1
|
Millet B, Harika-Germaneau G, Maatoug R, Naudet F, Reymann JM, Turmel V, Batail JM, Soulabaille J, Jaafari N, Drapier D. Repetitive Transcranial Magnetic Stimulation targeted with MRI based neuro-navigation in major depressive episode: a double-blind, multicenter randomized controlled trial. PLoS One 2025; 20:e0317597. [PMID: 40424301 DOI: 10.1371/journal.pone.0317597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
CONTEXT High-frequency (HF) transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) is widely used in Major Depressive Episode (MDE). Optimization of its efficacy with a neuro-navigation system has been proposed based on a small randomized controlled trial (RCT) supporting a large effect. METHOD This evaluator- and patient-blind, multicenter RCT assessed the superiority in terms of efficacy of 10 HF rTMS sessions of the left DLPFC targeted with MRI based neuro-navigation versus similar sessions targeted by the standard 5 cm technique. The study was conducted between January 2013 and April 2017, at 4 hospitals centers in France where both in- and out- patients with MDE were included. Randomization was computer-generated (1:1), with allocation concealment implemented within the e-CRF. The main outcome measure was the percentage of responders 44 days (D44) after the rTMS session. Secondary outcomes were percentage of remitters, Beck Depression Inventory and psychomotor retardation assessed with Salpêtrière retardation rating scale (SRRS) for depression at D14 and D44. The results are presented along with their 95% confidence intervals. RESULTS 105 patients were randomized and 92 were evaluable with respectively 45 patients in the neuronavigation group and 47 in the standard group. A treatment response was observed for 14 (31.8%) of 44 patients analyzed in the intervention group, and for 16 (35.6%) of 45 patients analyzed in the control group with no statistical difference (relative risk 0.89; 95% confidence interval, [0.50;1.61]). No difference was evidenced for secondary outcomes at D44 whether it concerns remission at D44 (relative risk, 0.82; 95% CI, 0.36 to 1.88), or BDI results (difference in means, 0,01; 95% CI, -3.06 to 3.26), or SRRS results (difference in means, 0.11; 95% CI, -2.42 to 5.02). Similar results were observed at D14. Rates of adverse events were similar in both groups with 23 (47.9%) and 1 (2.1%) of adverse events and serious adverse events in the neuro-navigation group versus 20 (40.8%) and 0 (0%) in the standard group. DISCUSSION This study failed to reproduce previous findings supporting the use of neuro-navigation system to optimize rTMS efficacy. Limitations of this study includes a small sample size and a number of rTMS sessions that may appear substandard in 2025. TRIAL REGISTRATION NCT01677078.
Collapse
Affiliation(s)
- Bruno Millet
- Institut du Cerveau et de la Moelle, UMR, CNRS, INSERM, Sorbonne Université et Département de Psychiatrie Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ghina Harika-Germaneau
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, FranceUnité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Redwan Maatoug
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Florian Naudet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Rennes, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Michel Reymann
- Univ Rennes, CHU Rennes, Centre d'investigation Clinique (CIC) Inserm, Rennes University Hospital, Rennes, France
| | - Valérie Turmel
- Univ Rennes, CHU Rennes, Centre d'investigation Clinique (CIC) Inserm, Rennes University Hospital, Rennes, France
| | - Jean-Marie Batail
- Adult Psychiatry Department, Guillaume-Régnier Hospital, Univ Rennes, CHU Rennes, Centre d'investigation Clinique (CIC) Inserm, Rennes, France
| | - Jacques Soulabaille
- Adult Psychiatry Department, Guillaume-Régnier Hospital, Univ Rennes, CHU Rennes, Centre d'investigation Clinique (CIC) Inserm, Rennes, France
| | - Nematollah Jaafari
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, FranceUnité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Dominique Drapier
- Adult Psychiatry Department, Guillaume-Régnier Hospital, Univ Rennes, CHU Rennes, Centre d'investigation Clinique (CIC) Inserm, Rennes, France
| |
Collapse
|
2
|
Moser P, Reishofer G, Prückl R, Schaffelhofer S, Freigang S, Thumfart S, Mahdy Ali K. Real-time estimation of the optimal coil placement in transcranial magnetic stimulation using multi-task deep learning. Sci Rep 2024; 14:19361. [PMID: 39169126 PMCID: PMC11339299 DOI: 10.1038/s41598-024-70367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a promising neuromodulation technique with both therapeutic and diagnostic applications. As accurate coil placement is known to be essential for focal stimulation, computational models have been established to help find the optimal coil positioning by maximizing electric fields at the cortical target. While these numerical simulations provide realistic and subject-specific field distributions, they are computationally demanding, precluding their use in real-time applications. In this paper, we developed a novel multi-task deep neural network which simultaneously predicts the optimal coil placement for a given cortical target as well as the associated TMS-induced electric field. Trained on large amounts of preceding numerical optimizations, the Attention U-Net-based neural surrogate provided accurate coil optimizations in only 35 ms, a fraction of time compared to the state-of-the-art numerical framework. The mean errors on the position estimates were below 2 mm, i.e., smaller than previously reported manual coil positioning errors. The predicted electric fields were also highly correlated (r> 0.97) with their numerical references. In addition to healthy subjects, we validated our approach also in glioblastoma patients. We first statistically underlined the importance of using realistic heterogeneous tumor conductivities instead of simply adopting values from the surrounding healthy tissue. Second, applying the trained neural surrogate to tumor patients yielded similar accurate positioning and electric field estimates as in healthy subjects. Our findings provide a promising framework for future real-time electric field-optimized TMS applications.
Collapse
Affiliation(s)
- Philipp Moser
- Research Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, 4232, Austria.
| | - Gernot Reishofer
- Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Robert Prückl
- cortEXplore GmbH, Industriezeile 35, Linz, 4020, Austria
| | | | - Sascha Freigang
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Stefan Thumfart
- Research Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, 4232, Austria
| | - Kariem Mahdy Ali
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| |
Collapse
|
3
|
Koehler M, Kammer T, Goetz S. How coil misalignment and mispositioning in transcranial magnetic stimulation affect the stimulation strength at the target. Clin Neurophysiol 2024; 162:159-161. [PMID: 38640820 DOI: 10.1016/j.clinph.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Max Koehler
- University of Kaiserslautern-Landau, Germany.
| | | | | |
Collapse
|
4
|
Lefaucheur JP, Nguyen JP, Delmas A, Croci S, Bredoux L, Hodaj H. Targeting Lower Limb, Upper Limb, and Face Representation in the Primary Motor Cortex for the Practice of Neuronavigated Transcranial Magnetic Stimulation. Neuromodulation 2024; 27:572-583. [PMID: 37212759 DOI: 10.1016/j.neurom.2023.04.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE The primary motor cortex (M1) is a usual target for therapeutic application of repetitive transcranial magnetic stimulation (rTMS), especially the region of hand motor representation. However, other M1 regions can be considered as potential rTMS targets, such as the region of lower limb or face representation. In this study, we assessed the localization of all these regions on magnetic resonance imaging (MRI) with the aim of defining three standardized M1 targets for the practice of neuronavigated rTMS. MATERIALS AND METHODS A pointing task of these targets was performed by three rTMS experts on 44 healthy brain MRI data to assess interrater reliability (including the calculation of intraclass correlation coefficients [ICCs] and coefficients of variation [CoVs] and the construction of Bland-Altman plots). In addition, two "standard" brain MRI data were randomly interspersed with the other MRI data to assess intrarater reliability. A barycenter was calculated for each target (with x-y-z coordinates provided in normalized brain coordinate systems), in addition to the geodesic distance between the scalp projection of the barycenters of these different targets. RESULTS Intrarater and interrater agreement was good, according to ICCs, CoVs, or Bland-Altman plots, although interrater variability was greater for anteroposterior (y) and craniocaudal (z) coordinates, especially for the face target. The scalp projection of the barycenters between the different cortical targets ranged from 32.4 to 35.5 mm for either the lower-limb-to-upper-limb target distance or the upper-limb-to-face target distance. CONCLUSIONS This work clearly delineates three different targets for the application of motor cortex rTMS that correspond to lower limb, upper limb, and face motor representations. These three targets are sufficiently spaced to consider that their stimulation can act on distinct neural networks.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Department, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France; ENT team (UR/EA-4391), Faculty of Health, Paris Est Créteil University, Créteil, France.
| | | | | | | | | | - Hasan Hodaj
- Pain Center, Anesthesiology-Critical Care Department, Grenoble Alpes University Hospital, Grenoble, France; Inserm U1216, Grenoble Institute of Neurosciences, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
5
|
Wang S, Kong G, Wu G, Cui H, Qian Z, Xu L, Wei Y, Wang J, Huang J, Wang J, Li H, Tang Y. Comparing the efficacies of transcranial magnetic stimulation treatments using different targeting methods in major depressive disorder: protocol for a network meta-analysis. BMJ Open 2023; 13:e075525. [PMID: 38086594 PMCID: PMC10729247 DOI: 10.1136/bmjopen-2023-075525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (lDLPFC) has been widely used as a treatment for major depressive disorder (MDD) in the past two decades. Different methods for localising the lDLPFC target include the '5 cm' method, the F3 method and the neuro-navigational method. However, whether TMS efficacies differ between the three targeting methods remains unclear. We present a protocol for a systematic review and network meta-analysis (NMA) to compare the efficacies of TMS treatments using these three targeting methods in MDD. METHODS AND ANALYSIS Relevant studies reported in English or Chinese and published up to May 2023 will be identified from searches of the following databases: PubMed, Cochrane Central Register of Controlled Trials, Embase, PsycINFO, China National Knowledge Infrastructure, Wan Fang Database, Chinese BioMedical Literature Database, and China Science and Technology Journal Database. We will include all randomised controlled trials assessing the efficacy of an active TMS treatment using any one of the three targeting methods compared with sham TMS treatment or comparing efficacies between active TMS treatments using different targeting methods. Interventions must include a minimum of 10 sessions of high-frequency TMS over the lDLPFC. The primary outcome is the reduction score of the 17-item Hamilton Depression Rating Scale, 24-item Hamilton Depression Rating Scale or Montgomery-Asberg Depression Rating Scale. The dropout rate is a secondary outcome representing the TMS treatment's acceptability. Pairwise meta-analyses and a random-effects NMA will be conducted using Stata. We will use the surface under the cumulative ranking curve to rank the different targeting methods in terms of efficacy and acceptability. ETHICS AND DISSEMINATION This systematic review and NMA does not require ethics approval. The results will be submitted for publication in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42023410273.
Collapse
Affiliation(s)
- Sirui Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanfu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumei Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Wang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jingjing Huang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Smith JR, DiSalvo M, Green A, Ceranoglu TA, Anteraper SA, Croarkin P, Joshi G. Treatment Response of Transcranial Magnetic Stimulation in Intellectually Capable Youth and Young Adults with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2023; 33:834-855. [PMID: 36161554 PMCID: PMC10039963 DOI: 10.1007/s11065-022-09564-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
To examine current clinical research on the use of transcranial magnetic stimulation (TMS) in the treatment of pediatric and young adult autism spectrum disorder in intellectually capable persons (IC-ASD). We searched peer-reviewed international literature to identify clinical trials investigating TMS as a treatment for behavioral and cognitive symptoms of IC-ASD. We identified sixteen studies and were able to conduct a meta-analysis on twelve of these studies. Seven were open-label or used neurotypical controls for baseline cognitive data, and nine were controlled trials. In the latter, waitlist control groups were often used over sham TMS. Only one study conducted a randomized, parallel, double-blind, and sham controlled trial. Favorable safety data was reported in low frequency repetitive TMS, high frequency repetitive TMS, and intermittent theta burst studies. Compared to TMS research of other neuropsychiatric conditions, significantly lower total TMS pulses were delivered in treatment and neuronavigation was not regularly utilized. Quantitatively, our multivariate meta-analysis results report improvement in cognitive outcomes (pooled Hedges' g = 0.735, 95% CI = 0.242, 1.228; p = 0.009) and primarily Criterion B symptomology of IC-ASD (pooled Hedges' g = 0.435, 95% CI = 0.359, 0.511; p < 0.001) with low frequency repetitive TMS to the dorsolateral prefrontal cortex. The results of our systematic review and meta-analysis data indicate that TMS may offer a promising and safe treatment option for pediatric and young adult patients with IC-ASD. However, future work should include use of neuronavigation software, theta burst protocols, targeting of various brain regions, and robust study design before clinical recommendations can be made.
Collapse
Affiliation(s)
- Joshua R Smith
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center at Village of Vanderbilt, 1500 21st Avenue South, Suite 2200, Nashville, TN, 37212, USA.
- Vanderbilt Kennedy Center, 110 Magnolia Circle, Nashville, TN, 37203, USA.
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Maura DiSalvo
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Allison Green
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN, 47405, USA
| | - Tolga Atilla Ceranoglu
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | | | - Paul Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, 1216 2nd Street Southwest, Rochester, MN, 55902, USA
| | - Gagan Joshi
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Rothärmel M, Quesada P, Husson T, Harika-Germaneau G, Nathou C, Guehl J, Dalmont M, Opolczynski G, Miréa-Grivel I, Millet B, Gérardin E, Compère V, Dollfus S, Jaafari N, Bénichou J, Thill C, Guillin O, Moulier V. The priming effect of repetitive transcranial magnetic stimulation on clinical response to electroconvulsive therapy in treatment-resistant depression: a randomized, double-blind, sham-controlled study. Psychol Med 2023; 53:2060-2071. [PMID: 34579796 DOI: 10.1017/s0033291721003810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD). However, due to response delay and cognitive impairment, ECT remains an imperfect treatment. Compared to ECT, repetitive transcranial magnetic stimulation (rTMS) is less effective at treating severe depression, but has the advantage of being quick, easy to use, and producing almost no side effects. In this study, our objective was to assess the priming effect of rTMS sessions before ECT on clinical response in patients with TRD. METHODS In this multicenter, randomized, double-blind, sham-controlled trial, 56 patients with TRD were assigned to active or sham rTMS before ECT treatment. Five sessions of active/sham neuronavigated rTMS were administered over the left dorsolateral prefrontal cortex (20 Hz, 90% resting motor threshold, 20 2 s trains with 60-s intervals, 800 pulses/session) before ECT (which was active for all patients) started. Any relative improvements were then compared between both groups after five ECT sessions, in order to assess the early response to treatment. RESULTS After ECT, the active rTMS group exhibited a significantly greater relative improvement than the sham group [43.4% (28.6%) v. 25.4% (17.2%)]. The responder rate in the active group was at least three times higher. Cognitive complaints, which were assessed using the Cognitive Failures Questionnaire, were higher in the sham rTMS group compared to the active rTMS group, but this difference was not corroborated by cognitive tests. CONCLUSIONS rTMS could be used to enhance the efficacy of ECT in patients with TRD. ClinicalTrials.gov: NCT02830399.
Collapse
Affiliation(s)
- Maud Rothärmel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Pierre Quesada
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Thomas Husson
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
| | | | - Clément Nathou
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | - Julien Guehl
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Marine Dalmont
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
| | - Gaëlle Opolczynski
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Iris Miréa-Grivel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Bruno Millet
- Department of Adult Psychiatry, boulevard de l'Hôpital, Hôpital Universitaire de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de, Paris 75013, France
| | - Emmanuel Gérardin
- Department of Neuroradiology, Rouen University Hospital, Rouen, France
| | - Vincent Compère
- Department of Anaesthesiology and Intensive Care, Rouen University Hospital, Rouen, France
| | - Sonia Dollfus
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | | | - Jacques Bénichou
- Department of Biostatistics, Rouen University Hospital, Rouen, France
- INSERM U 1018, University of Rouen, Rouen, France
| | - Caroline Thill
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Olivier Guillin
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
- Faculté de Médecine, Normandie University, Rouen, France
| | - Virginie Moulier
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- EPS Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
8
|
Marder KG, Barbour T, Ferber S, Idowu O, Itzkoff A. Psychiatric Applications of Repetitive Transcranial Magnetic Stimulation. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:8-18. [PMID: 35746935 PMCID: PMC9063593 DOI: 10.1176/appi.focus.20210021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an increasingly popular noninvasive brain stimulation modality. In TMS, a pulsed magnetic field is used to noninvasively stimulate a targeted brain region. Repeated stimulation produces lasting changes in brain activity via mechanisms of synaptic plasticity similar to long-term potentiation. Local application of TMS alters activity in distant, functionally connected brain regions, indicating that TMS modulates activity of cortical networks. TMS has been approved by the U.S. Food and Drug Administration for the treatment of major depressive disorder, obsessive-compulsive disorder, and smoking cessation, and a growing evidence base supports its efficacy in the treatment of other neuropsychiatric conditions. TMS is rapidly becoming part of the standard of care for treatment-resistant depression, where it yields response rates of 40%-60%. TMS is generally safe and well tolerated; its most serious risk is seizure, which occurs very rarely. This review aims to familiarize practicing psychiatrists with basic principles of TMS, including target localization, commonly used treatment protocols and their outcomes, and safety and tolerability. Practical considerations, including evaluation and monitoring of patients undergoing TMS, device selection, treatment setting, and insurance reimbursement, are also reviewed.
Collapse
|
9
|
Zhang M, Wang R, Luo X, Zhang S, Zhong X, Ning Y, Zhang B. Repetitive Transcranial Magnetic Stimulation Target Location Methods for Depression. Front Neurosci 2021; 15:695423. [PMID: 34566561 PMCID: PMC8458642 DOI: 10.3389/fnins.2021.695423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a substantial global public health problem in need of novel and effective treatment strategies. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive and promising treatment for depression that has been approved by the U.S. Food and Drug Administration (FDA). However, the methodological weaknesses of existing work impairs the universal clinical use of rTMS. The variation of stimulated targets across the dorsolateral prefrontal cortex may account for most of the heterogeneity in the efficacy of rTMS. Many rTMS target location methods for MDD have been developed in recent decades. This review was conducted to assess this emerging field and to improve treatment outcomes in clinical practice.
Collapse
Affiliation(s)
- Min Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runhua Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Maatoug R, Bihan K, Duriez P, Podevin P, Silveira-Reis-Brito L, Benyamina A, Valero-Cabré A, Millet B. Non-invasive and invasive brain stimulation in alcohol use disorders: A critical review of selected human evidence and methodological considerations to guide future research. Compr Psychiatry 2021; 109:152257. [PMID: 34246194 DOI: 10.1016/j.comppsych.2021.152257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Alcohol use disorder (AUD) ranks among the leading causes of decrements in disability-adjusted life-years. Long-term exposure to alcohol leads to an imbalance of activity between frontal cortical systems and the striatum, thereby enhancing impulsive behaviours and weakening inhibitory control. Alternative therapeutic approaches such as non-invasive and invasive brain stimulation have gained some momentum in the field of addictology by capitalizing on their ability to target specific anatomical structures and correct abnormalities in dysfunctional brain circuits. MATERIALS AND METHODS The current review, covers original peer-reviewed published research on the use of brain stimulation methods for the rehabilitation of AUD. A broad and systematic search was carried out on four electronic databases: NCBI PubMed, Web of Science, Handbooks and the Cochrane Library. Any original article in English or French language, without restrictions of patient age or gender, article type and publication outlet, were included in the final pool of selected studies. RESULTS The outcomes of this systematic review suggest that the dorsolateral prefrontral cortex (DLPFC) is a promising target for treating AUD with high frequency repetitive transcranial magnetic stimulation. Such effect would reduce feelings of craving by enhancing cognitive control and modulating striatal function. Existing literature also supports the notion that changes of DLPFC activity driven by transcranial direct current stimulation, could decrease alcohol craving and consumption. However, to date, no major differences have been found between the efficacy of these two non-invasive brain-stimulation approaches, which require further confirmation. In contrast, beneficial stronger evidence supports an impact of deep brain stimulation reducing craving and improving quality of life in AUD, effects that would be mediated by an impact on the nucleus accumbens, a central structure of the brain's reward circuitry. Overall, neurostimulation shows promise contributing to the treatment of AUD. Nonetheless, progress has been limited by a number of factors such as the low number of controlled randomized trials, small sample sizes, variety of stimulation parameters precluding comparability and incomplete or questionable sham-conditions. Additionally, a lack of data concerning clinical impact on the severity of AUD or craving and the short follow up periods precluding and accurate estimation of effect duration after discontinuing the treatment, has also limited the clinical relevance of final outcomes. CONCLUSION Brain stimulation remains a promising approach to contribute to AUD therapy, co-adjuvant of more conventional procedures. However, a stronger therapeutic rational based on solid physio-pathological evidence and accurate estimates of efficacy, are still required to achieve further therapeutic success and expand clinical use.
Collapse
Affiliation(s)
- R Maatoug
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, F-75013 Paris, France.
| | - K Bihan
- Regional pharmacovigilance center, department of pharmacology, Pitié-Salpêtrière hospital, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - P Duriez
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France; Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - P Podevin
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, F-75013 Paris, France
| | - L Silveira-Reis-Brito
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, F-75013 Paris, France; Rede mater dei de saúde, Brazil
| | - A Benyamina
- Dispositif Territorial de Recherche et de Formation (DTRF) Paris Sud, 94275 Le Kremlin-Bicêtre, France; Département de psychiatrie et d'addictologie, Hôpital Paul Brousse, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - A Valero-Cabré
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, MA, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - B Millet
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, F-75013 Paris, France
| |
Collapse
|
11
|
Rosen AC, Bhat JV, Cardenas VA, Ehrlich TJ, Horwege AM, Mathalon DH, Roach BJ, Glover GH, Badran BW, Forman SD, George MS, Thase ME, Yurgelun-Todd D, Sughrue ME, Doyen SP, Nicholas PJ, Scott JC, Tian L, Yesavage JA. Targeting location relates to treatment response in active but not sham rTMS stimulation. Brain Stimul 2021; 14:703-709. [PMID: 33866020 PMCID: PMC8884259 DOI: 10.1016/j.brs.2021.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Precise targeting of brain functional networks is believed critical for treatment efficacy of rTMS (repetitive pulse transcranial magnetic stimulation) in treatment resistant major depression. Objective: To use imaging data from a “failed” clinical trial of rTMS in Veterans to test whether treatment response was associated with rTMS coil location in active but not sham stimulation, and compare fMRI functional connectivity between those stimulation locations. Methods: An imaging substudy of 49 Veterans (mean age, 56 years; range, 27e78 years; 39 male) from a randomized, sham-controlled, double-blinded clinical trial of rTMS treatment, grouping participants by clinical response, followed by group comparisons of treatment locations identified by individualized fiducial markers on structural MRI and resting state fMRI derived networks. Results: The average stimulation location for responders versus nonresponders differed in the active but not in the sham condition (P = .02). The average responder location derived from the active condition showed significant negative functional connectivity with the subgenual cingulate (P < .001) while the nonresponder location did not (P = .17), a finding replicated in independent cohorts of 84 depressed and 35 neurotypical participants. The responder and nonresponder stimulation locations evoked different seed based networks (FDR corrected clusters, all P < .03), revealing additional brain regions related to rTMS treatment outcome. Conclusion: These results provide evidence from a randomized controlled trial that clinical response to rTMS is related to accuracy in targeting the region within DLPFC that is negatively correlated with subgenual cingulate. These results support the validity of a neuro-functionally informed rTMS therapy target in Veterans.
Collapse
Affiliation(s)
- A C Rosen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA.
| | - J V Bhat
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA
| | - V A Cardenas
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - T J Ehrlich
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; University of Michigan, Ann Arbor, USA
| | - A M Horwege
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - D H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - B J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, CA, USA; Northern California Institute for Research and Education, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - G H Glover
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - B W Badran
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - S D Forman
- Department of Veterans Affairs, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M S George
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M E Thase
- VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Yurgelun-Todd
- Rocky Mountain Network Mental Illness Research Education and Clinical Centers (VISN 19), VA Salt Lake City Health Care System, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - M E Sughrue
- Omniscient Neurotechnologies, Sydney, Australia; Prince of Wales Hospital, Randwick, NSW, Australia
| | - S P Doyen
- Omniscient Neurotechnologies, Sydney, Australia
| | | | - J C Scott
- VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Yesavage
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
13
|
Hebel T, Göllnitz A, Schoisswohl S, Weber FC, Abdelnaim M, Wetter TC, Rupprecht R, Langguth B, Schecklmann M. A direct comparison of neuronavigated and non-neuronavigated intermittent theta burst stimulation in the treatment of depression. Brain Stimul 2021; 14:335-343. [PMID: 33493624 DOI: 10.1016/j.brs.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To investigate whether a four-week course of neuronavigated intermittent theta burst stimulation (iTBS) of the left dorsolateral prefrontal cortex is superior to the non-neuronavigated F3-EEG method of positioning. METHODS We conducted a single-center, two-arm, randomized and double-blinded study (clinicaltrials.gov NCT03953521). 37 inpatients with an at least moderate depressive episode were randomized to receive either neuronavigated or 10-20-EEG-system based F3 guided iTBS. Both groups received twenty week daily sessions of iTBS while continuing to receive standard-of-care treatment by their ward physicians. For navigated iTBS, we used magnetic resonance imaging to target the border between the anterior and middle third of the middle frontal gyrus considered to represent the left dorsolateral prefrontal cortex (lDLPFC). Differences in the treatment arms were blinded by completely mimicking the procedures of the respective other treatment group. Rating physicians were not involved in the treatment procedure. Primary outcome was defined as the change of the 21-item version of the Hamilton Depression Score (HAMD) from baseline to end of treatment at week 4. Secondary outcomes included HAMD score during the treatment, Patient Health Questionnaire-9, WHO Quality of Life-BREF and Clinical Global Impression. For primary outcome, we used a planned group comparison for the absolute change in the HAMD. For secondary outcome measures we calculated analyses of variance (ANOVAs) with the within-subjects factor time (primary: baseline vs. week 4; secondary: all visits) and the between-subjects factor group (navigated vs. F3 guided group). We also did planned contrasts between both groups for all variables and all treatment and follow-up visits with the aim not to oversee any group differences. For group contrasts we used Student T-tests for metric and chi-square tests for categorial variables. Significance threshold was set to 5% uncorrected for multiple comparisons. RESULTS Enrolment of 80 patients with interim analysis was planned. Interim analysis was performed after 37 patients (intention to treat). 6 patients dropped out, leaving 31 for analysis. With respect to primary outcome criteria, absolute change in the HAMD did not differ significantly between groups. In accordance, relative change and number of responders and remitters were not significantly different. Overall number of responders was 53% and of remitters was 60%. On a descriptive level, the results favor the clinical effects of the F3 group for the absolute and relative change in the HAMD and the number of responders. Number of remitters were exactly the same for both groups. Therefore, we decided to stop the trial due to the added burden of magnetic resonance imaging and neuronavigated treatment in relation to the effect. Secondary outcomes did also not differ significantly between groups. Patients did not differ in their baseline characteristics nor with respect to intake of medication during the trial period and all had access to the same therapeutic interventions. CONCLUSION We noticed a high antidepressive effect of add-on iTBS treatment to standard inpatient treatment but failed to demonstrate a clinical superiority of neuronavigated localization. The non-navigated, F3 guided iTBS treatment used as a control group may be sophisticated enough to dilute potential added benefits, and the difference between the localization approaches is either negligible or too small to justify the additional efforts of navigation. The effects of concomitant treatment may mask effects, but our patient population reflects clinical reality in an inpatient setting. Further prospective studies are warranted to compare neuronavigated with surface-based approaches.
Collapse
Affiliation(s)
- Tobias Hebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany.
| | | | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Franziska C Weber
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Mohamed Abdelnaim
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Thomas C Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| |
Collapse
|
14
|
Balderston NL, Roberts C, Beydler EM, Deng ZD, Radman T, Luber B, Lisanby SH, Ernst M, Grillon C. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation. Nat Protoc 2020; 15:3595-3614. [PMID: 33005039 PMCID: PMC8123368 DOI: 10.1038/s41596-020-0387-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method to stimulate the cerebral cortex that has applications in psychiatry, such as in the treatment of depression and anxiety. Although many TMS targeting methods that use figure-8 coils exist, many do not account for individual differences in anatomy or are not generalizable across target sites. This protocol combines functional magnetic resonance imaging (fMRI) and iterative electric-field (E-field) modeling in a generalized approach to subject-specific TMS targeting that is capable of optimizing the stimulation site and TMS coil orientation. To apply this protocol, the user should (i) operationally define a region of interest (ROI), (ii) generate the head model from the structural MRI data, (iii) preprocess the functional MRI data, (iv) identify the single-subject stimulation site within the ROI, and (iv) conduct E-field modeling to identify the optimal coil orientation. In comparison with standard targeting methods, this approach demonstrates (i) reduced variability in the stimulation site across subjects, (ii) reduced scalp-to-cortical-target distance, and (iii) reduced variability in optimal coil orientation. Execution of this protocol requires intermediate-level skills in structural and functional MRI processing. This protocol takes ~24 h to complete and demonstrates how constrained fMRI targeting combined with iterative E-field modeling can be used as a general method to optimize both the TMS coil site and its orientation.
Collapse
Affiliation(s)
- Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Camille Roberts
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Emily M Beydler
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Radman
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Trapp NT, Bruss J, King Johnson M, Uitermarkt BD, Garrett L, Heinzerling A, Wu C, Koscik TR, Ten Eyck P, Boes AD. Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm. Brain Stimul 2020; 13:578-581. [PMID: 32289680 DOI: 10.1016/j.brs.2020.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND No consensus exists in the clinical transcranial magnetic stimulation (TMS) field as to the best method for targeting the left dorsolateral prefrontal cortex (DLPFC) for depression treatment. Two common targeting methods are the Beam F3 method and the 5.5 cm rule. OBJECTIVE Evaluate the anatomical reliability of technician-identified DLPFC targets and obtain consensus average brain and scalp MNI152 coordinates. METHODS Three trained TMS technicians performed repeated targeting using both the Beam F3 method and 5.5 cm rule in ten healthy subjects (n = 162). Average target locations were plotted on 7T structural MRIs to compare inter- and intra-rater reliability, respectively. RESULTS (1) Beam F3 inter- and intra-rater reliability was superior to 5.5 cm targeting (p = 0.0005 and 0.0035). (2) The average Beam F3 location was 2.6±1.0 cm anterolateral to the 5.5 cm method. CONCLUSIONS Beam F3 targeting demonstrates greater precision and reliability than the 5.5 cm method and identifies a different anatomical target.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.
| | - Joel Bruss
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Marcie King Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | | | - Laren Garrett
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Amanda Heinzerling
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Chaorong Wu
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States; Department of Neurology, University of Iowa, Iowa City, IA, United States; Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
16
|
Badran BW, Caulfield KA, Lopez JW, Cox C, Stomberg-Firestein S, DeVries WH, McTeague LM, George MS, Roberts D. Personalized TMS helmets for quick and reliable TMS administration outside of a laboratory setting. Brain Stimul 2020; 13:551-553. [PMID: 32289675 PMCID: PMC7888559 DOI: 10.1016/j.brs.2020.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James W Lopez
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Claire Cox
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - William H DeVries
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lisa M McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Donna Roberts
- Department of Radiology, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
17
|
Sehatzadeh S, Daskalakis ZJ, Yap B, Tu HA, Palimaka S, Bowen JM, O’Reilly DJ. Unilateral and bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression: a meta-analysis of randomized controlled trials over 2 decades. J Psychiatry Neurosci 2019; 44:151-163. [PMID: 30720259 PMCID: PMC6488490 DOI: 10.1503/jpn.180056] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Approximately 35% of people with depression do not respond to 2 courses of antidepressant medications of adequate dosage, and treatment-resistant depression (TRD) is still a major clinical concern with a great impact on patients, their families, society and the health system. The present meta-analysis evaluates antidepressant efficacy of unilateral and bilateral repetitive transcranial magnetic stimulation (rTMS) in patients with unipolar TRD. METHODS We searched for randomized controlled trials that compared rTMS with sham treatment and were published by Apr. 3, 2017. The primary outcome was improvement in depression scores measured using the Hamilton Rating Scale for Depression. The secondary outcomes were remission and response rates. Two independent review authors screened the studies and extracted the data. RESULTS Twenty-three studies met the inclusion criteria. Meta-analysis of the depression scores showed a weighted mean difference (WMD) of 3.36 (95% confidence interval [CI] 1.85–4.88) between unilateral rTMS and sham treatment. Stratified data showed that the effect was relatively higher when rTMS was used as an add-on to antidepressant medications (WMD 3.64, 95% CI 1.52–5.76) than when it was used as a stand-alone treatment (WMD 2.47, 95% CI 0.90–4.05). The WMD between bilateral rTMS and sham was 2.67 (95% CI 0.83–4.51), and all studies that contributed to this outcome used rTMS while participants were taking antidepressant medications. The pooled remission and response rates for unilateral rTMS versus sham treatment were 16.0% and 25.1% for rTMS and 5.7% and 11.0% for sham treatment, respectively. The pooled remission and response rates for bilateral rTMS versus sham treatment were 16.6% and 25.4% for rTMS and 2.0% and 6.8% for sham treatment, respectively. CONCLUSION This study suggests that rTMS has moderate antidepressant effects and appears to be promising in the short-term treatment of patients with unipolar TRD.
Collapse
Affiliation(s)
- Shayan Sehatzadeh
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| | - Zafiris J. Daskalakis
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| | - Belinda Yap
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| | - Hong-Anh Tu
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| | - Stefan Palimaka
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| | - James M. Bowen
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| | - Daria J. O’Reilly
- From Health Quality Ontario, Toronto, Ont., Canada (Sehatzadeh, Tu, Palimaka); the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada (Daskalakis); the Programs for Assessment of Technology in Health (PATH), The Research Institute of St. Joe’s Hamilton, Hamilton, Ont., Canada (Yap, Bowen, O’Reilly); and the Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ont., Canada (Bowen, O’Reilly)
| |
Collapse
|
18
|
Effect of Threat on Right dlPFC Activity during Behavioral Pattern Separation. J Neurosci 2017; 37:9160-9171. [PMID: 28842415 DOI: 10.1523/jneurosci.0717-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/29/2023] Open
Abstract
It has long been established that individuals with anxiety disorders tend to overgeneralize attributes of fearful stimuli to nonfearful stimuli, but there is little mechanistic understanding of the neural system that supports overgeneralization. To address this gap in our knowledge, this study examined effect of experimentally induced anxiety in humans on generalization using the behavioral pattern separation (BPS) paradigm. Healthy subjects of both sexes encoded and retrieved novel objects during periods of safety and threat of unpredictable shocks while we recorded brain activity with fMRI. During retrieval, subjects were instructed to differentiate among new, old, and altered images. We hypothesized that the hippocampus and dorsolateral prefrontal cortex (dlPFC) would play a key role in the effect of anxiety on BPS. The dlPFC, but not the hippocampus, showed increased activity for altered images compared with old images when retrieval occurred during periods of threat compared with safety. In addition, accuracy for altered items retrieved during threat was correlated with dlPFC activity. Together, these results suggest that overgeneralization in anxiety patients may be mediated by an inability to recruit the dlPFC, which mediates the cognitive control needed to overcome anxiety and differentiate between old and altered items during periods of threat.SIGNIFICANCE STATEMENT Anxiety and posttraumatic stress disorder patients generalize fear to nonfearful fear stimuli, making it difficult to regulate anxiety. Understanding how anxiety affects generalization is key to understanding the overgeneralization experienced by these patients. We examined this relationship in healthy subjects by studying how threat of shock affects neural responses to previously encountered stimuli. Although previous studies point to hippocampal involvement, we found that threat affected activity in the dorsolateral prefrontal cortex (dlPFC), rather than the hippocampus, when subjects encountered slightly altered versions of the previously encountered items. Importantly, this dlPFC activity predicted performance for these items. Together, these results suggest that the dlPFC is important for discrimination during elevated anxiety and that overgeneralization may reflect a deficit in dlPFC-mediated cognitive control.
Collapse
|
19
|
Gay A, Boutet C, Sigaud T, Kamgoue A, Sevos J, Brunelin J, Massoubre C. A single session of repetitive transcranial magnetic stimulation of the prefrontal cortex reduces cue-induced craving in patients with gambling disorder. Eur Psychiatry 2017; 41:68-74. [PMID: 28049084 DOI: 10.1016/j.eurpsy.2016.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Gambling disorder (GD) is common and disabling addictive disorder. In patients with substance use disorders, the application of repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) offers promise to alleviate craving. We hypothesized that applying real compared to sham rTMS over the left DLPFC would reduce gambling craving in patients with GD. METHODS In a randomized sham-controlled crossover design, 22 treatment-seeking patients with GD received real or sham treatment with high frequency rTMS over the left DLPFC followed a week later by the other type of treatment. Before and after each rTMS session, participants rated their gambling craving (from 0 to 100) before and after viewing a gambling video used as a cue. We used the Yale-Brown Obsessive Compulsive Scale adapted for Pathological Gambling to assess gambling behavior before and 7 days after each rTMS session. RESULTS As compared to sham (mean +0.74; standard deviation±3.03), real rTMS significantly decreased cue-induced craving (-2.12±3.39; F(1,19)=4.87; P=0.04; partial η2=0.05; 95% CI: 0.00-0.21). No significant effect of rTMS was observed on gambling behavior. CONCLUSIONS Patients with GD reported decreased cue-induced craving following a single session of high frequency rTMS applied over the left DLPFC. Further large randomized controlled studies are needed to determine the usefulness of rTMS in GD.
Collapse
Affiliation(s)
- A Gay
- University hospital center of Saint-Étienne, university department of psychiatry and addiction, 42055 Saint-Étienne, France; TAPE laboratory, EA7423, Jean-Monnet university, Saint-Étienne, France.
| | - C Boutet
- INSERM, U1059, university of Lyon, 42023 Saint-Étienne, France; Radiology department, university hospital center of Saint-Étienne, 42055 Saint-Étienne, France
| | - T Sigaud
- University hospital center of Saint-Étienne, university department of psychiatry and addiction, 42055 Saint-Étienne, France; TAPE laboratory, EA7423, Jean-Monnet university, Saint-Étienne, France
| | - A Kamgoue
- University hospital center of Saint-Étienne, university department of psychiatry and addiction, 42055 Saint-Étienne, France
| | - J Sevos
- University hospital center of Saint-Étienne, university department of psychiatry and addiction, 42055 Saint-Étienne, France; TAPE laboratory, EA7423, Jean-Monnet university, Saint-Étienne, France
| | - J Brunelin
- INSERM, U1028, CNRS, UMR5292, Lyon neuroscience research center, university of Lyon, ΨR2 Team, 69000 Lyon, France; Lyon 1 university, 69000 Villeurbanne, France; Hospital center Le Vinatier, 69678 Bron, France
| | - C Massoubre
- University hospital center of Saint-Étienne, university department of psychiatry and addiction, 42055 Saint-Étienne, France; TAPE laboratory, EA7423, Jean-Monnet university, Saint-Étienne, France
| |
Collapse
|
20
|
Pommier B, Vassal F, Boutet C, Jeannin S, Peyron R, Faillenot I. Easy methods to make the neuronavigated targeting of DLPFC accurate and routinely accessible for rTMS. Neurophysiol Clin 2017; 47:35-46. [DOI: 10.1016/j.neucli.2017.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
|
21
|
Prause N, Siegle GJ, Deblieck C, Wu A, Iacoboni M. EEG to Primary Rewards: Predictive Utility and Malleability by Brain Stimulation. PLoS One 2016; 11:e0165646. [PMID: 27902711 PMCID: PMC5130195 DOI: 10.1371/journal.pone.0165646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Theta burst stimulation (TBS) is thought to affect reward processing mechanisms, which may increase and decrease reward sensitivity. To test the ability of TBS to modulate response to strong primary rewards, participants hypersensitive to primary rewards were recruited. Twenty men and women with at least two opposite-sex, sexual partners in the last year received two forms of TBS. Stimulations were randomized to avoid order effects and separated by 2 hours to reduce carryover. The two TBS forms have been demonstrated to inhibit (continuous) or excite (intermittent) the left dorsolateral prefrontal cortex using different pulse patterns, which links to brain areas associated with reward conditioning. After each TBS, participants completed tasks assessing their reward responsiveness to monetary and sexual rewards. Electroencephalography (EEG) was recorded. They also reported their number of orgasms in the weekend following stimulation. This signal was malleable by TBS, where excitatory TBS resulted in lower EEG alpha relative to inhibitory TBS to primary rewards. EEG responses to sexual rewards in the lab (following both forms of TBS) predicted the number of orgasms experienced over the forthcoming weekend. TBS may be useful in modifying hypersensitivity or hyposensitivity to primary rewards that predict sexual behaviors. Since TBS altered the anticipation of a sexual reward, TBS may offer a novel treatment for sexual desire problems.
Collapse
Affiliation(s)
- Nicole Prause
- Department of Psychiatry; University of California;Los Angeles, CA
- * E-mail:
| | - Greg J. Siegle
- Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA
| | - Choi Deblieck
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA
| | - Allan Wu
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
22
|
Gay A, Jaussent I, Sigaud T, Billard S, Attal J, Seneque M, Galusca B, Van Den Eynde F, Massoubre C, Courtet P, Guillaume S. A Lack of Clinical Effect of High-frequency rTMS to Dorsolateral Prefrontal Cortex on Bulimic Symptoms: A Randomised, Double-blind Trial. EUROPEAN EATING DISORDERS REVIEW 2016; 24:474-481. [DOI: 10.1002/erv.2475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Aurelia Gay
- University Department of Psychiatry and Addictology, North Hospital; CHU St-Etienne; St Etienne France
- TAPE Laboratory, EA7423; Jean Monnet University; Saint Etienne France
| | | | - Torrance Sigaud
- University Department of Psychiatry and Addictology, North Hospital; CHU St-Etienne; St Etienne France
- TAPE Laboratory, EA7423; Jean Monnet University; Saint Etienne France
| | - Stephane Billard
- University Department of Psychiatry and Addictology, North Hospital; CHU St-Etienne; St Etienne France
| | - Jerome Attal
- Inserm U1061; University of Montpellier; Montpellier France
- University Department of Adult Psychiatry; CHRU Montpellier; Montpellier France
| | - Maude Seneque
- Inserm U1061; University of Montpellier; Montpellier France
- Department of Psychiatric Emergency & Acute Care, Lapeyronie Hospital; CHRU Montpellier; Montpellier France
| | - Bogdan Galusca
- TAPE Laboratory, EA7423; Jean Monnet University; Saint Etienne France
| | - Frederique Van Den Eynde
- Eating Disorders Program, Department of Psychiatry, Douglas Hospital; McGill University; Montreal Canada
| | - Catherine Massoubre
- University Department of Psychiatry and Addictology, North Hospital; CHU St-Etienne; St Etienne France
- TAPE Laboratory, EA7423; Jean Monnet University; Saint Etienne France
| | - Philippe Courtet
- Inserm U1061; University of Montpellier; Montpellier France
- Department of Psychiatric Emergency & Acute Care, Lapeyronie Hospital; CHRU Montpellier; Montpellier France
| | - Sebastien Guillaume
- Inserm U1061; University of Montpellier; Montpellier France
- Department of Psychiatric Emergency & Acute Care, Lapeyronie Hospital; CHRU Montpellier; Montpellier France
| |
Collapse
|
23
|
[Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?]. Rev Med Interne 2016; 38:188-194. [PMID: 27443471 DOI: 10.1016/j.revmed.2016.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 05/18/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction.
Collapse
|
24
|
Moulier V, Gaudeau-Bosma C, Isaac C, Allard AC, Bouaziz N, Sidhoumi D, Braha-Zeitoun S, Benadhira R, Thomas F, Januel D. Effect of repetitive transcranial magnetic stimulation on mood in healthy subjects. SOCIOAFFECTIVE NEUROSCIENCE & PSYCHOLOGY 2016; 6:29672. [PMID: 26993786 PMCID: PMC4799389 DOI: 10.3402/snp.v6.29672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 11/14/2022]
Abstract
Background High frequency repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) has shown significant efficiency in the treatment of resistant depression. However in healthy subjects, the effects of rTMS remain unclear. Objective Our aim was to determine the impact of 10 sessions of rTMS applied to the DLPFC on mood and emotion recognition in healthy subjects. Design In a randomised double-blind study, 20 subjects received 10 daily sessions of active (10 Hz frequency) or sham rTMS. The TMS coil was positioned on the left DLPFC through neuronavigation. Several dimensions of mood and emotion processing were assessed at baseline and after rTMS with clinical scales, visual analogue scales (VASs), and the Ekman 60 faces test. Results The 10 rTMS sessions targeting the DLPFC were well tolerated. No significant difference was found between the active group and the control group for clinical scales and the Ekman 60 faces test. Compared to the control group, the active rTMS group presented a significant improvement in their adaptation to daily life, which was assessed through VAS. Conclusion This study did not show any deleterious effect on mood and emotion recognition of 10 sessions of rTMS applied on the DLPFC in healthy subjects. This study also suggested a positive effect of rTMS on quality of life.
Collapse
Affiliation(s)
- Virginie Moulier
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France;
| | | | - Clémence Isaac
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France
| | | | - Noomane Bouaziz
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France
| | - Djedia Sidhoumi
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France
| | | | - René Benadhira
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France
| | - Fanny Thomas
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France
| | - Dominique Januel
- Unité de Recherche Clinique, EPS Ville Evrard, Neuilly-sur-Marne, France
| |
Collapse
|
25
|
Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study. Surg Radiol Anat 2015; 38:705-10. [DOI: 10.1007/s00276-015-1603-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/05/2015] [Indexed: 01/30/2023]
|
26
|
Grall-Bronnec M, Sauvaget A. The use of repetitive transcranial magnetic stimulation for modulating craving and addictive behaviours: a critical literature review of efficacy, technical and methodological considerations. Neurosci Biobehav Rev 2015; 47:592-613. [PMID: 25454360 DOI: 10.1016/j.neubiorev.2014.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is a potential therapeutic intervention for the treatment of addiction. This critical review aims to summarise the recent developments with respect to the efficacy of rTMS for all types of addiction and related disorders (including eating disorders), and concentrates on the associated methodological and technical issues. METHODS The bibliographic search consisted of a computerised screening of the Medline and ScienceDirect databases up to December 2013. Criteria for inclusion were the target problem was an addiction, a related disorder, or craving; the intervention was performed using rTMS; and the study was a clinical trial. RESULTS Of the potential 638 articles, 18 met the criteria for inclusion. Most of these (11 of the 18) supported the efficacy of rTMS, especially in the short term. In most cases, the main assessment criterion was the measurement of craving using a Visual Analogue Scale. DISCUSSION The results are discussed with respect to the study limitations and, in particular, the many methodological and technical discrepancies that were identified. Key recommendations are provided.
Collapse
|
27
|
Narayana S, Rezaie R, McAfee SS, Choudhri AF, Babajani-Feremi A, Fulton S, Boop FA, Wheless JW, Papanicolaou AC. Assessing motor function in young children with transcranial magnetic stimulation. Pediatr Neurol 2015; 52:94-103. [PMID: 25439485 DOI: 10.1016/j.pediatrneurol.2014.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Accurate noninvasive assessment of motor function using functional MRI (fMRI) and magnetoencephalography (MEG) is a challenge in patients who are very young or who are developmentally delayed. In such cases, passive mapping of the sensorimotor cortex is performed under sedation. We examined the feasibility of using transcranial magnetic stimulation (TMS) as a motor mapping tool in awake children younger than 3 years of age. METHODS Six children underwent motor mapping with TMS while awake as well as passive sensorimotor mapping under conscious sedation with MEG during tactile stimulation (n = 5) and fMRI during passive hand movements (n = 4). RESULTS Stimulation of the motor cortex via TMS successfully elicited evoked responses in contralateral hand muscles in 5 patients. The location of primary motor cortex in the precentral gyrus identified by TMS corresponded with the postcentral location of the primary sensory cortex identified by MEG in 2 patients and to the sensorimotor cortex identified by fMRI in 3 children. In this cohort, we demonstrate that TMS can illuminate abnormalities in motor physiology including motor reorganization. We also demonstrate the feasibility of using TMS-derived contralateral silent periods to approximate the location of motor cortex in the absence of an evoked response. When compared to chronological age, performance functioning level appears to be better in predicting successful mapping outcome with TMS. CONCLUSIONS Our findings indicate that awake TMS is a safe alternative to MEG and fMRI performed under sedation to localize the motor cortex and provides additional insight into the underlying pathophysiology and motor plasticity in toddlers.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Roozbeh Rezaie
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Samuel S McAfee
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Asim F Choudhri
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Radiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Abbas Babajani-Feremi
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Stephen Fulton
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frederick A Boop
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - James W Wheless
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrew C Papanicolaou
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
28
|
Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction. Ann N Y Acad Sci 2014; 1327:79-93. [PMID: 25069523 DOI: 10.1111/nyas.12479] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method of brain stimulation used to treat a variety of neuropsychiatric disorders, but is still in the early stages of study as addiction treatment. We identified 19 human studies using repetitive TMS (rTMS) to manipulate drug craving or use, which exposed a total of 316 adults to active rTMS. Nine studies involved tobacco, six alcohol, three cocaine, and one methamphetamine. The majority of studies targeted high-frequency (5-20 Hz; expected to stimulate neuronal activity) rTMS pulses to the dorsolateral prefrontal cortex. Only five studies were controlled clinical trials: two of four nicotine trials found decreased cigarette smoking; the cocaine trial found decreased cocaine use. Many aspects of optimal treatment remain unknown, including rTMS parameters, duration of treatment, relationship to cue-induced craving, and concomitant treatment. The mechanisms of rTMS potential therapeutic action in treating addictions are poorly understood, but may involve increased dopamine and glutamate function in corticomesolimbic brain circuits and modulation of neural activity in brain circuits that mediate cognitive processes relevant to addiction, such as response inhibition, selective attention, and reactivity to drug-associated cues. rTMS treatment of addiction must be considered experimental at this time, but appears to have a promising future.
Collapse
Affiliation(s)
- David A Gorelick
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
29
|
Berlim MT, Van den Eynde F, Daskalakis ZJ. Efficacy and acceptability of high frequency repetitive transcranial magnetic stimulation (rTMS) versus electroconvulsive therapy (ECT) for major depression: a systematic review and meta-analysis of randomized trials. Depress Anxiety 2013; 30:614-23. [PMID: 23349112 DOI: 10.1002/da.22060] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 01/30/2023] Open
Abstract
Clinical trials comparing the efficacy and acceptability of high frequency repetitive transcranial magnetic stimulation (HF-rTMS) and electroconvulsive therapy (ECT) for treating major depression (MD) have yielded conflicting results. As this may have been the result of limited statistical power, we have carried out this meta-analysis to examine this issue. We searched the literature for randomized trials on head-to-head comparisons between HF-rTMS and ECT from January 1995 through September 2012 using MEDLINE, EMBASE, PsycINFO, Cochrane Central Register of Controlled Trials, and SCOPUS. The main outcome measures were remission rates, pre-post changes in depression ratings, as well as overall dropout rates at study end. We used a random-effects model, Odds Ratios (OR), Number Needed to Treat (NNT), and Hedges' g effect sizes. Data were obtained from 7 randomized trials, totalling 294 subjects with MD. After an average of 15.2 HF-rTMS and 8.2 ECT sessions, 33.6% (38/113) and 52% (53/102) of subjects were classified as remitters (OR = 0.46; p = 0.04), respectively. The associated NNT for remission was 6 and favoured ECT. Also, reduction of depressive symptomatology was significantly more pronounced in the ECT group (Hedges' g = -0.93; p = 0.007). No differences on dropout rates for HF-rTMS and ECT groups were found. In conclusion, ECT seems to be more effective than HF-rTMS for treating MD, although they did not differ in terms of dropout rates. Nevertheless, future comparative trials with larger sample sizes and better matching at baseline, longer follow-ups and more intense stimulation protocols are warranted.
Collapse
Affiliation(s)
- Marcelo T Berlim
- Neuromodulation Research Clinic, Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada.
| | | | | |
Collapse
|
30
|
Effect of Two Weeks of rTMS on Brain Activity in Healthy Subjects During an n-Back Task: A Randomized Double Blind Study. Brain Stimul 2013. [DOI: 10.1016/j.brs.2012.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Downar J, Daskalakis ZJ. New Targets for rTMS in Depression: A Review of Convergent Evidence. Brain Stimul 2013; 6:231-40. [DOI: 10.1016/j.brs.2012.08.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 01/12/2023] Open
|
32
|
McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A. Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry 2011; 70:19-27. [PMID: 21571254 PMCID: PMC3270326 DOI: 10.1016/j.biopsych.2011.02.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a neuropsychiatric tool that can serve as a useful method to better understand the neurobiology of cognitive function, behavior, and emotional processing. The purpose of this article is to examine the utility of TMS as a means to measure neocortical function in neuropsychiatric disorders in general, and schizophrenia in particular, for the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia initiative. When incorporating TMS paradigms in research studies, methodologic considerations include technical aspects of TMS, cohort selection and confounding factors, and subject safety. Available evidence suggests benefits of TMS alone or in combination with neurophysiologic and neuroimaging methods, including positron emission tomography, single photon emission computed tomography, magnetic resonance imaging, functional magnetic resonance imaging, functional near infrared spectroscopy, magnetoencephalography, and electroencephalography, to explore neocortical function. With the multiple TMS techniques including single-pulse, paired-pulse, paired associative stimulation, and repetitive TMS and theta burst stimulation, combined with neurophysiologic and neuroimaging methods, there exists a plethora of TMS experimental paradigms to modulate neocortical physiologic processes. Specifically, TMS can measure cortical excitability, intracortical inhibitory and excitatory mechanisms, and local and network cortical plasticity. Coupled with functional and electrophysiologic modalities, TMS can provide insight into the mechanisms underlying healthy neurodevelopment and aging, as well as neuropsychiatric pathology. Thus, TMS could be a useful tool in the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia armamentarium of biomarker methods. Future investigations are warranted to optimize TMS methodologies for this purpose.
Collapse
Affiliation(s)
- Shawn M. McClintock
- Brain Stimulation Lab, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, Division of Brain Stimulation and Therapeutic Modulation, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Catarina Freitas
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lindsay Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah H. Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham North Carolina, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA, Institut Universitari de Neurorehabilitació Guttmann, Universidad Autónoma de Barcelona, Badalona, Spain., Corresponding Author: Alvaro Pascual-Leone, MD, PhD, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA. T: 617.667-0203; Fax: 617.975-5322.
| |
Collapse
|