1
|
Eedy V, Aucoin M. The role of olive oil and its constituents in mental health: a scoping review. Br J Nutr 2024:1-11. [PMID: 39696776 DOI: 10.1017/s000711452400299x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Mounting evidence suggests that the Mediterranean diet has a beneficial effect on mental health. It has been hypothesised that this effect is mediated by a variety of foods, nutrients and constituents; however, there is a need for research elucidating which of these components contribute to the therapeutic effect. This scoping review sought to systematically search for and synthesise the research on olive oil and its constituents and their impact on mental health, including the presence or absence of a mental illness or the severity or progression of symptoms. PubMed and OVID MEDLINE databases were searched. The following article types were eligible for inclusion: human experimental and observational studies, animal and preclinical studies. Abstracts were screened in duplicate, and data were extracted using a piloted template. Data were analysed qualitatively to assess trends and gaps for further study. The PubMed and OVID MEDLINE search yielded 544 and 152 results, respectively. After full-text screening, forty-nine studies were eligible for inclusion, including seventeen human experimental, eighteen observational and fourteen animal studies. Of these, thirteen human and four animal studies used olive oil as a comparator. Observational studies reported inconsistent results, specifically five reporting higher rates of mental illness, eight reporting lower and five reporting no association with higher olive oil intake. All human experimental studies and nine of ten animal studies that assess olive oil as an intervention reported an improvement of anxiety or depression symptoms. Olive oil may benefit mental health outcomes. However, more experimental research is needed.
Collapse
Affiliation(s)
- Vanessa Eedy
- Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ONM2K 1E2, Canada
| | - Monique Aucoin
- Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ONM2K 1E2, Canada
- University of Guelph, 50 Stone Rd E, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
2
|
Luciano TF, Teodoro de Souza C, de Oliveira J, Muller AP. Reversal of high-fat diet-induced cognitive impairment and oxidative stress in the brain through Zingiber officinale supplementation. Metab Brain Dis 2024; 39:1495-1503. [PMID: 39120852 DOI: 10.1007/s11011-024-01406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.
Collapse
Affiliation(s)
- Thais Fernandes Luciano
- Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Claudio Teodoro de Souza
- Postgraduate Program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Pastoris Muller
- Department of Biochemistry, Postgraduate Program in Biochemistry and Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
4
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
5
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
6
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
7
|
Effects of Avocado Oil Supplementation on Insulin Sensitivity, Cognition, and Inflammatory and Oxidative Stress Markers in Different Tissues of Diet-Induced Obese Mice. Nutrients 2022; 14:nu14142906. [PMID: 35889863 PMCID: PMC9319255 DOI: 10.3390/nu14142906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity induces insulin resistance, chronic inflammation, oxidative stress, and neurocognitive impairment. Avocado oil (AO) has antioxidants and anti-inflammatory effects. This study evaluated the effect of AO supplementation on obese mice in the adipose tissue, muscle, liver, and hippocampus. Male C57BL/6J mice received a standard and high-fat diet (20 weeks) and then were supplemented with AO (4 mL/kg of body weight, 90 days) and divided into the following groups: control (control), control + avocado oil (control + AO), diet-induced obesity (DIO), and diet-induced obesity + avocado oil (DIO + AO) (n = 10/group). AO supplementation was found to improve insulin sensitivity and decrease hepatic fat accumulation and serum triglyceride levels in DIO mice. AO improved cognitive performance and did not affect mood parameters. Oxidative marker levels were decreased in DIO + AO mice in all the tissues and were concomitant with increased catalase and superoxide dismutase activities in the epididymal adipose tissue and quadriceps, as well as increased catalase activity in the liver. AO in obese animals further induced reductions in TNF-α and IL-1β expressions in the epididymal adipose tissue and quadriceps. These results suggest that AO supplementation has the potential to be an effective strategy for combating the effects of obesity in rats, and human studies are needed to confirm these findings.
Collapse
|
8
|
Effects of dietary polyunsaturated fatty acids on corticosterone concentrations and spatial learning in rats. Behav Processes 2022; 198:104642. [PMID: 35421543 DOI: 10.1016/j.beproc.2022.104642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022]
Abstract
Dietary intake of polyunsaturated fatty acids (PUFAs) is crucial for neuronal functions, can positively affect cognition, and reduce glucocorticoid (e.g. corticosterone) concentrations in response to stress. We investigated the effects of walnut oil high in PUFAs on spatial cognition and fecal corticosterone metabolite (FCM) concentrations under non-stressed conditions in rats. Unexpectedly, PUFA-supplemented rats had higher FCM concentrations and elevated concentrations generally impaired learning in the subsequent T-maze task. Statistically adjusting for individual FCM concentrations, however, revealed that learning performance was improved in PUFA-supplemented rats. The results suggest that glucocorticoids can modulate the effects of PUFAs on spatial learning under normal (non-stressed) conditions and call for consideration of basal physiological conditions in spatial learning tasks.
Collapse
|
9
|
Türkoğlu M, Baran A, Sulukan E, Ghosigharehagaji A, Yildirim S, Ceyhun HA, Bolat İ, Arslan M, Ceyhun SB. The potential effect mechanism of high-fat and high-carbohydrate diet-induced obesity on anxiety and offspring of zebrafish. Eat Weight Disord 2022; 27:163-177. [PMID: 33710522 DOI: 10.1007/s40519-021-01140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/29/2021] [Indexed: 01/12/2023] Open
Abstract
Anxiety and obesity are two current phenomena. They are among the important public health problems with increasing prevalence worldwide. Although it is claimed that there are strong relations between them, the mechanism of this relationship has not been fully clarified yet. On the other hand, the effect of this relationship on the offspring has been another research subject. In this study, obese zebrafish were obtained by feeding two different diets, one containing high amount of lipid (HF) and the other containing high amount of carbohydrate (HK), and their anxiety levels were evaluated. To establish a relationship between these two phenomena, in addition to histopathological and immunohistochemical analysis in the brain tissues of fish, the transcription levels of some genes related to lipid and carbohydrate metabolisms were determined. In addition, offspring were taken from obese zebrafish and studied to examine the effect of parental obesity on offspring. As a result, it was observed that the HC diet, causing more weight increase than the HF diet, showed an anxiolytic while the HF diet an anxiogenic effect. It was suggested that the probable cause of this situation may be the regulatory effect on the appetite-related genes depending on the upregulation severity of the PPAR gene family based on the diet content. In addition, it was also suggested that it may have contributed to this process in neuron degenerations caused by oxidative stress. Regarding effects on offspring, it can be concluded that HF diet-induced obesity has more negative effects on the next generation than the HC diet.Level of evidenceNo Level of evidence: animal study.
Collapse
Affiliation(s)
- Medine Türkoğlu
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Murat Arslan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
10
|
Clark TD, Reichelt AC, Ghosh-Swaby O, Simpson SJ, Crean AJ. Nutrition, anxiety and hormones. Why sex differences matter in the link between obesity and behavior. Physiol Behav 2022; 247:113713. [DOI: 10.1016/j.physbeh.2022.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
|
11
|
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab 2022; 33:18-35. [PMID: 34750064 DOI: 10.1016/j.tem.2021.10.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Collapse
Affiliation(s)
- Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada.
| | - Léa Décarie-Spain
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada
| |
Collapse
|
12
|
Smith ME, Cisbani G, Metherel AH, Bazinet RP. The Majority of Brain Palmitic Acid is Maintained by Lipogenesis from Dietary Sugars and is Augmented in Mice fed Low Palmitic Acid Levels from Birth. J Neurochem 2021; 161:112-128. [PMID: 34780089 DOI: 10.1111/jnc.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Previously, results from studies investigating if brain palmitic acid (16:0; PAM) was maintained by either dietary uptake or lipogenesis de novo (DNL) varied. Here, we utilize naturally occurring carbon isotope ratios (13 C/12 C; δ13 C) to uncover the origin of brain PAM. Additionally, we explored brain and liver fatty acid concentration, total brain metabolomic profile, and behaviour. BALB/c dams were equilibrated onto either a low PAM diet (LP; <2%) or high PAM diet (HP; >95%) prior to producing one generation of offspring. Offspring stayed on the respective diet of the dam until 15-weeks of age, at which time the Open Field test was conducted in the offspring, prior to euthanasia and tissue lipid extraction. Although liver PAM was lower in offspring fed the LP diet, as well as female offspring, brain PAM was not affected by diet or sex. Across offspring of either sex on both diets, brain 13 C-PAM revealed compared to dietary uptake, DNL from dietary sugars contributed 68.8%-79.5% and 46.6%-58.0% to the total brain PAM pool by both peripheral and local brain DNL, and local brain DNL alone, respectively. DNL was augmented in offspring fed the LP diet, and the ability to upregulate DNL in the liver or the brain depended on sex. Anxiety-like behaviours were decreased in offspring fed the LP diet and were correlated with markers of LP diet consumption including increased liver 13 C-PAM, warranting further investigation. Altogether, our results indicate that DNL from dietary sugars is a compensatory mechanism to maintain brain PAM in response to a LP diet.
Collapse
Affiliation(s)
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto
| | - Adam H Metherel
- University of Toronto, Department of Nutritional Sciences, Toronto
| | | |
Collapse
|
13
|
Domínguez-Vías G, Segarra AB, Ramírez-Sánchez M, Prieto I. The Type of Fat in the Diet Influences Regulatory Aminopeptidases of the Renin-Angiotensin System and Stress in the Hypothalamic-Pituitary-Adrenal Axis in Adult Wistar Rats. Nutrients 2021; 13:nu13113939. [PMID: 34836194 PMCID: PMC8625891 DOI: 10.3390/nu13113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.
Collapse
Affiliation(s)
- Germán Domínguez-Vías
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Department of Physiology, Faculty of Health Sciences, Ceuta, University of Granada, 18071 Granada, Spain
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| | - Ana Belén Segarra
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Manuel Ramírez-Sánchez
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Isabel Prieto
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| |
Collapse
|
14
|
Décarie-Spain L, Hryhorczuk C, Lau D, Jacob-Brassard É, Fisette A, Fulton S. Prolonged saturated, but not monounsaturated, high-fat feeding provokes anxiodepressive-like behaviors in female mice despite similar metabolic consequences. Brain Behav Immun Health 2021; 16:100324. [PMID: 34589811 PMCID: PMC8474568 DOI: 10.1016/j.bbih.2021.100324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity significantly increases the risk for anxiety and depression. Our group has recently demonstrated a role for nucleus accumbens (NAc) pro-inflammatory nuclear factor kappa-B (NFkB) signaling in the development of anxiodepressive-like behaviors by diet-induced obesity in male mice. The NAc is a brain region involved in goal-oriented behavior and mood regulation whose functions are critical to hedonic feeding and motivation. While the incidence of depression and anxiety disorders is significantly higher in women than in men, the use of female animal models in psychiatric research remains limited. We set out to investigate the impact of chronic intake of saturated and monounsaturated high-fat diets (HFD) on energy metabolism and on anxiety- and despair-like behaviors in female mice and to ascertain the contribution of NAc NFkB-mediated inflammation herein. Adult C57Bl6N female mice were fed either a saturated HFD, an isocaloric monounsaturated HFD or a control low-fat diet for 24 weeks, after which metabolic profiling and behavioral testing for anxiodepressive-like behaviors were conducted. Plasma was collected at time of sacrifice for quantification of leptin, inflammatory markers as well as 17 β-estradiol levels and brains were harvested to analyze NAc expression of pro-inflammatory genes and estrogen-signaling molecules. In another group of female mice placed on the saturated HFD or the control diet for 24 weeks, we performed adenoviral-mediated invalidation of the NFkB signaling pathway in the NAc prior to behavioral testing. While both HFDs provoked obesity and metabolic impairments, only the saturated HFD triggered anxiodepressive-like behaviors and caused marked elevations in plasma estrogen. This saturated HFD-specific behavioral phenotype could not be explained by NAc inflammation alone and was unaffected by NAc invalidation of the NFkB signaling pathway. Instead, we found changes in the expression of estrogen signaling markers. Such results diverge from the inflammatory mechanisms underlying diet- and obesity-induced metabolic dysfunction and anxiodepressive-like behavior onset in male mice and call attention to the role of estrogen signaling in diet-related anxiodepressive-like phenotypes in female mice.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Canada
| | - Cécile Hryhorczuk
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada
| | - David Lau
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Canada
| | | | - Alexandre Fisette
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Canada
| | - Stephanie Fulton
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|
15
|
Nemeth M, Eisenschenk I, Engelmann A, Esser FM, Kokodynska M, Szewczak VF, Barnreiter E, Wallner B, Millesi E. Flaxseed oil as omega-3 polyunsaturated fatty acid source modulates cortisol concentrations and social dominance in male and female guinea pigs. Horm Behav 2021; 134:105025. [PMID: 34242874 DOI: 10.1016/j.yhbeh.2021.105025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Flaxseed oil is an excellent source of the essential omega-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA). Omega-3 PUFAs are important neuronal components and can counteract aggressive, depressive, and anxiety-like behavior, reduce glucocorticoid (e.g. cortisol) concentrations under chronic stress but also increase acute glucocorticoid responses. As glucocorticoids per se and glucocorticoid responsiveness can modulate the establishment of dominance hierarchies, we investigated if flaxseed oil high in ALA can promote social dominance through effects on glucocorticoid concentrations. Two male and two female groups of domestic guinea pigs (n = 9 per group) were maintained on a control or a 5% (w/w) flaxseed oil diet for four weeks. Social behaviors, hierarchy indices, locomotion, and saliva cortisol concentrations were determined during basal group housing conditions and stressful social confrontations with unfamiliar individuals of the other groups. Flaxseed groups had increased basal cortisol concentrations and showed no cortisol increase during social confrontations. Cortisol concentrations in control groups significantly increased during social confrontations. Such higher cortisol responses positively affected individual hierarchy indices in control males. However, flaxseed males became dominant irrespective of cortisol concentrations. In females, the opposite was detected, namely a higher dominant status in control compared to flaxseed females. Open-field- and dark-light-tests for anxiety-like behavior revealed no pronounced differences, but flaxseed males showed the highest locomotor activity. Flaxseed oil as an ALA source sex-specifically promoted social dominance irrespective of cortisol concentrations and responses. The underlying neuronal mechanisms remain to be determined, but a sex-specific energetic advantage may have accounted for this effect.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Isabelle Eisenschenk
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Anna Engelmann
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fey Maria Esser
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Michelle Kokodynska
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Veronika Francesca Szewczak
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elisabeth Barnreiter
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
16
|
de França Silva RC, de Souza MA, da Silva JYP, Ponciano CDS, Bordin Viera V, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Querino Dias CDC, Oliveira ME, Soares JKB. Evaluation of the effectiveness of macaíba palm seed kernel (Acrocomia intumescens drude) on anxiolytic activity, memory preservation and oxidative stress in the brain of dyslipidemic rats. PLoS One 2021; 16:e0246184. [PMID: 33730037 PMCID: PMC7968719 DOI: 10.1371/journal.pone.0246184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Macaíba palm seed kernel is a source of lipids and phenolic compounds. The objective of this study was to evaluate the effects of macaíba palm seed kernel on anxiety, memory, and oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipidemic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before treatment. KG and DKG received 1000 mg/kg of macaíba palm seed kernel per gavage for 28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT), Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In the animals’ brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified to determine oxidative stress. The data were treated with Two Way ANOVA followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel realized more rearing. DG and KG groomed less compared with CONT and DKG compared with all groups in OFT. KG spent more time in aversive open arms compared with CONT and DKG compared with all groups in EPM. Only DKG spent more time in the central area in EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05). Data showed that macaíba palm seed kernel consumption induced anxiolytic-like behaviour and decreased lipids peroxidation in rats’ brains. On the other hand, this consumption by healthy and dyslipidemic animals compromises memory.
Collapse
|
17
|
Dietary fatty acids modulate cortisol concentrations and social dominance during social confrontations in adolescent male guinea pigs. Psychoneuroendocrinology 2021; 123:105045. [PMID: 33242725 DOI: 10.1016/j.psyneuen.2020.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA)-axis and related glucocorticoid concentrations regulate physiology and behavior, which can be modulated by nutritional conditions, particularly by the dietary fatty acid composition. Omega-3 polyunsaturated fatty acids (PUFAs) have been shown to promote hypothalamic-pituitary-adrenal (HPA)-axis functions, whereas saturated fatty acids (SFAs) in general produce adverse effects and even increase baseline glucocorticoid concentrations. Glucocorticoids (e.g. cortisol) were further documented to modulate the establishment of dominance relationships, while the involvement of dietary fatty acids remains understudied. This study focused on different effects of PUFAs and SFAs on cortisol concentrations and social dominance in male guinea pigs. Three groups of animals were maintained on diets high in PUFAs (10 % w/w walnut oil), SFAs (10 % w/w coconut fat), or on an untreated control diet starting already prenatally. During adolescence, at an age of 60, 90, and 120 days, each individual's saliva cortisol concentrations and hierarchy index (calculated by initiated and received agonistic behavior) were measured during basal group housing conditions and stressful social confrontations with unfamiliar individuals of the other groups. SFA males showed highest baseline cortisol concentrations, lowest cortisol responses to social confrontations, and became subdominant. PUFA and control males showed significant cortisol responses. However, while control males became dominant during social confrontations, the hierarchy index in PUFA males decreased with age. Individual hierarchy indices during consecutive social confrontations revealed a high consistency. The findings presented here indicate that dietary fatty acids differently affect HPA-axis functions and social dominance but the underlying mechanisms remain to be determined.
Collapse
|
18
|
Pase CS, Metz VG, Roversi K, Roversi K, Vey LT, Dias VT, Schons CF, de David Antoniazzi CT, Duarte T, Duarte M, Burger ME. Trans fat intake during pregnancy or lactation increases anxiety-like behavior and alters proinflammatory cytokines and glucocorticoid receptor levels in the hippocampus of adult offspring. Brain Res Bull 2020; 166:110-117. [PMID: 33242520 DOI: 10.1016/j.brainresbull.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022]
Abstract
Changes in dietary habits, including the increased consumption of processed foods, rich in trans fatty acids (TFA), have profound effects on offspring health in later life. Thus, this study aimed to assess the influence of maternal trans fat intake during pregnancy or lactation on anxiety behavior, as well as markers of inflammation, oxidative stress, and expression of glucocorticoid receptors (GR) of adult male offspring. Female Wistar rats were supplemented daily with soybean oil/fish oil (SO/FO) or hydrogenated vegetable fat (HVF) by oral gavage (3.0 g/kg body weight) during pregnancy or lactation. After weaning, male offspring received only standard diet. On the postnatal day 60, anxiety-like symptoms were assessed, the plasma was collected for the quantification of cytokines levels and the hippocampus removed for biochemical and molecular analysis. Our findings have evidenced that offspring from HVF-supplemented dams during pregnancy or lactation showed significantly greater levels of anxiety behavior. HVF supplementation increased plasma levels of proinflammatory cytokines and these levels were higher in the lactation period. In contrast, HVF supplementation decreased plasma levels of IL-10 in relation to SO/FO in both periods. Biochemical evaluations showed higher reactive species generation, protein carbonyl levels and catalase activity in offspring from HVF-supplemented dams during lactation. In addition, offspring from HVF-supplemented dams showed decreased GR expression in both supplemented periods. Together, these data indicate that consumption of TFA in different periods of development may increase anxiety-like behavior at least in part via alterations in proinflammatory and anti-inflammatory cytokine levels and GR expression in limbic brain regions.
Collapse
Affiliation(s)
- Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| | - Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Karine Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Katiane Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, SC, Brazil
| | - Luciana Taschetto Vey
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | - Thiago Duarte
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Marta Duarte
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Du Toit EF, Tai WS, Cox A, O’Connor D, Griffith TA, Helman T, Wendt L, Peart JN, Stapelberg NJC, Headrick JP. Synergistic effects of low-level stress and a Western diet on metabolic homeostasis, mood, and myocardial ischemic tolerance. Am J Physiol Regul Integr Comp Physiol 2020; 319:R347-R357. [DOI: 10.1152/ajpregu.00322.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How low-level psychological stress and overnutrition interact in influencing cardiometabolic disease is unclear. Mechanistic overlaps suggest potential synergies; however, findings are contradictory. We test whether low-level stress and Western diet (WD) feeding synergistically influence homeostasis, mood, and myocardial ischemic tolerance. Male C57BL6/J mice were fed a control diet or WD (32%/57%/11% calories from fat/carbohydrates/protein) for 12 wk, with subgroups restrained for 30 min/day over the final 3 wk. Metabolism, behavior, tolerance of perfused hearts to ischemia-reperfusion (I/R), and cardiac “death proteins” were assessed. The WD resulted in insignificant trends toward increased body weight (+5%), glucose (+40%), insulin (+40%), triglycerides (+15%), and cholesterol (+20%) and reduced leptin (−20%) while significantly reducing insulin sensitivity [100% rise in homeostasis model assessment of insulin resistance (HOMA-IR), P < 0.05]. Restraint did not independently influence metabolism while increasing HOMA-IR a further 50% (and resulting in significant elevations in insulin and glucose to 60–90% above control) in WD mice ( P < 0.05), despite blunting weight gain in control and WD mice. Anxiogenesis with restraint or WD was nonadditive, whereas anhedonia (reduced sucrose consumption) only arose with their combination. Neuroinflammation markers (hippocampal TNF-α, Il-1b) were unchanged. Myocardial I/R tolerance was unaltered with stress or WD alone, whereas the combination worsened dysfunction and oncosis [lactate dehydrogenase (LDH) efflux]. Apoptosis (nucleosome accumulation) and death protein expression (BAK, BAX, BCL-2, RIP-1, TNF-α, cleaved caspase-3, and PARP) were unchanged. We conclude that mild, anxiogenic yet cardio-metabolically “benign” stress interacts synergistically with a WD to disrupt homeostasis, promote anhedonia (independently of neuroinflammation), and impair myocardial ischemic tolerance (independently of apoptosis and death protein levels).
Collapse
Affiliation(s)
- Eugene F. Du Toit
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Wei Shan Tai
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Amanda Cox
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Dylan O’Connor
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Tia A. Griffith
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Tessa Helman
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Lauren Wendt
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jason N. Peart
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Nicolas J. C. Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
- Mental Health and Specialist Services, Gold Coast Health, Southport, Queensland, Australia
| | - John P. Headrick
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
20
|
Western diet-induced obesity disrupts the diurnal rhythmicity of hippocampal core clock gene expression in a mouse model. Brain Behav Immun 2020; 88:815-825. [PMID: 32454134 DOI: 10.1016/j.bbi.2020.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Western diet (WD) feeding disrupts core clock gene expression in peripheral tissues and contributes to WD-induced metabolic disease. The hippocampus, the mammalian center for memory, is also sensitive to WD feeding, but whether the WD disrupts its core clock is unknown. To this end, male mice were maintained on a WD for 16 weeks and diurnal metabolism, gene expression and memory were assessed. WD-induced obesity disrupted the diurnal rhythms of whole-body metabolism, markers of inflammation and hepatic gene expression, but did not disrupt diurnal expression of hypothalamic Bmal1, Npas2 and Per2. However, all measured core clock genes were disrupted in the hippocampus after WD feeding and the expression pattern of genes implicated in Alzheimer's disease and synaptic function were altered. Finally, WD feeding disrupted hippocampal memory in a task- and time-dependent fashion. Our results implicate WD-induced alterations in the rhythmicity of hippocampal gene expression in the etiology of diet-induced memory deficits.
Collapse
|
21
|
Smvk P, M N M, D M DY, Kondeti S, Kalashikam RR. Strain specific variation underlines the disparity in stress response of rats to calorie dense diets in the pathophysiology of obesity. Steroids 2020; 160:108653. [PMID: 32407856 DOI: 10.1016/j.steroids.2020.108653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Obesity is a multifactorial disorder, caused mainly due to lifestyle changes, and increased consumption of calorie dense diets is not just limited to developed countries anymore. Chronic physiological stress and oxidative stress are known to be implicated in the etiology of obesity. However, the role of stress response towards obesity manifestation in genetically different rat strains is poorly understood. In the current study we have used obesity susceptible & resistant rat models to understand the role of both glucocorticoid and oxidativestress in the pathophysiology of obesity. Upon challenge with calorie dense diets, WNIN showed an increased glucocorticoid stress, resulting in increased oxidative stress; whereas such a phenomenon was not noticed in F-344 and SD. However, there was an increase in the circulatory melatonin levels in calorie dense fed groups of both F-344 and SD animals, which might have contributed to reduced oxidative stress. The molecular switch in the activation of melatonin could be possibly attributed to the genetic differences among these strains. It will be interesting to explore other molecular mechanisms for melatonin regulation, albeit increased corticosterone is implicated in the enhanced production of melatonin.
Collapse
Affiliation(s)
- Prasad Smvk
- Laboratory of Molecular Genetics, National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Muralidhar M N
- Laboratory of Molecular Genetics, National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Dinesh Yadav D M
- Laboratory of Molecular Genetics, National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Suresh Kondeti
- Laboratory of Molecular Genetics, National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Rajender Rao Kalashikam
- Laboratory of Molecular Genetics, National Institute of Nutrition, Hyderabad 500007, Telangana, India.
| |
Collapse
|
22
|
Nemeth M, Wallner B, Schuster D, Siutz C, Quint R, Wagner KH, Millesi E. Effects of dietary fatty acids on the social life of male Guinea pigs from adolescence to adulthood. Horm Behav 2020; 124:104784. [PMID: 32504693 DOI: 10.1016/j.yhbeh.2020.104784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Dietary intake of polyunsaturated fatty acids (PUFAs) or saturated fatty acids (SFAs) differently modulates neurophysiological and behavioral functions in response to altered hypothalamic-pituitary-adrenal (HPA)-axis activity and an individual's development. In this context, an individual's social environment, including social interactions and social hierarchies, is closely related to hormone concentrations and possibly interacts with dietary fatty acid effects. We investigated if dietary supplementation with walnut oil (high in PUFAs) and coconut fat (high in SFAs), compared to a control group, affects body mass gain, cortisol and testosterone concentrations, plasma fatty acids, and social behavior in male domestic guinea pigs from adolescence to adulthood. For analyses of cortisol and testosterone concentrations, social interactions were included as covariates in order to consider effects of social behavior on hormone concentrations. Our results revealed that SFAs increased escalated conflicts like fights and stimulated cortisol and testosterone concentrations, which limited body mass gain and first-year survival. PUFAs did not remarkably affect social behavior and hormone concentrations, but enabled the strongest body mass gain, which probably resulted from an energetic advantage. Neither sociopositive nor agonistic behaviors explained age-specific differences in hormone concentrations between groups. However, a high number of subdominant individuals and lower testosterone concentrations were related to increased cortisol concentrations in adult PUFA males. Our findings demonstrate the importance of dietary fatty acids regarding behavioral and endocrine developmental processes and adaptations to the social environment by modulating HPA-axis function and body homeostasis.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carina Siutz
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
23
|
Zhu C, Xu Y, Jiang Z, Tian JB, Cassidy RM, Cai ZL, Shu G, Xu Y, Xue M, Arenkiel BR, Jiang Q, Tong Q. Disrupted hypothalamic CRH neuron responsiveness contributes to diet-induced obesity. EMBO Rep 2020; 21:e49210. [PMID: 32462726 DOI: 10.15252/embr.201949210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
The current obesity epidemic mainly results from high-fat high-caloric diet (HFD) feeding and may also be contributed by chronic stress; however, the neural basis underlying stress-related diet-induced obesity remains unknown. Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamus (PVH), a known body weight-regulating region, represent one key group of stress-responsive neurons. Here, we found that HFD feeding blunted PVH CRH neuron response to nutritional challenges as well as stress stimuli and dexamethesone, which normally produce rapid activation and inhibition on these neurons, respectively. We generated mouse models with the activity of these neurons clamped at high or low levels, both of which showed HFD-mimicking, blunted PVH CRH neuron responsiveness. Strikingly, both models developed rapid HFD-induced obesity, associated with HFD-mimicking, reduced diurnal rhythmicity in feeding and energy expenditure. Thus, blunted responsiveness of PVH CRH neurons, but not their absolute activity levels, underlies HFD-induced obesity and may also contribute to stress-induced obesity.
Collapse
Affiliation(s)
- Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiying Jiang
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jin Bin Tian
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Integrative Physiology and Pharmacology, McGovern Medical School, Houston, TX, USA
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
24
|
Shin YK, Hsieh YS, Han AY, Kwon S, Seol GH. Sex differences in cardio-metabolic and cognitive parameters in rats with high-fat diet-induced metabolic dysfunction. Exp Biol Med (Maywood) 2020; 245:977-982. [PMID: 32299227 DOI: 10.1177/1535370220920552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT Excessive dietary fat intake plays important roles in the process of metabolic dysfunction and increases susceptibilities to chronic diseases such as hypertension. Few previous studies, however, have accurately reflected real-world medical conditions. In addition, studies performed to date have not examined detailed sex-differences in cardio-metabolic and cognitive parameters, precluding the development of sex-tailored interventions for patients with metabolic dysfunction who are susceptible to hypertension and cognitive impairment. In this study, using rats with HFD-induced metabolic dysfunction that made them susceptible to hypertension and cognitive impairment, we demonstrate that male rats show greater impairment of acetylcholine-induced vasorelaxation of the carotid artery and systolic blood pressure compared to female rats. These findings may provide a basis for the early detection of carotid artery dysfunction and systolic blood pressure increase, especially in males.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - A Young Han
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Rehman K, Munawar SM, Akash MSH, Buabeid MA, Chohan TA, Tariq M, Jabeen K, Arafa ESA. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS One 2020; 15:e0227637. [PMID: 31929574 PMCID: PMC6957178 DOI: 10.1371/journal.pone.0227637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
Leptin resistance and co-existing insulin resistance is considered as hallmark of diet-induced obesity. Here, we investigated therapeutic potential of hesperidin to improve leptin and insulin resistance using high fat diet (HFD)-induced obese experimental animal model. We also performed in silico studies to validate therapeutic effectiveness of hesperidin by performing protein-ligand docking and molecular dynamics simulation studies. Group 1 was identified as control group receiving vehicle only. Group 2 was marked as non-treated group receiving 60% HFD. While, other groups were treated daily with orlistat (120 mg/kg/d), hesperidin (55 mg/kg/d), combination of hesperidin (55 mg/kg/d) + orlistat (120 mg/kg/d). Hesperidin alone (P<0.001) and particularly in combination with orlistat (P<0.001), resulted in controlling the levels of HFD-altered biomarkers including random and fasting state of glycemia, leptin and insulin resistance. Similarly, hesperidin also improved the serum and tissue levels of leptin, interleukin-6 and tumor necrosis factor-alpha more significantly (P<0.05) when compared with that of orlistat. These results were found to be in accordance with the results of histopathological examination of pancreas, liver and adipose tissues. In-silico studies also proved that hesperidin binds to leptin receptor with higher affinity as compared to that of orlistat and induces the favorable variations in geometrical conformation of leptin receptor to promote its association with leptin which may lead to the cascades of reactions culminating the lipolysis of fats that may ultimately lead to cure obesity. The results of this study may be a significant expectation among the forthcoming treatment strategies for leptin and insulin resistance.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Syeda Mehak Munawar
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajid Hamid Akash
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
- * E-mail: / (MSHA); (MAB)
| | - Manal Ali Buabeid
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- * E-mail: / (MSHA); (MAB)
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy College, Lahore, Pakistan
| | - Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - El-Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
26
|
Souto TDS, Nakao FSN, Giriko CÁ, Dias CT, Cheberle AIDP, Lambertucci RH, Mendes-da-Silva C. Lard-rich and canola oil-rich high-fat diets during pregnancy promote rats’ offspring neurodevelopmental delay and behavioral disorders. Physiol Behav 2020; 213:112722. [DOI: 10.1016/j.physbeh.2019.112722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
|
27
|
Abstract
ABSTRACT Objective To evaluate the effects of macronutrients (protein, carbohydrate and/or lipid) in the diet of young adult (72 days) and adult (182 days) Wistar rats treated ad libitum and with 30% restriction from birth on anxiety in the elevated plus-maze. Methods We used 238 rats treated from birth, composing the groups: Control, Protein, Carbohydrate, Lipid, Carbohydrate and Lipid, Control Restriction, Protein Restriction, Carbohydrate Restriction, Lipid Restriction and Carbohydrate and Lipid Restriction. The animals were weighed at the beginning and at the end of the experiment and tested in the elevated plus-maze. Data were submitted to analysis of variance, followed by the Newman-Keuls Test (p<0.05). Results Among the animals treated ad libitum, the Control, Carbohydrate plus Lipid and Lipid gained more weight than the Carbohydrate and Protein; ad libitum animals gained more weight than those on restriction; among the restrictions, Carbohydrate Restriction rats were the ones that gained less weight. Diet-restricted animals exhibited reduced first-entry latency, greater percentage of entries and time spent, frequency of open arm extremity visits, head dipping (protected and unprotected), and length of stay in the central area of the elevated plus-maze. The animals with 182 days presented greater latency for first entry, reduced frequency of false entries and visits to the ends of the open arms and protected head dipping. Conclusion Food restricted animals, regardless of the macronutrient present in the diet, were less anxious and/or increased their impulsivity and those at 182 days were more anxious and/or with reduced impulsivity.
Collapse
|
28
|
"Comfort-foods" chronic intake has different behavioral and neurobiological effects in male rats exposed or not to early-life stress. J Dev Orig Health Dis 2019; 11:18-24. [PMID: 31169116 DOI: 10.1017/s2040174419000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of "comfort-food" (CF) diet to revert long-term effects of early-life stress (ELS) is less well known. The objective of this study was to verify if the chronic exposure to CF diet in animals submitted to ELS could relief the stress response at behavioral, neuroendocrine, and neurobiochemical levels, via differences in glucocorticoid receptors expression in brain areas involved in the stress response. From the second day of life, litters of Wistar rats and their mothers were submitted to the reduced nesting material protocol (ELS). In adult life, ELS and a control group were exposed chronically to two diet schemes: standard rat chow only or both "CF" diet, containing fat (34%) and sugar (20%) and a diet similar to the standard diet. Anxiety-like behavior, neuroendocrine response stress, leptin, GR, SOCS-3, pSTAT3, and the abdominal fat were evaluated. The anxiety-like behavior results showed that ELS group when exposed to comfort food were not different from the others groups. Chronic exposure to CF diet induced an anxiety-like behavior in the control group. Groups chronically exposed to CF diet had lower levels of corticosterone over time independent of the neonatal group. The ELS group exposed to the "CF" diet had higher levels of hippocampal GR, lower levels of hypothalamic SOCS-3 and greater accumulation of abdominal fat. Chronic CF diet consumption is able to reduce corticosterone levels independent of the neonatal history, but is associated with anxiety-like behavior in animals without previous history of trauma. Metabolic disturbances like increased adiposity and altered SOCS-3 seem to be a result of multiple insults (neonatal trauma followed by chronic CF diet). We highlight that the Control-chow and ELS-chow data were previously published, and are included in this study for comparative analysis.
Collapse
|
29
|
Milanesi LH, Rossato DR, Dias VT, Kronbauer M, D’avila LF, Somacal S, Duarte T, Duarte MMF, Emanuelli T, Burger ME. Mediterranean X Western based diets: Opposite influences on opioid reinstatement. Toxicol Lett 2019; 308:7-16. [DOI: 10.1016/j.toxlet.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/11/2019] [Accepted: 03/17/2019] [Indexed: 01/06/2023]
|
30
|
Behavioral profile of intermittent vs continuous access to a high fat diet during adolescence. Behav Brain Res 2019; 368:111891. [PMID: 31009646 DOI: 10.1016/j.bbr.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Over the past few years, the effects of a high-fat diet (HFD) on cognitive functions have been broadly studied as a model of obesity, although no studies have evaluated whether these effects are maintained after the cessation of this diet. In addition, the behavioral effects of having a limited access to an HFD (binge-eating pattern) are mostly unknown, although they dramatically increase the vulnerability to drug use in contrast to having continuous access. Thus, the aim of the present study was to compare the effects of an intermittent versus a continuous exposure to an HFD during adolescence on cognition and anxiety-like behaviors, as well as to study the changes observed after the interruption of this diet. Adolescent male mice received for 40 days a standard diet, an HFD with continuous access or an HFD with sporadic limited access (2 h, three days a week). Two additional groups were fed with intermittent or continuous access to the HFD and withdrawn from this diet 15 days before the behavioral tests. Only the animals with a continuous access to the HFD showed higher circulating leptin levels, increased bodyweight, marked memory and spatial learning deficits, symptoms that disappeared after 15 days of HFD abstinence. Mice that binged on fat only showed hyperlocomotion, which normalized after 15 days of HFD cessation. However, discontinuation of fat, either in a binge or a continuous pattern, led to an increase in anxiety-like behavior. These results highlight that exposure to a high-fat diet during adolescence induces alterations in brain functions, although the way in which this diet is ingested determines the extent of these behavioral changes.
Collapse
|
31
|
Queiroz MP, Lima MDS, de Melo MFFT, Bertozzo CCDMS, de Araújo DF, Guerra GCB, Queiroga RDCRDE, Soares JKB. Maternal suppplementation with conjugated linoleic acid reduce anxiety and lipid peroxidation in the offspring brain. J Affect Disord 2019; 243:75-82. [PMID: 30236761 DOI: 10.1016/j.jad.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Maternal consumption of fatty acids can alter neuronal membrane function, synaptic connections, and protect the brain from alterations caused by disturbances such as lipid peroxidation and anxiety in the offspring. We aimed to investigate how the maternal consumption of conjugated linoleic acid (CLA) interferes in anxiety behavior of the offspring and cerebral lipid peroxidation. METHODS Three groups were formed: control (CG) - diet without CLA; CLA1 - diet containing 1% of CLA; and CLA3 - diet containing 3% of CLA. These diets were offered to the mothers from the 7th day of gestation until the end of lactation. The following behavioral tests were used: Elevated plus maze (EPM), Open Field (OF) and Light-dark Box (LDB). Levels of malondialdehyde (MDA) and glutathione were measured in the offspring's brains. Data were analyzed by ANOVA followed by the Holm-Sidak post-test or the Kruskal-Wallis test (p < 0.05). RESULTS CLA1 and CLA3 showed higher number of entries in the open arms and time spent in the central area in EPM, they translocated and ambulated more in the clear area of the LDB and presented more rearing in the OF compared to CG (p < 0.05); moreover, they presented higher concentration of glutathione and lower MDA in brain tissue (p < 0.05). LIMITATIONS We evaluated the effect of maternal consumption of CLA on anxiety and lipid peroxidation in rats' offspring, but a similar study should be performed in humans. CONCLUSIONS Maternal intake of CLA induced a decrease in the parameters of anxiety and cerebral lipid peroxidation in the offspring.
Collapse
Affiliation(s)
- Michelly Pires Queiroz
- Program of Food Science and Tecnology, Federal University of Paraiba, Cidade Universitária, s/n - Castelo Branco III, João Pessoa, PB 58051-085, Brazil.
| | - Martiniano da Silva Lima
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | | | | | | | | | - Rita de Cassia Ramos do Egypto Queiroga
- Program of Food Science and Tecnology, Federal University of Paraiba, Cidade Universitária, s/n - Castelo Branco III, João Pessoa, PB 58051-085, Brazil; Laboratory of Bromatology, Department of Nutrition, Federal University of Paraiba, João Pessoa, PB, Brazil.
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Federal University of Paraiba, Cidade Universitária, s/n - Castelo Branco III, João Pessoa, PB 58051-085, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
32
|
de Miranda DA, Pinheiro da Silva F, Carnier M, Mennitti LV, Figuerêdo RG, Hachul ACL, Boldarine VT, Neto NIP, Seelaender M, Ribeiro EB, Oller do Nascimento CM, Carnier J, Oyama LM. Chia flour (Salvia hispanica L.) did not improve the deleterious aspects of hyperlipidic diet ingestion on glucose metabolism, but worsened glycaemia in mice. Food Res Int 2018; 121:641-647. [PMID: 31108791 DOI: 10.1016/j.foodres.2018.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 11/24/2022]
Abstract
Obesity is mainly caused by intake of a high-fat diet and sedentarism, and is considered a public health issue worldwide. Increased intestinal permeability may favour endotoxaemia generated by lipopolysaccharides, a substance present in the cell membrane of Gram-negative bacteria, and, consequently, an increase in systemic inflammation and metabolic diseases. In contrast (On the other hand), consumption of a healthy diet can help in the prevention and treatment of metabolic syndrome. In this way, chia seeds (Salvia hispanica L.), rich in polyunsaturated fatty acids, may present an anti-inflammatory role. In addition, chia is rich in antioxidants like caffeic and gallic acid and fiber. However, few studies have investigated the relationship between chia seeds, inflammatory mechanisms and intestinal permeability. Therefore, the aim of this study was to analyse the effects of chia administration on metabolism in obese mice. Swiss mice were fed a hyperlipidic diet either supplemented with or without 3% chia flour for 16 weeks. The results showed that supplementation could not reduce the deleterious effects of the lipid-rich diet in terms of body composition, glucose intolerance and activity of antioxidants enzymes in the liver. In addition, supplementation with chia in the control diet decreased the amount of occludin in the intestinal colon. In conclusion, although chia did not improve metabolic parameters it seemed to restore the intestinal barriers integrity. The beneficial effects of chia seem to be dependent of the quantity used, since our data conflict with those in the literature; however, it is important to note that other studies, unlike our protocol, used chia in the form of seeds or oil, and not flour.
Collapse
Affiliation(s)
- Danielle Araujo de Miranda
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Pinheiro da Silva
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcela Carnier
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Laís Vales Mennitti
- Campus Baixada Santista, Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Raquel Galvão Figuerêdo
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ana Claudia Losinskas Hachul
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Valter Tadeu Boldarine
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nelson Inácio Pinto Neto
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Eliane Beraldi Ribeiro
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - June Carnier
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lila Missae Oyama
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Gomes JAS, Oliveira MC, Gobira PH, Silva GC, Marçal AP, Gomes GF, Ferrari CZ, Lemos VS, Oliveira ACPD, Vieira LB, Ferreira AVM, Aguiar DC. A high-refined carbohydrate diet facilitates compulsive-like behavior in mice through the nitric oxide pathway. Nitric Oxide 2018; 80:61-69. [PMID: 30125695 DOI: 10.1016/j.niox.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 01/17/2023]
Abstract
Obesity is characterized by abnormal adipose tissue expansion and is associated with chronic inflammation. Obesity itself may induce several comorbidities, including psychiatric disorders. It has been previously demonstrated that proinflammatory cytokines are able to up-regulate inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release, which both have a role in compulsive related behaviors. OBJECTIVE To evaluate whether acute or chronic consumption of a high-refined carbohydrate-containing (HC) diet will modify burying-behavior in the Marble Burying Test (MBT) through augmentation of NO signaling in the striatum, a brain region related to the reward system. Further, we also verified the effects of chronic consumption of a HC diet on the reinforcing effects induced by cocaine in the Conditioned Place Preference (CPP) test. METHODS Male BALB/c mice received a standard diet (control diet) or a HC diet for 3 days or 12 weeks. RESULTS An increase in burying behavior occurred in the MBT after chronic consumption of a HC diet that was associated with an increase of nitrite levels in the striatum. The pre-treatment with Aminoguanidine (50 mg/kg), a preferential inhibitor of iNOS, prevented such alterations. Additionally, a chronic HC diet also induced a higher expression of iNOS in this region and higher glutamate release from striatal synaptosomes. Neither statistical differences were observed in the expression levels of the neuronal isoform of NOS nor in microglia number and activation. Finally, the reinforcing effects induced by cocaine (15 mg/kg, i.p.) during the expression of the conditioned response in the CPP test were not different between the chronically HC diet fed mice and the control group. However, HC diet-feeding mice presented impairment of cocaine-preference extinction. CONCLUSION Altogether, our results suggest that the chronic consumption of a HC diet induces compulsive-like behavior through a mechanism possibly associated with NO activation in the striatum.
Collapse
Affiliation(s)
- Júlia Ariana Souza Gomes
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Farmacologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina C Oliveira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Pedro Henrique Gobira
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grazielle C Silva
- Laboratório de Fisiologia Cardiovascular, Departmento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Paula Marçal
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Carolina Zaniboni Ferrari
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Virginia Soares Lemos
- Laboratório de Fisiologia Cardiovascular, Departmento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luciene Bruno Vieira
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Adaliene V M Ferreira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
34
|
Matikainen-Ankney BA, Kravitz AV. Persistent effects of obesity: a neuroplasticity hypothesis. Ann N Y Acad Sci 2018; 1428:221-239. [PMID: 29741270 DOI: 10.1111/nyas.13665] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
The obesity epidemic is a leading cause of health problems in the United States, increasing the risk of cardiovascular, endocrine, and psychiatric diseases. Although many people lose weight through changes in diet and lifestyle, keeping the weight off remains a challenge. Here, we discuss a hypothesis that seeks to explain why obesity is so persistent. There is a great degree of overlap in the circuits implicated in substance use disorder and obesity, and neural plasticity of these circuits in response to drugs of abuse is well documented. We hypothesize that obesity is also associated with neural plasticity in these circuits, and this may underlie persistent changes in behavior, energy balance, and body weight. Here, we discuss how obesity-associated reductions in motivation and physical activity may be rooted in neurophysiological alterations in these circuits. Such plasticity may alter how humans and animals use, expend, and store energy, even after weight loss.
Collapse
Affiliation(s)
- Bridget A Matikainen-Ankney
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Décarie-Spain L, Sharma S, Hryhorczuk C, Issa-Garcia V, Barker PA, Arbour N, Alquier T, Fulton S. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol Metab 2018; 10:1-13. [PMID: 29454579 PMCID: PMC5985233 DOI: 10.1016/j.molmet.2018.01.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/09/2018] [Accepted: 01/20/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The incidence of depression is significantly compounded by obesity. Obesity arising from excessive intake of high-fat food provokes anxiodepressive behavior and elicits molecular adaptations in the nucleus accumbens (NAc), a region well-implicated in the hedonic deficits associated with depression and in the control of food-motivated behavior. To determine the etiology of diet-induced depression, we studied the impact of different dietary lipids on anxiodepressive behavior and metabolic and immune outcomes and the contribution of NAc immune activity. METHODS Adult C57Bl/6 mice were subjected to isocaloric high-fat/high-sucrose diets (HFD), enriched in either saturated or monounsaturated fat, or a control low-fat diet (LFD). Metabolic responses, anxiodepressive behavior, and plasma and NAc inflammatory markers were assessed after 12 weeks. In separate experiments, an adenoviral construct inhibiting IKKβ, an upstream component of the nuclear factor kappa-b (NFkB) pathway, was a priori injected into the NAc. RESULTS Both HFDs resulted in obesity and hyperleptinemia; however, the saturated HFD uniquely triggered anxiety-like behavior, behavioral despair, hyperinsulinemia, glucose intolerance, peripheral inflammation, and multiple pro-inflammatory signs in the NAc, including reactive gliosis, increased expression of cytokines, antigen-presenting markers and NFкB transcriptional activity. Selective NAc IKKβ inhibition reversed the upregulated expression of inflammatory markers, prevented anxiodepressive behavior and blunted compulsive sucrose-seeking in mice fed the saturated HFD. CONCLUSIONS Metabolic inflammation and NFкB-mediated neuroinflammatory responses in the NAc contribute to the expression of anxiodepressive behavior and heightened food cravings caused by a diet high in saturated fat and sugar.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Montreal Diabetes Research Centre, Université de Montréal, Quebec, Canada; Department of Neuroscience, Université de Montréal, Quebec, Canada
| | - Sandeep Sharma
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Montreal Diabetes Research Centre, Université de Montréal, Quebec, Canada; Department of Nutrition, Université de Montréal, Quebec, Canada
| | - Cécile Hryhorczuk
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Montreal Diabetes Research Centre, Université de Montréal, Quebec, Canada
| | - Victor Issa-Garcia
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Montreal Diabetes Research Centre, Université de Montréal, Quebec, Canada
| | - Philip A Barker
- Department of Biology, University of British Columbia, BC, Canada
| | - Nathalie Arbour
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Department of Neuroscience, Université de Montréal, Quebec, Canada
| | - Thierry Alquier
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Montreal Diabetes Research Centre, Université de Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Quebec, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada; Montreal Diabetes Research Centre, Université de Montréal, Quebec, Canada; Department of Nutrition, Université de Montréal, Quebec, Canada.
| |
Collapse
|
36
|
Barbosa MQ, Queiroga RDCRE, Bertozzo CCDMS, Araújo DFDS, Oliveira LIG, Silva JYP, Bomfim MAD, Guerra GCB, Costa S, Bessa R, Alves S, Barbosa Soares JK. Effect of diets with goat milk fat supplemented with exercise on anxiety and oxidative stress in the brains of adult rats. Food Funct 2018; 9:2891-2901. [DOI: 10.1039/c7fo01764b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Goat milk fat induced anxiolytic effect in sedentary animals; exercise promoted lipid peroxidation in the brain; exercise induced anxiety.
Collapse
|
37
|
Lim SI, Song KH, Yoo CH, Woo DC, Choe BY. High-fat diet-induced hyperglutamatergic activation of the hippocampus in mice: A proton magnetic resonance spectroscopy study at 9.4T. Neurochem Int 2017; 114:10-17. [PMID: 29274351 DOI: 10.1016/j.neuint.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the long-term neurochemical alterations in the hippocampus of mice fed a high-fat diet (HFD) while plasma leptin and corticosterone levels were monitored. Although metabolic disturbances induced by the excess intake of fat are assumed to cause depression, the relationship underlying dysfunctional adipose tissue, stress hormone release, and excitatory metabolism has not been fully understood yet. Four-week-old male C57BL/6 mice were separated into a HFD-fed group (n = 8) and low-fat diet-fed group (n = 8). Proton magnetic resonance spectroscopy was used to measure the long-term changes in neurochemicals in the hippocampus at 0, 5, and 10 weeks and blood samples were taken at the same time to assess plasma hormones levels. At the end of the experiment, magnetic resonance imaging was performed to quantify abdominal fat accumulation. At 10 weeks, corticosterone and leptin levels were significantly increased in the HFD group compared with the low-fat diet group. In addition, aspartate, glutamate, total choline, and N-acetylaspartic acid levels were significantly increased, but glutamine/glutamate ratios were substantially decreased at 10 weeks in the HFD group. These results were compatible with HFD-induced acute stress responses and changes in N-methyl-d-aspartate receptor-induced plasticity. These findings demonstrated that the long-term ingestion of a HFD induced hyperglutamatergic metabolism and altered glutamine-glutamate cycling. Therfore, it is suggested that hypothalamic-pituitary-adrenal dysfunction and hyperglutamatergic activation in the hippocampus resulting from the HFD.
Collapse
Affiliation(s)
- Song-I Lim
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Kyu-Ho Song
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chi-Hyeon Yoo
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Bo-Young Choe
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|