin
- Department of Biochemistry and molecular biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt.
| |
Collapse
|
8
|
Zhao H, Li Z, Sun Y, Yan M, Wang Y, Li Y, Zhang Y, Zhu M. Supplementation of Chlorogenic Acid Alleviates the Effects of H 2O 2-Induced Oxidative Stress on Laying Performance, Egg Quality, Antioxidant Capacity, Hepatic Inflammation, Mitochondrial Dysfunction, and Lipid Accumulation in Laying Hens. Antioxidants (Basel) 2024; 13:1303. [PMID: 39594445 PMCID: PMC11591049 DOI: 10.3390/antiox13111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
This research examined the impact of chlorogenic acid (CGA) on laying performance, antioxidant capacity, egg quality, hepatic inflammation, mitochondrial function, and lipid metabolism in hens subjected to hydrogen peroxide (H2O2)-induced oxidative stress (OS). Three hundred sixty healthy 43-wk-old Hy-Line brown hens were randomly assigned to six treatments: a basal diet + 0 (control and H2O2), 600 (600 mg/kg CGA and 600 mg/kg CGA + H2O2), and 800 (800 mg/kg CGA and 800 mg/kg CGA + H2O2) mg/kg CGA for 84 d. On the 64th and 78th days of the trial, hens in groups H2O2, 600 mg/kg CGA + H2O2, and 800 mg/kg CGA + H2O2 were injected intraperitoneally with 10% H2O2. The results demonstrated that 600 and 800 mg/kg CGA significantly improved the egg production rate (EPR) and egg quality and reduced lipid peroxidation compared to the control group. The 800 mg/kg CGA showed greater improvements in the EPR and average egg weight (AEW) compared to the 600 mg/kg dose. Conversely, H2O2 exposure significantly decreased the EPR, AEW, and egg quality and increased feed conversion rate and average daily feed intake. H2O2 exposure significantly decreased serum T-AOC and increased serum MDA levels while reducing hepatic T-SOD, GSH-Px, and CAT activities. Meanwhile, H2O2 exposure significantly elevated liver reactive oxygen species levels, pathological damage, and NF-κB, TNFα, and IL-1β gene expression. Additionally, H2O2 treatment disrupted hepatocyte mitochondrial structure and significantly increased the expression of VDAC1 protein, and IP3R, GRP75, MCU, Fis1, and MFF genes, while downregulating the expression of MFN2 protein and PGC1α gene. Oil Red O staining demonstrated that H2O2 induced significant lipid accumulation in hepatocytes. Concurrently, H2O2 significantly increased serum triglycerides, total cholesterol, and liver triglycerides levels while decreasing serum hepatic lipase activity. This was primarily attributed to the significant upregulation of liver SREBP1, FASN, and ACC genes and the downregulation of the liver CPT1 gene induced by H2O2. Furthermore, CGA pretreatment effectively prevented the degeneration in laying performance and egg quality, as well as OS, liver inflammation, pathological damage, and mitochondrial dysfunction induced by H2O2. CGA inhibited H2O2-induced hepatic lipid accumulation by upregulating fatty acid oxidation-related gene expression and downregulating fatty acid synthesis-related gene expression. These findings indicate that the dietary addition of 800 mg/kg of CGA is the optimum supplementation dose. CGA can enhance laying performance and egg quality while alleviating OS, hepatic inflammation, mitochondrial dysfunction, and lipid accumulation in H2O2-challenged laying hens.
Collapse
Affiliation(s)
- Haitong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yue Sun
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yingjie Wang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yurong Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
9
|
Li X, Sha Y, Li S, Wang Z, Yang Y, Jiao T, Zhao S. Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages. Front Immunol 2024; 15:1462805. [PMID: 39464877 PMCID: PMC11502325 DOI: 10.3389/fimmu.2024.1462805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Resveratrol (Res), a natural plant antitoxin polyphenol, is widely used in animal husbandry due to its antioxidant and anti-inflammatory properties, and current research has focused on humans, sows, and female mice. This study aimed to analyze the effects of dietary Res supplementation in ewes on antioxidant activity, immune responses, hormone levels, rumen microbiota and metabolites across various reproductive stages (estrus, pregnancy, and lactation). Methods Twenty-four healthy ewe lambs (Hu sheep, 2 months old) with a similar body weight (BW) (mean: 21.79 ± 2.09 kg) were selected and randomly divided into two groups: the control group (Con) and the Res group (Res). The Res group received 10 mg/kg Res (based on BW) in addition to their basal diet. Results Res increased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in ewes at sexual maturity (p < 0.05). Additionally, Res supplementation induced significant increases in serum glutathione peroxidase (GSH-Px), IgG, FSH, and LH levels during estrus (p < 0.05); serum IgA, IgG and IgM during pregnancy and lactation (p < 0.05); and serum LH, glucose, GSH-Px, and catalase (CAT) levels during lactation (p < 0.05). Meanwhile, serum interleukin 1β (IL-1β) (p =0.005) and cholesterol levels (p = 0.041) during the lactation stage decreased following Res supplementation. Notably, colostrum IgA, IgG, and fat concentrations were significantly higher in the Res group than in the Con group (p < 0.05). Moreover, Res altered the rumen microbiota in ewes. Specifically, the relative abundance of Prevotella (p < 0.05) during pregnancy and Rikenellaceae_RC9_gut_group (p < 0.001) during lactation were significantly increased in ewes under Res treatment. The abundance of Rikenellaceae_RC9_gut_group was positively correlated with the levels of Ig A, Ig M, E2, FSH, LH, GSH-PX, and CAT. Additionally, Res altered the activity of metabolic pathways such as progesterone-mediated oocyte maturation, the estrogen signaling pathway, ovarian steroidogenesis, and the AMPK signaling pathway, and the levels of AICAR and 2-hydroxyestradiol metabolites, both during pregnancy and lactation. Discussion There findings show that Res can improve health, antioxidant status, and immune activity throughout the reproductive cycle in ewes by regulating rumen microorganisms and metabolites.
Collapse
Affiliation(s)
- Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuyan Li
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Zhengwen Wang
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Jiao
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
11
|
Wang X, Yuan Q, Xiao Y, Cai X, Yang Z, Zeng W, Mi Y, Zhang C. Pterostilbene, a Resveratrol Derivative, Improves Ovary Function by Upregulating Antioxidant Defenses in the Aging Chickens via Increased SIRT1/Nrf2 Expression. Antioxidants (Basel) 2024; 13:935. [PMID: 39199181 PMCID: PMC11351833 DOI: 10.3390/antiox13080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is recognized as a prominent factor contributing to follicular atresia and ovarian aging, which leads to decreased laying performance in hens. Reducing oxidative stress can improve ovarian function and prolong the laying period in poultry. This study investigates the impact of Pterostilbene (PTS), a natural antioxidant, on ovarian oxidative stress in low-laying chickens. Thirty-six Hy-Line White laying chickens were evenly divided into four groups and fed diets containing varying doses of PTS for 15 consecutive days. The results showed that dietary supplementation with PTS significantly increased the laying rate, with the most effective group exhibiting a remarkable 42.7% increase. Furthermore, PTS significantly enhanced the antioxidant capacity of aging laying hens, as evidenced by increased levels of glutathione, glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in the ovaries, livers, and serum. Subsequent experiments revealed decreased expressions of Bax, Caspase-3, and γ-H2AX, along with an increased expression of BCL-2 in the ovaries and livers of laying hens. PTS supplementation also positively affects fat metabolism by reducing abdominal fat accumulation and promoting fat transfer from the liver to the ovary. To elucidate the mechanism underlying the effects of PTS on ovarian function, a series of in vitro experiments were conducted. These in vitro experiments revealed that PTS pretreatment restored the antioxidant capacity of D-galactose-induced small white follicles by upregulating SIRT1/Nrf2 expression. This protective effect was inhibited by EX-527, a specific inhibitor of SIRT1. These findings suggest that the natural antioxidant PTS has the potential to regulate cell apoptosis and fat metabolism in laying chickens by ameliorating oxidative stress, thereby enhancing laying performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| |
Collapse
|
12
|
Ji Q, Zhang F, Zhang Y, Su Q, He T, Hou S, Gui L. Multi-Omics Revealed Resveratrol and β-Hydroxy-β-methyl Butyric Acid Alone or in Combination Improved the Jejunal Function in Tibetan Sheep. Antioxidants (Basel) 2024; 13:892. [PMID: 39199138 PMCID: PMC11351831 DOI: 10.3390/antiox13080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Previous research studies confirmed that both resveratrol (RES) and β-hydroxy-β-methyl butyric acid (HMB) improved growth performance by altering intestinal microbiota. However, the mechanism underlying of RES and HMB on intestinal function remains unclear in ruminant. In this study, supplements of RES and HMB alone or in combination were evaluated as promoters of antioxidant capacity, immune response and barrier function, and modulators of the microbiota and metabolite profiles in the jejunum of Tibetan sheep. A total of 120 two-month-old Tibetan rams were randomly divided into four treatments (n = 30 per treatment), which were supplemented with a basal diet with 1.5 g RES/d (RES group), 1.25 g HMB/d (HMB group), 1.5 g RES/d plus 1.25 g HMB/d (RES-HMB group), and without additions (Control group). The results showed that RES and HMB improved the antioxidant capacity (CAT, GSH-Px, SOD, and T-AOC), immunity (IgA, IgG, and IgM), and digestive enzyme activity (α-amylase, lipase, and chymotrypsin) of the experimental lambs (p < 0.05). Additionally, jejunal morphology including villus width, villus height, and muscle layer thickness exhibited a significant difference when rams were fed diets supplemented with RES and HMB (p < 0.05). Furthermore, the determination of fermentation parameters showed that the butyrate concentration in the RES-HMB group was greater than those in the C and RES groups (p < 0.05). When compared to the C group, barrier-related gene expression (MUC-2, ZO-1, and IL-10) was significantly increased in the RES-HMB group (p < 0.05). Dietary RES and (or) HMB supplementation significantly increased the abundance of Methanobrevibacter, Actinobacteriota and Bacillus (p < 0.05). The abundance of differential bacteria was positively associated with butyrate concentration (p < 0.05). Metabolome analysis revealed that alpha ketoglutarate, succinic semialdehyde, and diacetyl as well as butanoate metabolism pathways connected to the improvements in butyrate concentration by RES and (or) HMB supplementation. Collectively, our results suggested that RES and (or) HMB supplementation improved butyrate concentration via regulating the microbial community (Methanobrevibacter, Actinobacteriota and Bacillus) and metabolism (alpha ketoglutarate, succinic semialdehyde, and diacetyl), thus contributing to jejunal morphology, antioxidant capacity, immune response, digestive enzyme activity, and barrier function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.J.); (F.Z.); (Y.Z.); (Q.S.); (T.H.); (S.H.)
| |
Collapse
|
13
|
Zhou N, Cao Y, Luo Y, Wang L, Li R, Di H, Gu T, Cao Y, Zeng T, Zhu J, Chen L, An D, Ma Y, Xu W, Tian Y, Lu L. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H 2O 2. Antioxidants (Basel) 2024; 13:611. [PMID: 38790716 PMCID: PMC11117746 DOI: 10.3390/antiox13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Youwen Luo
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Lihua Wang
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Heshuang Di
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yun Cao
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Jianping Zhu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Dong An
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Yue Ma
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Lizhi Lu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| |
Collapse
|
14
|
Mohammadsadeghi F, Afsharmanesh M, Salarmoini M, Bami MK. Effects of replacing Na selenite in laying hen feed with selenized glucose on production performance, egg quality, egg selenium content, microbial population, immunological response, antioxidant enzymes, and fatty acid composition. Poult Sci 2024; 103:103615. [PMID: 38503137 PMCID: PMC10966299 DOI: 10.1016/j.psj.2024.103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
This study aimed to explore the effects of selenized glucose (SeGlu) and Na selenite supplementation on various aspects of laying hens such as production performance, egg quality, egg Se concentration, microbial population, antioxidant enzymes activity, immunological response, and yolk fatty acid profile. Using a 2 × 2 factorial design, 168 laying hens at 27-wk of age were randomly divided into 4 treatment groups with 7 replications. Se source (Na selenite and SeGlu) and Se level (0.3 and 0.6 mg/kg) were used as treatments. When 0.3 mg SeGlu/kg was compared to 0.3 mg Na selenite/kg, the interaction findings revealed that 0.3 mg SeGlu/kg increased egg production percent and shell ash (P < 0.05). When compared to 0.3 mg Na selenite/kg, dietary supplementation with 0.3 and 0.6 mg SeGlu/kg resulted in an increase in albumen height, Haugh unit, and yolk color of fresh eggs (P < 0.05). SeGlu enhanced albumen height, Haugh unit, shell thickness (P < 0.01), albumen index, yolk share, specific gravity, shell ash (P < 0.05) of fresh eggs and shell thickness (P < 0.05) of stored eggs as compared to Na selenite. The interaction showed that 0.6 mg SeGlu/kg enhanced yolk Se concentration while decreasing malondialdehyde levels in fresh egg yolk (P < 0.05). SeGlu enhanced Se concentration in albumen and glutathione peroxidase activity in plasma (P < 0.05) as compared to Na selenite. 0.6 mg Se/kg increased lactic acid bacteria, antibody response to sheep red blood cells, and lowered ∑n-6 PUFA/ ∑n-3 PUFA ratio (P < 0.05). As a result, adding SeGlu to the feed of laying hens enhanced egg production, egg quality, egg Se concentration, fresh yolk lipid oxidation, and glutathione peroxidase enzyme activity.
Collapse
Affiliation(s)
- Farimah Mohammadsadeghi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohsen Afsharmanesh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Salarmoini
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Khajeh Bami
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
15
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
16
|
Papadopoulos GA, Lioliopoulou S, Nenadis N, Panitsidis I, Pyrka I, Kalogeropoulou AG, Symeon GK, Skaltsounis AL, Stathopoulos P, Stylianaki I, Galamatis D, Petridou A, Arsenos G, Giannenas I. Effects of Enriched-in-Oleuropein Olive Leaf Extract Dietary Supplementation on Egg Quality and Antioxidant Parameters in Laying Hens. Foods 2023; 12:4119. [PMID: 38002177 PMCID: PMC10670734 DOI: 10.3390/foods12224119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of the present study was to evaluate the effects of an olive leaf extract obtained with an up-to-date laboratory method, when supplemented at different levels in laying hens' diets, on egg quality, egg yolk antioxidant parameters, fatty acid content, and liver pathology characteristics. Thus, 96 laying hens of the ISA-Brown breed were allocated to 48 experimental cages with two hens in each cage, resulting in 12 replicates per treatment. Treatments were: T1 (Control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (Positive control: 0.1% encapsulated oregano oil). Eggshell weight and thickness were improved in all treatments compared to the control, with T2 being significantly higher till the end of the experiment (p < 0.001). Egg yolk MDA content was lower for the T2 and T4 groups, while total phenol content and Haugh units were greater in the T2. The most improved fatty acid profile was the one of T3 yolks. The α-tocopherol yolk content was higher in all groups compared to T1. No effect was observed on cholesterol content at any treatment. Based on the findings, it can be inferred that the inclusion of olive leaf extract at a concentration of 1% in the diet leads to enhancements in specific egg quality attributes, accompanied by an augmentation of the antioxidant capacity.
Collapse
Affiliation(s)
- Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.L.); (G.A.)
| | - Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.L.); (G.A.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.N.); (I.P.); (A.G.K.)
| | - Ioannis Panitsidis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (I.G.)
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.N.); (I.P.); (A.G.K.)
| | - Aggeliki G. Kalogeropoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.N.); (I.P.); (A.G.K.)
| | - George K. Symeon
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (A.-L.S.); (P.S.)
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (A.-L.S.); (P.S.)
| | - Ioanna Stylianaki
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Galamatis
- Department of Animal Science, School of Agricultural Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Anatoli Petridou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.L.); (G.A.)
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (I.G.)
| |
Collapse
|
17
|
Mohammadsadeghi F, Afsharmanesh M, Salarmoini M, Bami MK. The effect of replacing sodium selenite with selenium-chitosan in laying hens on production performance, egg quality, egg selenium concentration, microbial population, immunological response, antioxidant enzymes, and fatty acid composition. Poult Sci 2023; 102:102983. [PMID: 37598554 PMCID: PMC10458345 DOI: 10.1016/j.psj.2023.102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The purpose of this study was to investigate into the effects of Se-chitosan and Na selenite supplementation on laying hen production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant enzymes activity, and yolk fatty acid profile. Using a 2 × 2 factorial design, 168 27-wk-old laying hens were randomly divided into 4 treatment groups and 7 replications. Se source (Na selenite and Se-chitosan) and Se level (0.3 and 0.6 mg/kg) were used as treatments. Se-chitosan enhanced egg production percentage and egg mass (P < 0.05) when compared with Na selenite. There was an interaction, with 0.6 mg Se-chitosan/kg causing an increase in albumen height, Haugh unit, albumen index, and shell thickness of fresh eggs (P < 0.05). Se-chitosan increased yolk share, yolk color, and shape index of fresh eggs and shape index, albumen index, albumen height, Haugh unit, yolk color, shell thickness, and specific gravity of stored eggs (P < 0.05). The interaction showed that, 0.6 mg Se-chitosan/kg increased albumen Se concentration and decreased the level of malondialdehyde (MDA) in fresh egg yolk compared with 0.3 and 0.6 mg Na selenite/kg (P < 0.05). When compared with Na selenite, Se-chitosan increased the Se concentration in the yolk and decreased level of MDA in stored egg yolk (P < 0.01). When compared with Na selenite, Se-chitosan reduced coliforms (P < 0.01), increased lactic acid bacteria, and the lactic acid bacteria/coliform ratio (P < 0.05). Se-chitosan supplementation increased antibody response to sheep red blood cells and IgM titers and the activities of glutathione peroxidase and superoxide dismutase in plasma (P < 0.05). Furthermore, compared with Na selenite, supplementing diets with Se-chitosan decreased ∑ n-6 PUFA/∑ n-3 PUFA ratio (P < 0.01). In conclusion, Se-chitosan supplementation of laying hen feed improved production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzymes activity, and yolk fatty acid profile, with 0.6 mg Se-chitosan/kg supplementation being optimal.
Collapse
Affiliation(s)
- Farimah Mohammadsadeghi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| | - Mohsen Afsharmanesh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439.
| | - Mohammad Salarmoini
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| | - Mohammad Khajeh Bami
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| |
Collapse
|
18
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Zeng T, Sun H, Huang M, Guo R, Gu T, Cao Y, Li C, Tian Y, Chen L, Li G, Lu L. Dietary supplementation of coated sodium butyrate improves growth performance of laying ducks by regulating intestinal health and immunological performance. Front Immunol 2023; 14:1142915. [PMID: 36969242 PMCID: PMC10034168 DOI: 10.3389/fimmu.2023.1142915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThis study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks.MethodsA total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days.ResultsCompared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05).ConclusionsOur results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manman Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongbing Guo
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengfeng Li
- Hubei Shendan Health Food Co., Ltd., Xiaogan, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lizhi Lu,
| |
Collapse
|
20
|
Xu W, Ayu Y, Wang J, Zeng Q, Bai S, Ding X, Lv L, Peng H, Xuan Y, Zhang K. Effects of dietary theabrownins on production performance, egg quality and ovarian function of laying hens with different ages. Poult Sci 2023; 102:102545. [PMID: 37019071 PMCID: PMC10106962 DOI: 10.1016/j.psj.2023.102545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/25/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
This experiment was conducted to investigate the effect of theabrownins (TB) on production performance, egg quality, and ovarian function of laying hens at different ages. A total of 240 Lohmann laying hens were assigned in a 2 × 2 factorial design, which encompassed 2 layers ages (47-wk-old and 67-wk-old) and 2 dietary levels of TB (0 and 100 mg/kg) for 12 wk. Results showed that older layers had lower laying rate, egg mass, and higher feed-to-egg ratio (F/E), egg weight and unqualified egg rate than the younger layers (P(AGE) < 0.01) during all the experimental period. The effect of TB was found to increase egg laying rate and feed efficiency during 5 to 8 wk, 9 to 12 wk and the overall phases and decreased unqualified egg rate during 1 to 4 wk and the overall phases (P(TB) ≤ 0.05). The eggshell quality (strength, thickness), albumen quality (albumen height and Haugh unit) of eggs from older layers were decreased during overall phases (P(AGE) ≤ 0.05). TB increased eggshell strength during all phases and enhanced eggshell thickness at the end of wk 4 and 8 and increased albumen height and Haugh unit at the end of wk 8 and 12 of older layers (P(Interaction) ≤ 0.05). In addition, TB also increased egg quality of older layers after 14 d storage. A decrease in the serum concentration of progesterone, melatonin, follicle stimulating hormone, estradiol was observed in the older compared to the younger ones (P(AGE) < 0.05), while the increase in serum concentration of progesterone, melatonin, anti-Müllerian hormone (AMH) were more emphasized when older hens received TB supplemented diet (P(Interaction) < 0.05). The older layer demonstrated lower the concentration of glutathione (GSH) (P(AGE) < 0.05). And the activity of glutathione-s-transferase (GST) was significantly decreased in layers under 67-wk-old (P(AGE) <0.05). The increase in concentration of GSH and the decrease in concentration of malondialdehyde (MDA) were more pronounced when TB were supplemented in 67-wk-old layers (P(Interaction) ≤ 0.05). Layers at 67-wk-old had lower mRNA expression of Heme oxygenase 1 (HO-1) (P(AGE) < 0.01) in ovary. Dietary TB supplementation upregulated mRNA gene expression of HO-1, Nuclear factor E2 related factor 2 (Nrf2), Quinone oxidoreductase 1 (NQO1) (P(TB) < 0.01). Dietary TB upregulated mRNA expression of ovarian reproductive hormone receptor (estrogen receptor 1 [ESR1] and steroidogenic acute regulatory protein 1 [StAR1]]; P(TB) < 0.01). The results suggest feeding TB (100 mg/kg) could improve the egg production rate, egg quality, and antioxidant capacity of the ovary. Moreover, the effect of TB was more pronounced in older layers (64-wk-old vs. 47-wk-old).
Collapse
Affiliation(s)
- Wenwen Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiang Ayu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Lv
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
21
|
Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum. Animals (Basel) 2023; 13:ani13020294. [PMID: 36670835 PMCID: PMC9854707 DOI: 10.3390/ani13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to evaluate the effects of a phytogenic premix (PP) on the production performance and critical genes relevant to the detoxification (i.e., aryl hydrocarbon receptor pathway) and antioxidant (i.e., nuclear factor erythroid 2-related factor 2 pathway) response in the duodenum of laying hens. The PP was based on bioactive substances derived from ginger, lemon balm, oregano, and thyme (Anco FIT-Poultry). A total of 385 20 week old Hy-Line Brown layers were assigned to five dietary treatments with seven replicates of 11 hens each for a 12-week feeding trial. The experimental treatments included a corn−soybean meal basal diet with no PP (CON) or supplemented with PP at 500 (P500), 750 (P750), 1000 (P1000), and 1500 mg/kg diet (P1500). The overall (1−12 weeks) laying rate (p < 0.001) and egg mass (p = 0.008) were significantly increased in the P1000 group compared with the CON. At the duodenum, increasing dietary PP inclusion levels beneficially affected (p ≤ 0.05) the expression of the majority of the AhR and Nrf2 pathway genes studied. In conclusion, according to the gene expression analysis, PP inclusion resulted in a reduced requirement for detoxification and an increased antioxidant capacity, with most of the effects seen at the PP inclusion range of 750 to 1000 mg/kg diet.
Collapse
|
22
|
Zhang B, Wang Z, Huang C, Wang D, Chang D, Shi X, Chen Y, Chen H. Positive effects of Mulberry leaf extract on egg quality, lipid metabolism, serum biochemistry, and antioxidant indices of laying hens. Front Vet Sci 2022; 9:1005643. [PMID: 36187805 PMCID: PMC9523877 DOI: 10.3389/fvets.2022.1005643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Plant extracts are becoming a hot topic of research by animal husbandry practitioners following the implementation of a global policy to restrict antibiotic use in animal production. Mulberry leaf extract has received considerable attention as a new plant extract. Mulberry leaf polysaccharides and flavonoids are its main constituents, and these substances possess immunoregulatory, hypoglycemic, antioxidant, and anticoagulant properties. It is however less common to use them in poultry production. Therefore, we investigated the effects of adding MLE to the diet of laying hens on egg quality, lipid metabolism, serum biochemistry, and antioxidant indices in this study. A total of 288 Lohmann Silber layers, aged 38 weeks, were randomly assigned to four groups (six replicates of 12 hens each). Hens were fed a basal diet supplemented with 0 (control diet), 0.4, 0.8, or 1.2% MLE for 56 d. Results showed that the addition of 0.4–1.2% MLE to the diet improved aspartate transaminase (AST) activity in the serum of laying hens, reduced low-density lipoprotein (LDL-C) content in the serum, and significantly decreased yolk triglyceride (TG) and total cholesterol (TC) contents (P < 0.05). No adverse effects were observed on production performance (P > 0.10). MLE (0.4 and 1.2%) significantly reduced the TG and TC levels in the liver (P < 0.05). MLE (0.8 and 1.2%) significantly increased glutathione peroxidase (GSH-Px) activity in the serum, decreased alanine transaminase (ALT) activity, TG and TC content in the serum, and improved egg yolk color (P < 0.05). MLE (1.2%) significantly increased high-density lipoprotein (HDL-C) content and superoxide dismutase (SOD) activity in the serum and enhanced eggshell strength (P < 0.05). The liver-related lipid metabolism gene assay revealed that the relative mRNA expression of PPARα and SIRT1 in the liver was significantly upregulated and that of FASN and PPARγ was significantly decreased after the addition of MLE. In contrast, the relative mRNA expression of SREBP-1c in the liver dramatically decreased after the addition of 0.8 and 1.2% MLE (P < 0.05). The addition of MLE to the diet improved egg quality and the economic value of hens by increasing antioxidant capacity and lipid metabolism. The most appropriate amount of MLE to be added to the diet of laying hens was 0.8%. Our study provides a theoretical reference for the application of MLE in egg production and to promote the healthy and sustainable development of the livestock and poultry industry under the background of antibiotic prohibition.
Collapse
Affiliation(s)
- Bo Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Agricultural and Animal Husbandry Technology Extension Station in Tong Town, Shaanxi Province, Yulin, China
| | - Zeben Wang
- College of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Dongmei Chang
- Zhengding County Mulberry Industry Application Research Institute, Shijiazhuang, China
| | - Xiaowei Shi
- Zhengding County Mulberry Industry Application Research Institute, Shijiazhuang, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- *Correspondence: Yifan Chen
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hui Chen
| |
Collapse
|