1
|
Paul A, Chumbale SS, Lakra A, Kumar V, Alhat DS, Singh S. Insights into Leishmania donovani potassium channel family and their biological functions. 3 Biotech 2023; 13:266. [PMID: 37425093 PMCID: PMC10326225 DOI: 10.1007/s13205-023-03692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Leishmania donovani is the causative organism for visceral leishmaniasis. Although this parasite was discovered over a century ago, nothing is known about role of potassium channels in L. donovani. Potassium channels are known for their crucial roles in cellular functions in other organisms. Recently the presence of a calcium-activated potassium channel in L. donovani was reported which prompted us to look for other proteins which could be potassium channels and to investigate their possible physiological roles. Twenty sequences were identified in L. donovani genome and subjected to estimation of physio-chemical properties, motif analysis, localization prediction and transmembrane domain analysis. Structural predictions were also done. The channels were majorly α-helical and predominantly localized in cell membrane and lysosomes. The signature selectivity filter of potassium channel was present in all the sequences. In addition to the conventional potassium channel activity, they were associated with gene ontology terms for mitotic cell cycle, cell death, modulation by virus of host process, cell motility etc. The entire study indicates the presence of potassium channel families in L. donovani which may have involvement in several cellular pathways. Further investigations on these putative potassium channels are needed to elucidate their roles in Leishmania. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03692-y.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Shubham Sunil Chumbale
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Anjana Lakra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Vijay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Dhanashri Sudam Alhat
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
2
|
Colasante C, Zheng F, Kemp C, Voncken F. A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in Trypanosoma brucei. Mol Biochem Parasitol 2018; 221:36-51. [PMID: 29581011 DOI: 10.1016/j.molbiopara.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
The procyclic form of the human parasite Trypanosoma brucei harbors one single, large mitochondrion containing all tricarboxylic acid (TCA) cycle enzymes and respiratory chain complexes present also in higher eukaryotes. Metabolite exchange among subcellular compartments such as the cytoplasm, the mitochondrion, and the peroxisomes is crucial for redox homeostasis and for metabolic pathways whose enzymes are dispersed among different organelles. In higher eukaryotes, mitochondrial carrier family (MCF) proteins transport TCA-cycle intermediates across the inner mitochondrial membrane. Previously, we identified several MCF members that are essential for T. brucei survival. Among these, only one MCF protein, TbMCP12, potentially could transport dicarboxylates and tricarboxylates. Here, we conducted phylogenetic and sequence analyses and functionally characterised TbMCP12 in vivo. Our results suggested that similarly to its homologues in plants, TbMCP12 transports both dicarboxylates and tricarboxylates across the mitochondrial inner membrane. Deleting this carrier in T. brucei was not lethal, while its overexpression was deleterious. Our results suggest that the intracellular abundance of TbMCP12 is an important regulatory element for the NADPH balance and mitochondrial ATP-production.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, Fu Zhou, Fujian, PR China
| | - Cordula Kemp
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| |
Collapse
|
3
|
Gualdrón-López M, Brennand A, Hannaert V, Quiñones W, Cáceres AJ, Bringaud F, Concepción JL, Michels PAM. When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 2011; 42:1-20. [PMID: 22142562 DOI: 10.1016/j.ijpara.2011.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
A characteristic, well-studied feature of the pathogenic protists belonging to the family Trypanosomatidae is the compartmentalisation of the major part of the glycolytic pathway in peroxisome-like organelles, hence designated glycosomes. Such organelles containing glycolytic enzymes appear to be present in all members of the Kinetoplastea studied, and have recently also been detected in a representative of the Diplonemida, but they are absent from the Euglenida. Glycosomes therefore probably originated in a free-living, common ancestor of the Kinetoplastea and Diplonemida. The initial sequestering of glycolytic enzymes inside peroxisomes may have been the result of a minor mistargeting of proteins, as generally observed in eukaryotic cells, followed by preservation and its further expansion due to the selective advantage of this specific form of metabolic compartmentalisation. This selective advantage may have been a largely increased metabolic flexibility, allowing the organisms to adapt more readily and efficiently to different environmental conditions. Further evolution of glycosomes involved, in different taxonomic lineages, the acquisition of additional enzymes and pathways - often participating in core metabolic processes - as well as the loss of others. The acquisitions may have been promoted by the sharing of cofactors and crucial metabolites between different pathways, thus coupling different redox processes and catabolic and anabolic pathways within the organelle. A notable loss from the Trypanosomatidae concerned a major part of the typical peroxisomal H(2)O(2)-linked metabolism. We propose that the compartmentalisation of major parts of the enzyme repertoire involved in energy, carbohydrate and lipid metabolism has contributed to the multiple development of parasitism, and its elaboration to complicated life cycles involving consecutive different hosts, in the protists of the Kinetoplastea clade.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, Postal Box B1.74.01, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Týč J, Long S, Jirků M, Lukeš J. YCF45 protein, usually associated with plastids, is targeted into the mitochondrion of Trypanosoma brucei. Mol Biochem Parasitol 2010; 173:43-7. [DOI: 10.1016/j.molbiopara.2010.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
5
|
Biswas S, Haque R, Bhuyan NR, Bera T. Participation of chlorobiumquinone in the transplasma membrane electron transport system of Leishmania donovani promastigote: Effect of near-ultraviolet light on the redox reaction of plasma membrane. Biochim Biophys Acta Gen Subj 2008; 1780:116-27. [DOI: 10.1016/j.bbagen.2007.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/08/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
|
6
|
Opperdoes FR, Michels PAM. Horizontal gene transfer in trypanosomatids. Trends Parasitol 2007; 23:470-6. [PMID: 17826337 DOI: 10.1016/j.pt.2007.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 06/27/2007] [Accepted: 08/23/2007] [Indexed: 11/21/2022]
Abstract
Trypanosomes harbour a large number of structural and biochemical peculiarities. Kinetoplast DNA, mitochondrial RNA editing, the sequestration of glycolysis inside glycosomes and unique oxidative-stress protection mechanisms (to name but a few) are found only in the members of the order Kinetoplastida. Thus, it is not surprising that they have provoked much speculation about why and how such oddities have evolved in trypanosomes. However, the true reasons for their existence within the eukaryotic world are still far from clear. Here, Fred Opperdoes and Paul Michels argue that the trypanosome-specific evolution of novel processes and organization could only have been made possible by the acquisition of a large number of foreign genes, which entered a trypanosomatid ancestor through lateral gene transfer. Many different organisms must have served as donors. Some of them were viruses, and others were bacteria, such as cyanobacterial endosymbionts and non-phototrophic bacteria.
Collapse
Affiliation(s)
- Fred R Opperdoes
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74-75, B-1200 Brussels, Belgium.
| | | |
Collapse
|
7
|
Buschmann H, Sanchez-Pulido L, Andrade-Navarro MA, Lloyd CW. Homologues of Arabidopsis Microtubule-Associated AIR9 in Trypanosomatid Parasites: Hints on Evolution and Function. PLANT SIGNALING & BEHAVIOR 2007; 2:296-9. [PMID: 19704687 PMCID: PMC2634156 DOI: 10.4161/psb.2.4.4041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/20/2007] [Indexed: 05/23/2023]
Abstract
AIR9 is an essential microtubule-associated protein from Arabidopsis. Sequence similarity searches indicate homologues of AIR9 in land plants and in excavate protists, including trypanosomatid parasites and Trichomonas. The AIR9-like protein from Trypanosoma brucei was recently detected in the proteome of the trypanosome flagellum, raising the possibility that trypanosomatid AIR9-like proteins also associate with microtubules. Because microtubule functions are essential to the viability of trypanosomatid parasites AIR9-like proteins may be exploited as drug targets without homology in humans. We further discuss the unexpected phylogeny of AIR9-like proteins from plants and protozoans.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology; John Innes Centre; Norwich UK
| | | | | | - Clive W Lloyd
- Department of Cell and Developmental Biology; John Innes Centre; Norwich UK
| |
Collapse
|
8
|
Lee SH, Stephens JL, Englund PT. A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 2007; 5:287-97. [PMID: 17363967 DOI: 10.1038/nrmicro1617] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most cells use either a type I or type II synthase to make fatty acids. Trypanosoma brucei, the sleeping sickness parasite, provides the first example of a third mechanism for this process. Trypanosomes use microsomal elongases to synthesize fatty acids de novo, whereas other cells use elongases to make long-chain fatty acids even longer. The modular nature of the pathway allows synthesis of different fatty-acid end products, which have important roles in trypanosome biology. Indeed, this newly discovered mechanism seems ideally suited for the parasitic lifestyle.
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
9
|
Passardi F, Bakalovic N, Teixeira FK, Margis-Pinheiro M, Penel C, Dunand C. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 2007; 89:567-79. [PMID: 17355904 DOI: 10.1016/j.ygeno.2007.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 01/12/2007] [Accepted: 01/18/2007] [Indexed: 11/15/2022]
Abstract
Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. Class II peroxidases are involved in lignin biodegradation and are found only in the Homobasidiomycetes. In fact class II peroxidases were identified in only three orders, although degenerate forms were found in different Pezizomycota orders. Class III peroxidases are specific for higher plants, and their evolution is thought to be related to the emergence of the land plants. We have found, however, that class III peroxidases are present in some green algae, which predate land colonization. The presence of peroxidases in all major phyla (except vertebrates) makes them powerful marker genes for understanding the early evolutionary events that led to the appearance of the ancestors of each eukaryotic group.
Collapse
Affiliation(s)
- Filippo Passardi
- Laboratory of Plant Physiology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Maldonado RA, Kuniyoshi RK, Linss JG, Almeida IC. Trypanosoma cruzi oleate desaturase: molecular characterization and comparative analysis in other trypanosomatids. J Parasitol 2006; 92:1064-74. [PMID: 17152952 DOI: 10.1645/ge-845r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.
Collapse
Affiliation(s)
- Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, USA.
| | | | | | | |
Collapse
|
11
|
Gómez-García M, Losada M, Serrano A. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes. Biochem J 2006; 395:211-21. [PMID: 16313235 PMCID: PMC1409696 DOI: 10.1042/bj20051657] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two sPPases (soluble inorganic pyrophosphatases, EC 3.6.1.1) have been isolated from the microalga Chlamydomonas reinhardtii. Both are monomeric proteins of organellar localization, the chloroplastic sPPase I [Cr (Ch. reinhardtii)-sPPase I, 30 kDa] is a major isoform and slightly larger protein than the mitochondrial sPPase II (Cr-sPPase II, 24 kDa). They are members of sPPase family I and are encoded by two different cDNAs, as demonstrated by peptide mass fingerprint analysis. Molecular phylogenetic analyses indicated that Cr-sPPase I is closely related to other eukaryotic sPPases, whereas Cr-sPPase II resembles its prokaryotic counterparts. Chloroplastic sPPase I may have replaced a cyanobacterial ancestor very early during plastid evolution. Cr-sPPase II orthologues are found in members of the green photosynthetic lineage, but not in animals or fungi. These two sPPases from photosynthetic eukaryotes are novel monomeric family I sPPases with different molecular phylogenies and cellular localizations.
Collapse
Affiliation(s)
- María R. Gómez-García
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
- To whom correspondence should be addressed (email or )
| | - Manuel Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
- To whom correspondence should be addressed (email or )
| |
Collapse
|
12
|
Tripodi KEJ, Buttigliero LV, Altabe SG, Uttaro AD. Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J 2006; 273:271-80. [PMID: 16403015 DOI: 10.1111/j.1742-4658.2005.05049.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A survey of the three kinetoplastid genome projects revealed the presence of three putative front-end desaturase genes in Leishmania major, one in Trypanosoma brucei and two highly identical ones (98%) in T. cruzi. The encoded gene products were tentatively annotated as Delta8, Delta5 and Delta6 desaturases for L. major, and Delta6 desaturase for both trypanosomes. After phylogenetic and structural analysis of the deduced proteins, we predicted that the putative Delta6 desaturases could have Delta4 desaturase activity, based mainly on the conserved HX(3)HH motif for the second histidine box, when compared with Delta4 desaturases from Thraustochytrium, Euglena gracilis and the microalga, Pavlova lutheri, which are more than 30% identical to the trypanosomatid enzymes. After cloning and expression in Saccharomyces cerevisiae, it was possible to functionally characterize each of the front-end desaturases present in L. major and T. brucei. Our prediction about the presence of Delta4 desaturase activity in the three kinetoplastids was corroborated. In the same way, Delta5 desaturase activity was confirmed to be present in L. major. Interestingly, the putative Delta8 desaturase turned out to be a functional Delta6 desaturase, being 35% and 31% identical to Rhizopus oryzae and Pythium irregulareDelta6 desaturases, respectively. Our results indicate that no conclusive predictions can be made about the function of this class of enzymes merely on the basis of sequence homology. Moreover, they indicate that a complete pathway for very-long-chain polyunsaturated fatty acid biosynthesis is functional in L. major using Delta6, Delta5 and Delta4 desaturases. In trypanosomes, only Delta4 desaturases are present. The putative algal origin of the pathway in kinetoplastids is discussed.
Collapse
Affiliation(s)
- Karina E J Tripodi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | | | | | | |
Collapse
|
13
|
Klaus SMJ, Kunji ERS, Bozzo GG, Noiriel A, de la Garza RD, Basset GJC, Ravanel S, Rébeillé F, Gregory JF, Hanson AD. Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids. J Biol Chem 2005; 280:38457-63. [PMID: 16162503 DOI: 10.1074/jbc.m507432200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacterial and plant genomes encode proteins with some similarity to the folate and biopterin transporters of the trypanosomatid parasite Leishmania. The Synechocystis slr0642 gene product and its closest Arabidopsis homolog, the At2g32040 gene product, are representative examples. Both have 12 probable transmembrane domains, and the At2g32040 protein has a predicted chloroplast transit peptide. When expressed in Escherichia coli pabA pabB or folE, mutants, which are unable to produce or take up folates, the slr0642 protein and a modified At2g32040 protein (truncated and fused to the N terminus of slr0642) enabled growth on 5-formyltetrahydrofolate or folic acid but not on 5-formyltetrahydrofolate triglutamate, demonstrating that both proteins mediate folate monoglutamate transport. Both proteins also mediate transport of the antifolate analogs methotrexate and aminopterin, as evidenced by their ability to greatly increase the sensitivity of E. coli to these inhibitors. The full-length At2g32040 polypeptide was translocated into isolated pea chloroplasts and, when fused to green fluorescent protein, directed the passenger protein to the envelope of Arabidopsis chloroplasts in transient expression experiments. At2g32040 transcripts were present at similar levels in roots and aerial organs, indicating that the protein occurs in non-green plastids as well as chloroplasts. Insertional inactivation of At2g32040 significantly raised the total folate content of chloroplasts and lowered the proportion of 5-methyltetrahydrofolate but did not discernibly affect growth. These findings establish conservation of function among folate and biopterin transporter family proteins from three kingdoms of life.
Collapse
Affiliation(s)
- Sebastian M J Klaus
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Allen J, Ginger M, Ferguson S. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochem J 2005; 383:537-42. [PMID: 15500440 PMCID: PMC1133747 DOI: 10.1042/bj20040832] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system.
Collapse
Affiliation(s)
- James W. A. Allen
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email or )
| | - Michael L. Ginger
- †Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
- To whom correspondence should be addressed (email or )
| | - Stuart J. Ferguson
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
15
|
Guerreiro LTA, Souza SS, Wagner G, De Souza EA, Mendes PN, Campos LM, Barros L, Pires PF, Campos MLM, Grisard EC, Dávila AMR. Exploring the Genome of Trypanosoma vivax through GSS and In Silico Comparative Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:116-28. [PMID: 15805782 DOI: 10.1089/omi.2005.9.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A survey of the Trypanosoma vivax genome was carried out by the genome sequence survey (GSS) approach resulting in 1,086 genomic sequences. A total of 455 high-quality GSS sequences were generated, consisting of 331 non-redundant sequences distributed in 264 singlets and 67 clusters in a total of 135.5 Kb of the T. vivax genome. The estimation of the overall G+C content, and the prediction of the presence of ORFs and putative genes were carried out using the Glimmer and Jemboss packages. Analysis of the obtained sequences was carried out by BLAST programs against 12 different databases and also using the Conserved Domain Database, InterProScan, and tRNAscan-SE. Along with the existing 23 T. vivax entries in the GenBank, the 32 putative genes predicted and the 331 non-redundant GSS sequences reported herein represent new potential markers for the development of PCRbased assays for specific diagnosis and typing of Trypanosoma vivax.
Collapse
Affiliation(s)
- Luana Tatiana A Guerreiro
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
17
|
Abstract
Peroxisomes are membrane-bounded organelles that compartmentalize a variety of metabolic functions. Perhaps the most divergent peroxisomes known are the glycosomes of trypanosomes and their relatives. The glycolytic pathway of these organisms resides within the glycosome. The development of robust molecular genetic and proteomic approaches coupled with the completion of the genome sequence of the pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major provides an opportunity to determine the complement of proteins within the glycosome and the function of compartmentation. Studies now suggest that regulation of glycolysis is a strong driving force for maintenance of the glycosome.
Collapse
Affiliation(s)
- Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake, Seattle, WA, 98109 USA.
| |
Collapse
|
18
|
Abstract
Some molecular phylogenies of plastid-like genes suggest that chloroplasts (the structures responsible for photosynthesis in plants and algae) might have been secondarily lost in trypanosomatid parasites. Chloroplasts are present in some euglenids, which are closely related to trypanosomatids, and it has been argued that chloroplasts arose early in the diversification of the lineage Euglenozoa, to which trypanosomatids and euglenids belong (plastids-early hypothesis). This article reviews how euglenid ultrastructural systems are functionally integrated and phylogenetically correlated. I argue that chloroplast acquisition profoundly altered the structure of certain euglenids, and that the complete absence of these modifications in other euglenozoans is most consistent with their never having had a chloroplast. Ultrastructural evidence suggests that chloroplasts arose relatively recently within a specific subgroup of euglenids and that trypanosomatids are not secondarily non-photosynthetic (plastids-recent hypothesis).
Collapse
Affiliation(s)
- Brian S Leander
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|