1
|
Venditti S. Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being. Subcell Biochem 2025; 108:231-260. [PMID: 39820865 DOI: 10.1007/978-3-031-75980-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally. Among virtuous habits, meditation seemingly represents a valuable way of activating inner resources to cope with adverse experiences. While unhealthy habits, stress, and traumatic early-life events may favor the onset of diseases linked to inflammation, neuroinflammation, and neuroendocrine dysregulation, the practice of mindfulness-based techniques was associated with the alleviation of many of the above symptoms, underlying the importance of lifestyles for health and well-being. Meditation influences brain and body systemwide, eliciting structural/morphological changes as well as modulating the levels of circulating factors and the expression of genes linked to the HPA axis and the immune and neuroimmune systems. The current chapter intends to give an overview of pioneering research showing how meditation can promote health through epigenetics, by reshaping the profiles of the three main epigenetic markers, namely DNA methylation, histone modifications, and non-coding RNAs.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
3
|
Sibilia J, Berna F, Bloch JG, Scherlinger M. Mind-body practices in chronic inflammatory arthritis. Joint Bone Spine 2024; 91:105645. [PMID: 37769800 DOI: 10.1016/j.jbspin.2023.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 10/03/2023]
Abstract
Mind-body practices are complementary approaches recognized by the World Health Organization (WHO). While these practices are very diverse, they all focus on the interaction between mind and body. These include mindful meditation, yoga, Tai Chi, sophrology, hypnosis and various relaxation techniques. There is growing interest in incorporating these strategies in the management of chronic rheumatic diseases including rheumatoid arthritis. The aim of this review is to describe the main mind-body practices and analyze the existing evidence in chronic rheumatic diseases. In rheumatoid arthritis, the Mindfulness-Based Stress Reduction program, yoga, Tai Chi and relaxation may improve patient-reported outcomes, but the benefit on inflammation and structural progression is unclear. In spondyloarthritis, very few studies are available but similar evidence exist. Further evaluations of these practices in chronic rheumatic diseases are needed since their risk/benefit ratio appears excellent.
Collapse
Affiliation(s)
- Jean Sibilia
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; UMR INSERM 1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.
| | - Fabrice Berna
- Service de Psychiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Gérard Bloch
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marc Scherlinger
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; UMR INSERM 1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Crosswell AD, Mayer SE, Whitehurst LN, Picard M, Zebarjadian S, Epel ES. Deep rest: An integrative model of how contemplative practices combat stress and enhance the body's restorative capacity. Psychol Rev 2024; 131:247-270. [PMID: 38147050 PMCID: PMC11003855 DOI: 10.1037/rev0000453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Engaging in contemplative practice like meditation, yoga, and prayer, is beneficial for psychological and physical well-being. Recent research has identified several underlying psychological and biological pathways that explain these benefits. However, there is not yet consensus on the underlying overlapping physiological mechanisms of contemplative practice benefits. In this article, we integrate divergent scientific literatures on contemplative practice interventions, stress science, and mitochondrial biology, presenting a unified biopsychosocial model of how contemplative practices reduce stress and promote physical health. We argue that engaging in contemplative practice facilitates a restorative state termed "deep rest," largely through safety signaling, during which energetic resources are directed toward cellular optimization and away from energy-demanding stress states. Our model thus presents a framework for how contemplative practices enhance positive psychological and physiological functioning by optimizing cellular energy consumption. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Alexandra D. Crosswell
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | | | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center
- New York State Psychiatric Institute
| | | | - Elissa S. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| |
Collapse
|
5
|
Tando Y, Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad008. [PMID: 38094661 PMCID: PMC10719065 DOI: 10.1093/eep/dvad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 03/08/2024]
Abstract
Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
6
|
Marson F, Zampieri M, Verdone L, Bacalini MG, Ravaioli F, Morandi L, Chiarella SG, Vetriani V, Venditti S, Caserta M, Raffone A, Dotan Ben-Soussan T, Reale A. Quadrato Motor Training (QMT) is associated with DNA methylation changes at DNA repeats: A pilot study. PLoS One 2023; 18:e0293199. [PMID: 37878626 PMCID: PMC10599555 DOI: 10.1371/journal.pone.0293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined. Consequently, the current study investigates the effects of a specifically structured movement meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing and on the methylation level of repeated sequences. An 8-week daily QMT program was administered to healthy women aged 40-60 years and compared with a passive control group matched for gender and age. Psychological well-being was assessed within both groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ] and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-sequencing. In contrast to controls, the QMT group exhibited increased Search for Meaning, decreased Presence of Meaning and increased Positive Relations, suggesting that QMT may lessen the automatic patterns of thinking. In the QMT group, we also found site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, consistent with increased genome stability. Finally, the correlations found between changes in methylation and psychometric indices (MLQ and PWB) suggest that the observed epigenetic and psychological changes are interrelated. Collectively, the current results indicate that QMT may improve psychophysical health trajectories by influencing the DNA methylation of specific repetitive sequences.
Collapse
Affiliation(s)
- Fabio Marson
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
- Neuroimaging Laboratory, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Verdone
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Maria Giulia Bacalini
- Brain Aging Laboratory, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Dep. of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Morandi
- Dep. of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Gaetano Chiarella
- Institute of Sciences and Technologies of Cognition (ISTC), National Council of Research (CNR), Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Valerio Vetriani
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Micaela Caserta
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Dasanayaka NN, Sirisena ND, Samaranayake N. Associations of meditation with telomere dynamics: a case-control study in healthy adults. Front Psychol 2023; 14:1222863. [PMID: 37519381 PMCID: PMC10380951 DOI: 10.3389/fpsyg.2023.1222863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Telomeres are protective end caps of chromosomes which naturally shorten with each cell division and thus with age. Short telomeres have been associated with many age-related diseases. Meditation has come to the fore as a mind-body practice which could influence the telomere dynamics underlying these phenomena. We previously reported meditation to be associated with higher telomerase levels, mindfulness and quality of life. Here, reporting on the same study population, we describe associations between long-term meditation and telomere length (TL), expression of hTERT and hTR genes and methylation of the promoter region of hTERT gene. Methods Thirty healthy meditators and matched non-meditators were recruited. TL was measured using quantitative PCR, gene expression was assessed using reverse transcriptase PCR, and methylation level was quantified by bisulfite-specific PCR followed by Sanger sequencing. Comparisons between meditators and controls were carried out using t-tests, while Pearson correlation was used to identify correlations, and regression was used to identify predictors. Results Males comprised 63.4% of each group with an average age of 43 years. On average, they had meditated daily for 5.82 h (±3.45) for 6.8 years (±3.27). Meditators had longer relative TLs (p = 0.020), and TL decreased with age (p < 0.001) but was not associated with other socio-demographic variables. Regression analysis showed that age (p < 0.001) and duration of meditation (p = 0.003) significantly predicted TL. The meditators showed higher relative expression of hTERT (p = 0.020) and hTR (p = 0.029) genes while the methylation level of the promoter region of hTERT gene was significantly lower when compared to non-meditators (p < 0.001). Negative correlations were identified between the methylation level of the promoter region of hTERT gene and the expression of the hTERT gene (p = 0.001) and duration of meditation (p = 0.001). Conclusion The findings suggest that meditation as a lifestyle practice has multi-level beneficial effects on telomere dynamics with potential to promote healthy aging.
Collapse
Affiliation(s)
- Nirodhi Namika Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nirmala Dushyanthi Sirisena
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
8
|
Galkin F, Kovalchuk O, Koldasbayeva D, Zhavoronkov A, Bischof E. Stress, diet, exercise: Common environmental factors and their impact on epigenetic age. Ageing Res Rev 2023; 88:101956. [PMID: 37211319 DOI: 10.1016/j.arr.2023.101956] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Epigenetic aging clocks have gained significant attention as a tool for predicting age-related health conditions in clinical and research settings. They have enabled geroscientists to study the underlying mechanisms of aging and assess the effectiveness of anti-aging therapies, including diet, exercise and environmental exposures. This review explores the effects of modifiable lifestyle factors' on the global DNA methylation landscape, as seen by aging clocks. We also discuss the underlying mechanisms through which these factors contribute to biological aging and provide comments on what these findings mean for people willing to build an evidence-based pro-longevity lifestyle.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Canada
| | | | - Alex Zhavoronkov
- Deep Longevity, Hong Kong; Insilico Medicine, Hong Kong; Buck Institute for Research on Aging, Novato, CA, USA
| | - Evelyne Bischof
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Shanghai University of Medicine and Health Sciences, Shanghai, China; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via S. Pansini, 580131, Naples, Italy
| |
Collapse
|
9
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | | | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
10
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 PMCID: PMC10188329 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
11
|
Househam AM. Effects of stress and mindfulness on epigenetics. VITAMINS AND HORMONES 2023; 122:283-306. [PMID: 36863798 DOI: 10.1016/bs.vh.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Epigenetics are heritable changes in the rate of gene expression without any modification of the DNA sequence and occur in response to environmental changes. Tangible changes to the external surroundings may be practical causes for epigenetic modifications, playing a potential evolutionary role. While fight, flight, or freeze responses once served a concrete role in survival, modern humans may not face similar existential threats that warrant psychological stress. Yet, chronic mental stress is predominant in modern life. This chapter elucidates the deleterious epigenetic changes that occur due to chronic stress. In an exploration of mindfulness-based interventions (MBIs) as a potential antidote to such stress-induced epigenetic modifications, several pathways of action are uncovered. The epigenetic changes that occur because of mindfulness practice are demonstrated across the hypothalamic-pituitary-adrenal axis, serotonergic transmission, genomic health and aging, and neurological biomarkers.
Collapse
Affiliation(s)
- Ayman Mukerji Househam
- Department of Social Work, New York University, New York, NY, United States; Department of Psychology, New York University, New York, NY, United States.
| |
Collapse
|
12
|
Verdone L, Caserta M, Ben-Soussan TD, Venditti S. On the road to resilience: Epigenetic effects of meditation. VITAMINS AND HORMONES 2023; 122:339-376. [PMID: 36863800 DOI: 10.1016/bs.vh.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health. At the molecular level, the effects of both stress and meditation are elicited epigenetically through a set of mechanisms that regulate gene expression as well as the circulating neuroendocrine and immune effectors. Epigenetic mechanisms constantly reshape genome activities in response to external stimuli, representing a molecular interface between organism and environment. In the present work, we aimed to review the current knowledge on the correlation between epigenetics, gene expression, stress and its possible antidote, meditation. After introducing the relationship between brain, physiology, and epigenetics, we will proceed to describe three basic epigenetic mechanisms: chromatin covalent modifications, DNA methylation and non-coding RNAs. Subsequently, we will give an overview of the physiological and molecular aspects related to stress. Finally, we will address the epigenetic effects of meditation on gene expression. The results of the studies reported in this review demonstrate that mindful practices modulate the epigenetic landscape, leading to increased resilience. Therefore, these practices can be considered valuable tools that complement pharmacological treatments when coping with pathologies related to stress.
Collapse
Affiliation(s)
- Loredana Verdone
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Tal Dotan Ben-Soussan
- Cognitive Neurophysiology Laboratory, Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
13
|
Dobewall H, Keltikangas-Järvinen L, Marttila S, Mishra PP, Saarinen A, Cloninger CR, Zwir I, Kähönen M, Hurme M, Raitakari O, Lehtimäki T, Hintsanen M. The relationship of trait-like compassion with epigenetic aging: The population-based prospective Young Finns Study. Front Psychiatry 2023; 14:1018797. [PMID: 37143783 PMCID: PMC10151573 DOI: 10.3389/fpsyt.2023.1018797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/17/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Helping others within and beyond the family has been related to living a healthy and long life. Compassion is a prosocial personality trait characterized by concern for another person who is suffering and the motivation to help. The current study examines whether epigenetic aging is a potential biological mechanism that explains the link between prosociality and longevity. Methods We used data from the Young Finns Study that follows six birth-cohorts from age 3-18 to 19-49. Trait-like compassion for others was measured with the Temperament and Character Inventory in the years 1997 and 2001. Epigenetic age acceleration and telomere length were measured with five DNA methylation (DNAm) indicators (DNAmAgeHorvath, IEAA_Hannum, EEAA_Hannum, DNAmPhenoAge, and DNAmTL) based on blood drawn in 2011. We controlled for sex, socioeconomic status in childhood and adulthood, and body-mass index. Results and discussion An association between higher compassion in 1997 and a less accelerated DNAmPhenoAge, which builds on previous work on phenotypic aging, approached statistical significance in a sex-adjusted model (n = 1,030; b = -0.34; p = 0.050). Compassion in 1997 predicted less accelerated epigenetic aging over and above the control variables (n = 843; b = -0.47; p = 0.016). There was no relationship between compassion in 2001 (n = 1108/910) and any of the other four studied epigenetic aging indicators. High compassion for others might indeed influence whether an individual's biological age is lower than their chronological age. The conducted robustness checks partially support this conclusion, yet cannot rule out that there might be a broader prosocial trait behind the findings. The observed associations are interesting but should be interpreted as weak requiring replication.
Collapse
Affiliation(s)
- Henrik Dobewall
- Faculty of Education, VISE Research Unit, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
- *Correspondence: Henrik Dobewall,
| | | | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Pashupati P. Mishra
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aino Saarinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - C. Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Computer Science, University of Granada, Granada, Spain
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mirka Hintsanen
- Faculty of Education, VISE Research Unit, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Kripalani S, Pradhan B, Gilrain KL. The potential positive epigenetic effects of various mind-body therapies (MBTs): a narrative review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:827-832. [PMID: 34463076 DOI: 10.1515/jcim-2021-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Mind-body therapies (MBTs), such as mindfulness, meditation, yoga, and tai-chi, are said to improve quality of life by contributing to positive thinking and reducing overall distress. MBTs not only play a role in reducing stress and anxiety, but they are also found to epigenetically affect genes and other areas in our genomes that are implicated in inflammation, stress, and distress. This review analyzes the role of MBTs in reducing the epigenetic changes as reported in five previously conducted controlled studies found in the NCBI PubMed database. The methylation of the tumor necrosis factor gene, implicated in psychological distress, was shown to significantly decrease for the women who performed yoga. For people who took part in mindfulness meditation, there was a significant alteration in a variety of modifications of histone deacetylase enzymes as well as their expression patterns when compared to the control group. Other studies found that long-term meditators had slower biomarkers of aging, known as epigenetic clocks, and methylation in genes associated with immune cell metabolism and inflammation. Different genomic regions known as CpG dinucleotide sites ("CpG islands") were also found to be epigenetically altered in participants of tai-chi. These controlled studies were promising evidence on the potential of MBTs to affect the epigenetics of an individual. This information will be useful in diagnostic, therapeutic, and preventative measures, and can be an addition to western medicine, in a way that is more holistic and beneficial to the individual.
Collapse
Affiliation(s)
| | - Basant Pradhan
- Neuromodulation and Integrative Psychiatry (NIP), Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Kelly L Gilrain
- Division of Behavioral Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
15
|
Zahir FR. Epigenomic impacts of meditative practices. Epigenomics 2022; 14:1593-1608. [PMID: 36891912 DOI: 10.2217/epi-2022-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Meditative practices (MPs) are an inherent lifestyle and healing practice employed in Eastern medicine and spirituality. Integrating MPs into world mainstream medicine (WMM) requires effective empirical investigation of psychophysiological impacts. Epigenomic regulation is a probable mechanism of action that is empirically assessable. Recently, WMM-styled studies have screened the epigenomic impacts of MPs with early encouraging results. This article discusses the variety of MPs extant across three major Eastern religio-spiritual-healing traditions and their integration into WMM via the lens of epigenomic modulation. MPs unanimously report positive impacts on stress-reduction pathways, known to be epigenomically sensitive. Early high-resolution assays show MPs are potent in altering the epigenome - dynamically and by inducing long-term changes. This suggests the importance of integrating MPs into WMM.
Collapse
Affiliation(s)
- Farah R Zahir
- Irfa'a Foundation, 5063 North Service Road, Burlington, ON, L7L 5H6 Canada
- Departent of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1 Canada
| |
Collapse
|
16
|
Porter N, Jason LA. Mindfulness Meditation Interventions for Long COVID: Biobehavioral Gene Expression and Neuroimmune Functioning. Neuropsychiatr Dis Treat 2022; 18:2599-2626. [PMID: 36387947 PMCID: PMC9653042 DOI: 10.2147/ndt.s379653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Some individuals infected with SARS CoV-2 have developed Post-Acute Sequelae of SARS CoV-2 infection (PASC) or what has been referred to as Long COVID. Efforts are underway to find effective treatment strategies for those with Long COVID. One possible approach involves alternative medical interventions, which have been widely used to treat and manage symptoms of a variety of medical problems including post-viral infections. Meditation has been found to reduce fatigue and unrefreshing sleep, and for those with post-viral infections, it has enhanced immunity, and reduced inflammatory-driven pathogenesis. Our article summarizes the literature on what is known about mindfulness meditation interventions, and reviews evidence on how it may apply to those with Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Evidence is reviewed suggesting effective and sustainable outcomes may be achieved for symptomatology and underlying pathology of post-viral fatigue (PASC and ME/CFS).
Collapse
Affiliation(s)
- Nicole Porter
- Center for Community Research, DePaul University, Chicago, IL, USA
| | - Leonard A Jason
- Center for Community Research, DePaul University, Chicago, IL, USA
| |
Collapse
|
17
|
Sung MK, Koh E, Kang Y, Lee JH, Park JY, Kim JY, Shin SY, Kim YH, Setou N, Lee US, Yang HJ. Three months-longitudinal changes in relative telomere length, blood chemistries, and self-report questionnaires in meditation practitioners compared to novice individuals during midlife. Medicine (Baltimore) 2022; 101:e30930. [PMID: 36254044 PMCID: PMC9575785 DOI: 10.1097/md.0000000000030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Aging accelerates during midlife. Researches have shown the health benefits of mind-body intervention (MBI). However, whether MBI is involved with aging process has not been well understood. In this study, we approach to examine the relations of MBI with this process by investigating an aging marker of the peripheral blood, blood chemistry, and self-report questionnaires. A quasi-experimental design was applied. Experienced MBI practitioners participated in a 3-month intensive meditation training, while the age, gender-matched MBI-naïve controls led a normal daily life. Measurements were taken at before and after the 3 months for relative telomere length (RTL), blood chemistry, and self-report questionnaires including items about sleep quality, somatic symptoms, depression, anxiety, stress, emotional intelligence (EI), and self-regulation. For RTL, the repeated measures analysis of variance showed a significant group*time interaction (P = .013) with a significant post hoc result (P = .030) within the control group: RTL was significantly reduced in the control while it was maintained in the meditation group. In repeated measures analysis of variance for blood chemistries, there were significant group differences between the groups in glucose and total protein. In the post hoc comparison analysis, at post measurements, the meditation group exhibited significantly lower values than the control group in both glucose and total protein. There were significant group-wise differences in the correlations of RTL with triglyceride (TG), high-density lipoprotein (HDL), glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. Any of self-report results did not show significant changes in group*time interaction. However, there were group differences with significant (P < .05) or a tendency (.05 < P < .1) level. There were significant improvements in depression, stress and EI as well as tendencies of improvement in sleep quality and anxiety, in the meditation group compared to the control group. Our results suggest that meditation practice may have a potential to modify aging process in molecular cellular level combined with changes in psychological dimension.
Collapse
Affiliation(s)
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore
| | | | - Jin-Hee Lee
- Department of Integrative Health Care, University of Brain Education, Cheonan, Korea
| | - Ji-Yeon Park
- Department of Integrative Health Care, University of Brain Education, Cheonan, Korea
| | - Ji Young Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So-Young Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Hee Kim
- Department of Clinical Nursing, University of Ulsan, Seoul, Korea
| | - Noriko Setou
- Department of Disaster Psychiatry, Fukushima Medical University, Fukushima, Japan
| | - Ul Soon Lee
- Department of Brain Education Convergence, Global Cyber University, Seoul, Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, Korea
- Department of Integrative Health Care, University of Brain Education, Cheonan, Korea
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Korea
- *Correspondence: Hyun-Jeong Yang, Korea Institute of Brain Science, Seoul 06022, Korea (e-mail: )
| |
Collapse
|
18
|
Gu YQ, Zhu Y. Underlying mechanisms of mindfulness meditation: Genomics, circuits, and networks. World J Psychiatry 2022; 12:1141-1149. [PMID: 36186506 PMCID: PMC9521538 DOI: 10.5498/wjp.v12.i9.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding neuropsychological mechanisms of mindfulness meditation (MM) has been a hot topic in recent years. This review was conducted with the goal of synthesizing empirical relationships via the genomics, circuits and networks between MM and mental disorders. We describe progress made in assessing the effects of MM on gene expression in immune cells, with particular focus on stress-related inflammatory markers and associated biological pathways. We then focus on key brain circuits associated with mindfulness practices and effects on symptoms of mental disorders, and expand our discussion to identify three key brain networks associated with mindfulness practices including default mode network, central executive network, and salience network. More research efforts need to be devoted into identifying underlying neuropsychological mechanisms of MM on how it alleviates the symptoms of mental disorders.
Collapse
Affiliation(s)
- Ying-Qi Gu
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi Zhu
- School of Psychology, Hainan Medical University, Haikou 571199, Hainan Province, China
- Department of Psychology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| |
Collapse
|
19
|
Carroll JE, Bower JE, Ganz PA. Cancer-related accelerated ageing and biobehavioural modifiers: a framework for research and clinical care. Nat Rev Clin Oncol 2022; 19:173-187. [PMID: 34873313 PMCID: PMC9974153 DOI: 10.1038/s41571-021-00580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
A growing body of evidence indicates that patients with cancer who receive cytotoxic treatments (such as chemotherapy or radiotherapy) have an increased risk of accelerated physical and cognitive ageing. Furthermore, accelerated biological ageing is a suspected driving force behind many of these observed effects. In this Review, we describe the mechanisms of biological ageing and how they apply to patients with cancer. We highlight the important role of specific behavioural factors, namely stress, sleep and lifestyle-related factors such as physical activity, weight management, diet and substance use, in the accelerated ageing of patients with cancer and cancer survivors. We also present a framework of how modifiable behaviours could operate to either increase the risk of accelerated ageing, provide protection, or promote resilience at both the biological level and in terms of patient-reported outcomes.
Collapse
Affiliation(s)
- Judith E Carroll
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, CA, USA.
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Patricia A Ganz
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Health Policy & Management, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Medicine (Hematology-Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Wang Z, Hui Q, Goldberg J, Smith N, Kaseer B, Murrah N, Levantsevych OM, Shallenberger L, Diggers E, Bremner JD, Vaccarino V, Sun YV. Association Between Posttraumatic Stress Disorder and Epigenetic Age Acceleration in a Sample of Twins. Psychosom Med 2022; 84:151-158. [PMID: 34629427 PMCID: PMC8831461 DOI: 10.1097/psy.0000000000001028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) has been related to accelerated biological aging processes, but objective evidence for this association is limited. DNA methylation (DNAm) age acceleration is a novel measure of biological aging that may help clarify if PTSD is related to biological aging processes. We aim to examine whether PTSD is associated with biological aging using a comprehensive set of DNAm age acceleration markers and to what extent the unshared environment contributes to the association. METHODS Using a cross-sectional co-twin control study design, we investigated the association of the clinical diagnosis and symptom severity of PTSD with six measurements of DNAm age acceleration based on epigenome-wide data derived from peripheral blood lymphocytes of 296 male twins from the Vietnam Era Twin Registry. RESULTS Twins with current PTSD had significantly advanced DNAm age acceleration compared with twins without PTSD for five of six measures of DNAm age acceleration. Across almost all measures of DNAm age acceleration, twins with current PTSD were "epigenetically older" than their twin brothers without PTSD: estimated differences ranged between 1.6 (95% confidence interval = 0.0-3.1) and 2.7 (95% confidence interval = 0.5-4.8) biological age year-equivalents. A higher Clinician-Administered PTSD Scale score was also associated with a higher within-pair DNAm age acceleration. Results remained consistent after adjustment for behavioral and cardiovascular risk factors. CONCLUSIONS PTSD is associated with epigenetic age acceleration, primarily through unshared environmental mechanisms as opposed to genetic or familial factors. These results suggest that PTSD is related to systemic processes relevant to biological aging.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Jack Goldberg
- Vietnam Era Twin Registry, Seattle Epidemiologic Research and Information Center, US Department of Veterans Affairs, Seattle, WA
| | - Nicholas Smith
- Vietnam Era Twin Registry, Seattle Epidemiologic Research and Information Center, US Department of Veterans Affairs, Seattle, WA
| | - Belal Kaseer
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Nancy Murrah
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Oleksiy M. Levantsevych
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Lucy Shallenberger
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Emily Diggers
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences and Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
| | - Viola Vaccarino
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Yan V. Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
| |
Collapse
|
21
|
Lutz A, Chételat G, Collette F, Klimecki OM, Marchant NL, Gonneaud J. The protective effect of mindfulness and compassion meditation practices on ageing: Hypotheses, models and experimental implementation. Ageing Res Rev 2021; 72:101495. [PMID: 34718153 DOI: 10.1016/j.arr.2021.101495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) represents a major health and societal issue; there is no treatment to date and the pathophysiological mechanisms underlying this disease are not well understood. Yet, there is hope that AD risk factors and thus the number of AD cases can be significantly reduced by prevention measures based on lifestyle modifications as targeted by non-pharmacological preventive interventions. So far, these interventions have rarely targeted the psycho-affective risk factors related to depression, stress, anxiety, and feeling of loneliness, which are all prevalent in ageing. This paper presents the hypothesis that the regular practice of mindfulness meditation (MM) and loving-kindness and compassion meditation (LKCM) in the ageing population constitutes a lifestyle that is protective against AD. In this model, these practices can promote cognition, mental health, and well-being by strengthening attention control, metacognitive monitoring, emotion regulation and pro-social capacities. Training these capacities could reduce the risk of AD by upregulating beneficial age-related factors such as cognitive reserve, and down-regulating detrimental age-related factors, such as stress, or depression. As an illustration, we present the Medit-Ageing study (public name Silver Santé Study), an on-going European project that assesses the impact and mechanisms of non-pharmacological interventions including meditation, in the ageing population.
Collapse
|
22
|
Shields AE, Zhang Y, Argentieri MA, Warner ET, Cozier YC, Liu C, Dye CK, Kent BV, Baccarelli AA, Palmer JR. Stress and spirituality in relation to HPA axis gene methylation among US Black women: results from the Black Women's Health Study and the Study on Stress, Spirituality and Health. Epigenomics 2021; 13:1711-1734. [PMID: 34726080 PMCID: PMC8579940 DOI: 10.2217/epi-2021-0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Few epigenetics studies have been conducted within the Black community to examine the impact of diverse psychosocial stressors and resources for resiliency on the stress pathway (hypothalamus-pituitary-adrenal axis). Methods: Among 1000 participants from the Black Women's Health Study, associations between ten psychosocial stressors and DNA methylation (DNAm) of four stress-related genes (NR3C1, HSDB1, HSD11B2 and FKBP5) were tested. Whether religiosity or spirituality (R/S) significantly modified these stress-DNAm associations was also assessed. Results: Associations were found for several stressors with DNAm of individual CpG loci and average DNAm levels across each gene, but no associations remained significant after false discovery rate (FDR) correction. Several R/S variables appeared to modify the relationship between two stressors and DNAm, but no identified interaction remained significant after FDR correction. Conclusion: There is limited evidence for a strong signal between stress and DNAm of hypothalamus-pituitary-adrenal axis genes in this general population cohort of US Black women.
Collapse
Affiliation(s)
- Alexandra E Shields
- Harvard/MGH Center on Genomics, Vulnerable Populations & Health Disparities, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Yuankai Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - M Austin Argentieri
- Harvard/MGH Center on Genomics, Vulnerable Populations & Health Disparities, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- School of Anthropology & Museum Ethnography, University of Oxford, Oxford, OX2 6PE, UK
| | - Erica T Warner
- Harvard/MGH Center on Genomics, Vulnerable Populations & Health Disparities, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Clinical Translational Epidemiology Unit, Mongan Institute, Department of Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Yvette C Cozier
- Boston University School of Public Health, Boston, MA 02118, USA
- Slone Epidemiology Center, Boston University, Boston, MA 02118, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Christian K Dye
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Victor Kent
- Department of Sociology, Westmont College, Santa Barbara, CA 93108, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julie R Palmer
- Boston University School of Public Health, Boston, MA 02118, USA
- Slone Epidemiology Center, Boston University, Boston, MA 02118, USA
| |
Collapse
|
23
|
Uji T, Wada K, Yamakawa M, Koda S, Nakashima Y, Onuma S, Nagata C. Birth month and mortality in Japan: a population-based prospective cohort study. Chronobiol Int 2021; 38:1023-1031. [PMID: 33792442 DOI: 10.1080/07420528.2021.1903482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiologic studies investigating the association between birth season and risk of mortality in adulthood are limited and have yielded inconclusive results. We aimed to examine the relationship between birth month and all-cause and cause-specific mortality, after controlling for potential confounders, including lifestyle and medical factors, in a population-based cohort study in Japan. We included 28,884 subjects (13,262 men and 15,622 women) from Takayama City, aged 35 years or older without cancer, stroke, and ischemic heart disease, who were born in Japan at baseline. Participants who were enrolled in 1992 were followed up for over 16 years. Information including place of birth, lifestyles, and medical history was obtained from a baseline questionnaire. We performed a Cox proportional hazards analysis to determine the association between birth month and all-cause and cause-specific mortality after adjusting for potential confounders. During the follow-up period (mean follow-up: 14.1 years), 5,303 deaths (2,881 men and 2,422 women) were identified. After controlling for multiple covariates, it was found that being born in April or June was associated with an increased risk of all-cause mortality compared to being born in January (hazard ratio [HR] 1.138; 95% confidence interval [CI], 1.006-1.288 and HR 1.169; 95% CI, 1.028-1.329, respectively). The HRs for cardiovascular mortality were significantly higher in participants born in March and May (HR 1.285; 95% CI, 1.056-1.565 and HR 1.293; 95% CI, 1.040-1.608, respectively). Our findings indicate that an individual's birth month may be an indicator of the susceptibility to mortality in later life.
Collapse
Affiliation(s)
- Takahiro Uji
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Sachi Koda
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuma Nakashima
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Sakiko Onuma
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
24
|
Transcriptomics of Long-Term Meditation Practice: Evidence for Prevention or Reversal of Stress Effects Harmful to Health. ACTA ACUST UNITED AC 2021; 57:medicina57030218. [PMID: 33804348 PMCID: PMC8001870 DOI: 10.3390/medicina57030218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023]
Abstract
Background and Objectives: Stress can overload adaptive mechanisms, leading to epigenetic effects harmful to health. Research on the reversal of these effects is in its infancy. Early results suggest some meditation techniques have health benefits that grow with repeated practice. This study focused on possible transcriptomic effects of 38 years of twice-daily Transcendental Meditation® (TM®) practice. Materials and Methods: First, using Illumina® BeadChip microarray technology, differences in global gene expression in peripheral blood mononuclear cells (PBMCs) were sought between healthy practitioners and tightly matched controls (n = 12, age 65). Second, these microarray results were verified on a subset of genes using quantitative polymerase chain reaction (qPCR) and were validated using qPCR in larger TM and control groups (n = 45, age 63). Bioinformatics investigation employed Ingenuity® Pathway Analysis (IPA®), DAVID, Genomatix, and R packages. Results: The 200 genes and loci found to meet strict criteria for differential expression in the microarray experiment showed contrasting patterns of expression that distinguished the two groups. Differential expression relating to immune function and energy efficiency were most apparent. In the TM group, relative to the control, all 49 genes associated with inflammation were downregulated, while genes associated with antiviral and antibody components of the defense response were upregulated. The largest expression differences were shown by six genes related to erythrocyte function that appeared to reflect a condition of lower energy efficiency in the control group. Results supporting these gene expression differences were obtained with qPCR-measured expression both in the well-matched microarray groups and in the larger, less well-matched groups. Conclusions: These findings are consistent with predictions based on results from earlier randomized trials of meditation and may provide evidence for stress-related molecular mechanisms underlying reductions in anxiety, post-traumatic stress disorder (PTSD), cardiovascular disease (CVD), and other chronic disorders and diseases.
Collapse
|
25
|
Yang HJ, Koh E, Sung MK, Kang H. Changes Induced by Mind-Body Intervention Including Epigenetic Marks and Its Effects on Diabetes. Int J Mol Sci 2021; 22:ijms22031317. [PMID: 33525677 PMCID: PMC7865217 DOI: 10.3390/ijms22031317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Studies have evidenced that epigenetic marks associated with type 2 diabetes (T2D) can be inherited from parents or acquired through fetal and early-life events, as well as through lifelong environments or lifestyles, which can increase the risk of diabetes in adulthood. However, epigenetic modifications are reversible, and can be altered through proper intervention, thus mitigating the risk factors of T2D. Mind-body intervention (MBI) refers to interventions like meditation, yoga, and qigong, which deal with both physical and mental well-being. MBI not only induces psychological changes, such as alleviation of depression, anxiety, and stress, but also physiological changes like parasympathetic activation, lower cortisol secretion, reduced inflammation, and aging rate delay, which are all risk factors for T2D. Notably, MBI has been reported to reduce blood glucose in patients with T2D. Herein, based on recent findings, we review the effects of MBI on diabetes and the mechanisms involved, including epigenetic modifications.
Collapse
Affiliation(s)
- Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (M.-K.S.); (H.K.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
- Correspondence:
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Min-Kyu Sung
- Korea Institute of Brain Science, Seoul 06022, Korea; (M.-K.S.); (H.K.)
| | - Hojung Kang
- Korea Institute of Brain Science, Seoul 06022, Korea; (M.-K.S.); (H.K.)
| |
Collapse
|
26
|
Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A Systematic Review and Meta-analysis of Environmental, Lifestyle, and Health Factors Associated With DNA Methylation Age. J Gerontol A Biol Sci Med Sci 2020; 75:481-494. [PMID: 31001624 DOI: 10.1093/gerona/glz099] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (DNAm) algorithms of biological age provide a robust estimate of an individual's chronological age and can predict their risk of age-related disease and mortality. This study reviewed the evidence that environmental, lifestyle and health factors are associated with the Horvath and Hannum epigenetic clocks. A systematic search identified 61 studies. Chronological age was correlated with DNAm age in blood (median .83, range .13-.99). In a meta-analysis body mass index (BMI) was associated with increased DNAm age (Hannum β: 0.07, 95% CI 0.04 to 0.10; Horvath β: 0.06, 95% CI 0.02 to 0.10), but there was no association with smoking (Hannum β: 0.12, 95% CI -0.50 to 0.73; Horvath β:0.18, 95% CI -0.10 to 0.46). DNAm age was positively associated with frailty (three studies, n = 3,093), and education was negatively associated with the Hannum estimate of DNAm age specifically (four studies, n = 13,955). For most other exposures, findings were too inconsistent to draw conclusions. In conclusion, BMI was positively associated with biological aging measured using DNAm, with some evidence that frailty also increased aging. More research is needed to provide conclusive evidence regarding other exposures. This field of research has the potential to provide further insights into how to promote slower biological aging and ultimately prolong healthy life.
Collapse
Affiliation(s)
- Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France
| | - Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jun Loong
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peter D Fransquet
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Marais GAB, Lantheaume S, Fiault R, Shankland R. Mindfulness-Based Programs Improve Psychological Flexibility, Mental Health, Well-Being, and Time Management in Academics. Eur J Investig Health Psychol Educ 2020; 10:1035-1050. [PMID: 34542434 PMCID: PMC8314311 DOI: 10.3390/ejihpe10040073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/22/2023] Open
Abstract
(1) Background: Occupational stress is high in academia, and is partly related to time pressure. Mindfulness-based programs are known to be effective in reducing stress and increasing well-being. Recent work suggested that these programs may also improve time management. This study tested the effects of a mindfulness-based program on academics' psychological flexibility, mental health, well-being, and time management. (2) Methods: The study was conducted in a French research department. Participants were offered to join a mindfulness-based program (n = 21) or to be on a wait-list control group (n = 22). Self-reported measures of psychological flexibility, mental health (stress, anxiety, and depression symptoms), well-being, and time use were collected before and after the eight week program. (3) Results: Results showed that psychological flexibility, mental health, well-being, and efficient time use significantly increased in the intervention group compared to the control condition. (4) Conclusions: The results suggested that the mindfulness-based programs were effective in improving adaptive functioning, well-being, and optimal time use in academia, thus underlining potential useful perspectives to help academics improve mental health and time management.
Collapse
Affiliation(s)
- Gabriel A. B. Marais
- LIP/PC2S-EA 4145, Université Grenoble Alpes, 38000 Grenoble, France; (S.L.); (R.S.)
- LBBE-UMR 5558, CNRS/Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Sophie Lantheaume
- LIP/PC2S-EA 4145, Université Grenoble Alpes, 38000 Grenoble, France; (S.L.); (R.S.)
- Hôpital Privé Drôme Ardèche, 07500 Guilherand-Granges, France
| | - Robin Fiault
- Ecole des Psychologues Praticiens, 69003 Lyon, France;
| | - Rebecca Shankland
- LIP/PC2S-EA 4145, Université Grenoble Alpes, 38000 Grenoble, France; (S.L.); (R.S.)
| |
Collapse
|
28
|
Sung MK, Lee US, Ha NH, Koh E, Yang HJ. A potential association of meditation with menopausal symptoms and blood chemistry in healthy women: A pilot cross-sectional study. Medicine (Baltimore) 2020; 99:e22048. [PMID: 32899065 PMCID: PMC7478772 DOI: 10.1097/md.0000000000022048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to hormonal changes, women experience various psychophysiological alterations over a wide age range, which may result in decreased quality of life as well as in increased risks of diseases, such as cardiovascular diseases. Although studies have been performed to research complementary methods, such as meditation, the research field still requires an adequate amount of studies for public health guidelines. This pilot cross-sectional study aims to investigate a potential association of meditation with menopausal symptoms and blood chemistry for healthy women. In this study, data of 65 healthy women (age range 25-67) including 33 meditation practitioners and 32 meditation-naïve controls were analyzed to compare the Menopausal Rating Scale scores and blood chemistry with 7 more dropouts in the blood chemistry. For blood chemistry, nine components including glucose (GLU) and high-density lipoprotein cholesterol (HDL) were measured. Two-way analysis of variance was performed by dividing the total participants into 2 groups: premenopausal and postmenopausal participants. Compared to the control group, the meditation group showed a trend of reductions in the Menopausal Rating Scale total score (P = .054) and its 2 subcomponents: depressive mood (P = .064) and irritability (P = .061). In HDL level, there was a significant interaction between group and menopausal state (P = .039) with following post hoc results: among the premenopausal participants, a significant increase in the meditation group compared to the control group (P = .005); among the control group, a significant increase in the postmenopausal compared to the premenopausal participants (P = .030). In GLU level, there was a mild interaction between group and menopausal state (P = .070) with following post hoc results: among the postmenopausal participants, a trend of increase in the control group compared to the meditation group (P = .081); among the control group, a significant increase in the postmenopausal compared to the premenopausal participants (P = .040). Our research suggests a potential association of practicing meditation with alleviations in menopausal symptoms and changes in blood chemistry, warranting further studies with a longitudinal study design and larger populations to understand the underlying causal relationships.
Collapse
Affiliation(s)
| | - Ul Soon Lee
- Department of Brain Education, Global Cyber University, Cheonan
| | - Na Hyun Ha
- Department of Brain-based Emotion Coaching, Global Cyber University, Seoul, Republic of Korea
| | - Eugene Koh
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul
- Department of Integrative Health Care, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
29
|
Venditti S, Verdone L, Reale A, Vetriani V, Caserta M, Zampieri M. Molecules of Silence: Effects of Meditation on Gene Expression and Epigenetics. Front Psychol 2020; 11:1767. [PMID: 32849047 PMCID: PMC7431950 DOI: 10.3389/fpsyg.2020.01767] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Many studies have consistently demonstrated an epigenetic link between environmental stimuli and physiological as well as cognitive responses. Epigenetic mechanisms represent a way to regulate gene activity in real time without modifying the DNA sequence, thus allowing the genome to adapt its functions to changing environmental contexts. Factors such as lifestyle, behavior, and the practice of sitting and moving mindful activities have been shown to be important means of environmental enrichment. Such practices, which include mindfulness meditation, Vipassana, Yoga, Tai Chi, and Quadrato Motor Training, have been reported to positively impact well-being. In fact, they can be considered emotional and attentional regulatory activities, which, by inducing a state of greater inner silence, allow the development of increased self-awareness. Inner silence can therefore be considered a powerful tool to counteract the negative effects of overabundant environmental noise, thanks to its power to relieve stress-related symptoms. Since all these positive outcomes rely on physiological and biochemical activities, the molecular and epigenetic mechanisms influenced by different mindful practices have recently started to be investigated. Here, we review some of the findings that could allow us to uncover the mechanisms by which specific practices influence well-being.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Valerio Vetriani
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
30
|
Shen H, Chen M, Cui D. Biological mechanism study of meditation and its application in mental disorders. Gen Psychiatr 2020; 33:e100214. [PMID: 32695961 PMCID: PMC7359050 DOI: 10.1136/gpsych-2020-100214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, research on meditation as an important alternative therapy has developed rapidly and been widely applied in clinical medicine. Mechanism studies of meditation have also developed progressively, showing that meditation has great impact on brain structure and function, and epigenetic and telomere regulation. In line with this, the application of meditation has gradually been expanded to mental illness, most often applied for major depressive disorders and substance-related and addictive disorders. The focus of this paper is to illustrate the biological mechanisms of meditation and its application in mental disorders.
Collapse
Affiliation(s)
- Hui Shen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijuan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
31
|
Bushell W, Castle R, Williams MA, Brouwer KC, Tanzi RE, Chopra D, Mills PJ. Meditation and Yoga Practices as Potential Adjunctive Treatment of SARS-CoV-2 Infection and COVID-19: A Brief Overview of Key Subjects. J Altern Complement Med 2020; 26:547-556. [PMID: 32579021 DOI: 10.1089/acm.2020.0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Editor's Note: As an acute condition quickly associated with multiple chronic susceptibilities, COVID-19 has rekindled interest in, and controversy about, the potential role of the host in disease processes. While hundreds of millions of research dollars have been funneled into drug and vaccine solutions that target the external agent, integrative practitioners tuned to enhancing immunity faced a familiar mostly unfunded task. First, go to school on the virus. Then draw from the global array of natural therapies and practices with host-enhancing or anti-viral capabilities to suggest integrative treatment strategies. The near null-set of conventional treatment options propels this investigation. In this paper, researchers from the Massachusetts Institute of Technology, University of California-San Diego, Chopra Library for Integrative Studies, and Harvard University share one such exploration. Their conclusion, that "certain meditation, yoga asana (postures), and pranayama (breathing) practices may possibly be effective adjunctive means of treating and/or preventing SARS-CoV-2 infection" underscores the importance of this rekindling. At JACM, we are pleased to have the opportunity to publish this work. We hope that it might help diminish in medicine and health the polarization that, like so much in the broader culture, seems to be an obstacle to healing. -John Weeks, Editor-in-Chief, JACM.
Collapse
Affiliation(s)
- William Bushell
- Biophysical/Medical Anthropology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Chopra Library for Integrative Studies, Whole Health Institute, Bentonville, AK, USA
| | - Ryan Castle
- Chopra Library for Integrative Studies, Whole Health Institute, Bentonville, AK, USA
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kimberly C Brouwer
- Division of Global Health, Infectious Disease Epidemiology, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Harvard University, Cambridge, MA, USA
| | - Deepak Chopra
- Chopra Library for Integrative Studies, Whole Health Institute, Bentonville, AK, USA.,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Paul J Mills
- Department of Family Medicine and Public Health, Center of Excellence for Integrative Health, Institute for Public Health, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Adluru N, Korponay CH, Norton DL, Goldman RI, Davidson RJ. BrainAGE and regional volumetric analysis of a Buddhist monk: a longitudinal MRI case study. Neurocase 2020; 26:79-90. [PMID: 32100616 PMCID: PMC7150651 DOI: 10.1080/13554794.2020.1731553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
Yongey Mingyur Rinpoche (YMR) is a Tibetan Buddhist monk, and renowned meditation practitioner and teacher who has spent an extraordinary number of hours of his life meditating. The brain-aging profile of this expert meditator in comparison to a control population was examined using a machine learning framework, which estimates "brain-age" from brain imaging. YMR's brain-aging rate appeared slower than that of controls suggesting early maturation and delayed aging. At 41 years, his brain resembled that of a 33-year-old. Specific regional changes did not differentiate YMR from controls, suggesting that the brain-aging differences may arise from coordinated changes spread throughout the gray matter.
Collapse
Affiliation(s)
| | | | - Derek L Norton
- Department of Biostatistics and Medical Informatics, UW-Madison, USA
| | | | - Richard J Davidson
- Center for Healthy Minds, UW-Madison, USA
- Departments of Psychology and Psychiatry, UW-Madison, USA
| |
Collapse
|
33
|
Stoffel M, Gardini E, Ehrenthal J, Abbruzzese E, Ditzen B. Evaluation of Stress Management and Stress Prevention Using Epigenetic Markers. VERHALTENSTHERAPIE 2020. [DOI: 10.1159/000506323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
35
|
Chaix R, Fagny M, Cosin-Tomás M, Alvarez-López M, Lemee L, Regnault B, Davidson RJ, Lutz A, Kaliman P. Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways. Brain Behav Immun 2020; 84:36-44. [PMID: 31733290 PMCID: PMC7010561 DOI: 10.1016/j.bbi.2019.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
The human methylome is dynamically influenced by psychological stress. However, its responsiveness to stress management remains underexplored. Meditation practice has been shown to significantly reduce stress level, among other beneficial neurophysiological outcomes. Here, we evaluated the impact of a day of intensive meditation practice (t2-t1 = 8 h) on the methylome of peripheral blood mononuclear cells in experienced meditators (n = 17). In parallel, we assessed the influence of a day of leisure activities in the same environment on the methylome of matched control subjects with no meditation experience (n = 17). DNA methylation profiles were analyzed using the Illumina 450 K beadchip array. We fitted for each methylation site a linear model for multi-level experiments which adjusts the variation between t1 and t2 for baseline differences. No significant baseline differences in methylation profiles was detected between groups. In the meditation group, we identified 61 differentially methylated sites (DMS) after the intervention. These DMS were enriched in genes mostly associated with immune cell metabolism and ageing and in binding sites for several transcription factors involved in immune response and inflammation, among other functions. In the control group, no significant change in methylation level was observed after the day of leisure activities. These results suggest that a short meditation intervention in trained subjects may rapidly influence the epigenome at sites of potential relevance for immune function and provide a better understanding of the dynamics of the human methylome over short time windows.
Collapse
Affiliation(s)
- R Chaix
- Unité d'Eco-anthropologie (EA), Museum National d'Histoire Naturelle, CNRS, Université Paris Diderot, 75016 Paris, France.
| | - M Fagny
- Génétique Quantitative et Évolution, Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - M Cosin-Tomás
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - M Alvarez-López
- Unitat de Farmacologia, Facultat de Farmàcia, Institut de Biomedicina, Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes, Barcelone, Spain
| | - L Lemee
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Plateforme Biomics, Institut Pasteur, Paris, France
| | - B Regnault
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Biology of Infection Unit, Inserm U1117. Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - R J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, USA
| | - A Lutz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - P Kaliman
- Center for Healthy Minds, University of Wisconsin-Madison, USA; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
36
|
Stoffel M, Gardini E, Ehrenthal J, Abbruzzese E, Ditzen B. Evaluation von Stressprävention und Stressbewältigung mittels epigenetischer Marker. VERHALTENSTHERAPIE 2020. [DOI: 10.1159/000505595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Carskadon MA, Chappell KR, Barker DH, Hart AC, Dwyer K, Gredvig-Ardito C, Starr C, McGeary JE. A pilot prospective study of sleep patterns and DNA methylation-characterized epigenetic aging in young adults. BMC Res Notes 2019; 12:583. [PMID: 31526398 PMCID: PMC6747743 DOI: 10.1186/s13104-019-4633-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Molecular markers in DNA methylation at a subset of CpG sites are affected by the environment and contribute to biological (epigenetic) age. We hypothesized that shorter sleep duration and possibly irregular sleep would be associated with accelerated epigenetic aging. We examined epigenetic vs. chronological age in 12 young women selected as shorter or longer sleepers studied prospectively across the first 9 weeks of college using a daily online sleep log. Genomic DNA was isolated from two blood samples spanning the interval, and DNA methylation levels were determined and used to measure epigenetic age. RESULTS Epigenetic vs. chronological age differences averaged 2.07 at Time 1 and 1.21 at Time 2. Sleep duration was computed as average daily total sleep time and sleep regularity was indexed using the Sleep Regularity Index. Participants with longer and more regular sleep showed reduced age difference: mean = - 2.48 [95% CI - 6.11; 1.15]; those with shorter and more irregular sleep showed an increased age difference: 3.03 [0.02; 6.03]; and those with either shorter or more irregular sleep averaged no significant change: - 0.49 [- 3.55; 2.56]. These pilot data suggest that short and irregular sleep, even in a young healthy sample, may be associated with accelerated epigenetic aging.
Collapse
Affiliation(s)
- Mary A Carskadon
- EP Bradley Hospital Sleep Research Laboratory, 300 Duncan Drive, Providence, RI, 02906, USA. .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-A1, Providence, RI, 02912, USA.
| | - Kenneth R Chappell
- Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| | - David H Barker
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-A1, Providence, RI, 02912, USA.,Bradley Hasbro Children's Research Center, CoroWest, 1 Hoppin Street, Suite 204, Providence, RI, 20903, USA
| | - Anne C Hart
- Department of Neuroscience and Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Kayla Dwyer
- Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| | | | - Caitlyn Starr
- Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| | - John E McGeary
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-A1, Providence, RI, 02912, USA.,Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| |
Collapse
|
38
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
39
|
Exploring Epigenetic Age in Response to Intensive Relaxing Training: A Pilot Study to Slow Down Biological Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173074. [PMID: 31450859 PMCID: PMC6747190 DOI: 10.3390/ijerph16173074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
DNA methylation (DNAm) is an emerging estimator of biological aging, i.e., the often-defined "epigenetic clock", with a unique accuracy for chronological age estimation (DNAmAge). In this pilot longitudinal study, we examine the hypothesis that intensive relaxing training of 60 days in patients after myocardial infarction and in healthy subjects may influence leucocyte DNAmAge by turning back the epigenetic clock. Moreover, we compare DNAmAge with another mechanism of biological age, leucocyte telomere length (LTL) and telomerase. DNAmAge is reduced after training in healthy subjects (p = 0.053), but not in patients. LTL is preserved after intervention in healthy subjects, while it continues to decrease in patients (p = 0.051). The conventional negative correlation between LTL and chronological age becomes positive after training in both patients (p < 0.01) and healthy subjects (p < 0.05). In our subjects, DNAmAge is not associated with LTL. Our findings would suggest that intensive relaxing practices influence different aging molecular mechanisms, i.e., DNAmAge and LTL, with a rejuvenating effect. Our study reveals that DNAmAge may represent an accurate tool to measure the effectiveness of lifestyle-based interventions in the prevention of age-related diseases.
Collapse
|
40
|
Epigenetics and meditation. Curr Opin Psychol 2019; 28:76-80. [DOI: 10.1016/j.copsyc.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
41
|
Brandmeyer T, Delorme A, Wahbeh H. The neuroscience of meditation: classification, phenomenology, correlates, and mechanisms. PROGRESS IN BRAIN RESEARCH 2019; 244:1-29. [PMID: 30732832 DOI: 10.1016/bs.pbr.2018.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rising from its contemplative and spiritual traditions, the science of meditation has seen huge growth over the last 30 years. This chapter reviews the classifications, phenomenology, neural correlates, and mechanisms of meditation. Meditation classification types are still varied and largely subjective. Broader models to describe meditation practice along multidimensional parameters may improve classification in the future. Phenomenological studies are few but growing, highlighting the subjective experience and correlations to neurophysiology. Oscillatory EEG studies are not conclusive likely due to the heterogeneous nature of the meditation styles and practitioners being assessed. Neuroimaging studies find common patterns during meditation and in long-term meditators reflecting the basic similarities of meditation in general; however, mostly the patterns differ across unique meditation traditions. Research on the mechanisms of meditation, specifically attention and emotion regulation is also discussed. There is a growing body of evidence demonstrating positive benefits from meditation in some clinical populations especially for stress reduction, anxiety, depression, and pain improvement, although future research would benefit by addressing the remaining methodological and conceptual issues. Meditation research continues to grow allowing us to understand greater nuances of how meditation works and its effects.
Collapse
Affiliation(s)
- Tracy Brandmeyer
- Osher Center for Integrative Medicine, School of Medicine, University of California, San Francisco, CA, United States; Centre de Recherche Cerveau et Cognition (CerCo), Université Paul Sabatier, Toulouse, France; CNRS, UMR 5549, Toulouse, France.
| | - Arnaud Delorme
- Centre de Recherche Cerveau et Cognition (CerCo), Université Paul Sabatier, Toulouse, France; CNRS, UMR 5549, Toulouse, France; Institute of Noetic Sciences (IONS), Petaluma, CA, United States; Swartz Center for Computational Neuroscience, Institute of Neural Computation (INC), University of California, San Diego, CA, United States
| | - Helané Wahbeh
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States; Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
42
|
Achtsamkeit in den Grundschulen einer ganzen Stadt fördern – ein NRW-Landesmodellprojekt. GIO-GRUPPE-INTERAKTION-ORGANISATION-ZEITSCHRIFT FUER ANGEWANDTE ORGANISATIONSPSYCHOLOGIE 2018. [DOI: 10.1007/s11612-018-0417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
43
|
Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 2018; 174:18-29. [PMID: 29337038 DOI: 10.1016/j.mad.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is the most important risk factor for major human lifestyle diseases, including cancer, neurological and cardiometabolic disorders. Due to the complex interplay between genetics, lifestyle and environmental factors, some individuals seem to age faster than others, whereas centenarians seem to have a slower aging process. Therefore, a biochemical biomarker reflecting the relative biological age would be helpful to predict an individual's health status and aging disease risk. Although it is already known for years that cumulative epigenetic changes occur upon aging, DNA methylation patterns were only recently used to construct an epigenetic clock predictor for biological age, which is a measure of how well your body functions compared to your chronological age. Moreover, the epigenetic DNA methylation clock signature is increasingly applied as a biomarker to estimate aging disease susceptibility and mortality risk. Finally, the epigenetic clock signature could be used as a lifestyle management tool to monitor healthy aging, to evaluate preventive interventions against chronic aging disorders and to extend healthy lifespan. Dissecting the mechanism of the epigenetic aging clock will yield valuable insights into the aging process and how it can be manipulated to improve health span.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium.
| |
Collapse
|