1
|
Shrestha H, McCulloch K, Chisholm RH, Armoo SK, Veriegh F, Sirwani N, Crawford KE, Osei-Atweneboana MY, Grant WN, Hedtke SM. Synthesizing environmental, epidemiological and vector and parasite genetic data to assist decision making for disease elimination. Mol Ecol 2024; 33:e17357. [PMID: 38683054 DOI: 10.1111/mec.17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
We present a framework for identifying when conditions are favourable for transmission of vector-borne diseases between communities by incorporating predicted disease prevalence mapping with landscape analysis of sociological, environmental and host/parasite genetic data. We explored the relationship between environmental features and gene flow of a filarial parasite of humans, Onchocerca volvulus, and its vector, blackflies in the genus Simulium. We generated a baseline microfilarial prevalence map from point estimates from 47 locations in the ecological transition separating the savannah and forest in Ghana, where transmission of O. volvulus persists despite onchocerciasis control efforts. We generated movement suitability maps based on environmental correlates with mitochondrial population structure of 164 parasites from 15 communities and 93 vectors from only four sampling sites, and compared these to the baseline prevalence map. Parasite genetic distance between sampling locations was significantly associated with elevation (r = .793, p = .005) and soil moisture (r = .507, p = .002), while vector genetic distance was associated with soil moisture (r = .788, p = .0417) and precipitation (r = .835, p = .0417). The correlation between baseline prevalence and parasite resistance surface maps was stronger than that between prevalence and vector resistance surface maps. The centre of the study area had high prevalence and suitability for parasite and vector gene flow, potentially contributing to persistent transmission and suggesting the importance of re-evaluating transmission zone boundaries. With suitably dense sampling, this framework can help delineate transmission zones for onchocerciasis and would be translatable to other vector-borne diseases.
Collapse
Affiliation(s)
- Himal Shrestha
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Karen McCulloch
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Rebecca H Chisholm
- Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Victoria, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel K Armoo
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Accra, Ghana
| | - Francis Veriegh
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Accra, Ghana
| | - Neha Sirwani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Katie E Crawford
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | | | - Warwick N Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Shannon M Hedtke
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Muharromah AF, Carvajal TM, Regilme MAF, Watanabe K. Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines. Parasit Vectors 2024; 17:233. [PMID: 38769579 PMCID: PMC11107013 DOI: 10.1186/s13071-024-06300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Thaddeus M Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, 1004, Manila, Philippines
| | - Maria Angenica F Regilme
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan.
| |
Collapse
|
3
|
Crawford KE, Hedtke SM, Doyle SR, Kuesel AC, Armoo S, Osei-Atweneboana MY, Grant WN. Genome-based tools for onchocerciasis elimination: utility of the mitochondrial genome for delineating Onchocerca volvulus transmission zones. Int J Parasitol 2024; 54:171-183. [PMID: 37993016 DOI: 10.1016/j.ijpara.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.
Collapse
Affiliation(s)
- Katie E Crawford
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Shannon M Hedtke
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia.
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Samuel Armoo
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Mike Y Osei-Atweneboana
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
de Azevedo SLC, Catanho M, Guimarães ACR, Galvão TC. Genomic surveillance: a potential shortcut for effective Chagas disease management. Mem Inst Oswaldo Cruz 2023; 117:e220164. [PMID: 36700581 PMCID: PMC9870261 DOI: 10.1590/0074-02760220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease is an enduring public health issue in many Latin American countries, receiving insufficient investment in research and development. Strategies for disease control and management currently lack efficient pharmaceuticals, commercial diagnostic kits with improved sensitivity, and vaccines. Genetic heterogeneity of Trypanosoma cruzi is a key aspect for novel drug design since pharmacological technologies rely on the degree of conservation of parasite target proteins. Therefore, there is a need to expand the knowledge regarding parasite genetics which, if fulfilled, could leverage Chagas disease research and development, and improve disease control strategies. The growing capacity of whole-genome sequencing technology and its adoption as disease surveillance routine may be key for solving this long-lasting problem.
Collapse
Affiliation(s)
- Sophia Lincoln Cardoso de Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Teca Calcagno Galvão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
5
|
Tober AV, Govender D, Russo IRM, Cable J. The microscopic five of the big five: Managing zoonotic diseases within and beyond African wildlife protected areas. ADVANCES IN PARASITOLOGY 2022; 117:1-46. [PMID: 35878948 DOI: 10.1016/bs.apar.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
African protected areas strive to conserve the continent's great biodiversity with a targeted focus on the flagship 'Big Five' megafauna. Though often not considered, this biodiversity protection also extends to the lesser-known microbes and parasites that are maintained in these diverse ecosystems, often in a silent and endemically stable state. Climate and anthropogenic change, and associated diversity loss, however, are altering these dynamics leading to shifts in ecological interactions and pathogen spill over into new niches and hosts. As many African protected areas are bordered by game and livestock farms, as well as villages, they provide an ideal study system to assess infection dynamics at the human-livestock-wildlife interface. Here we review five zoonotic, multi-host diseases (bovine tuberculosis, brucellosis, Rift Valley fever, schistosomiasis and cryptosporidiosis)-the 'Microscopic Five'-and discuss the biotic and abiotic drivers of parasite transmission using the iconic Kruger National Park, South Africa, as a case study. We identify knowledge gaps regarding the impact of the 'Microscopic Five' on wildlife within parks and highlight the need for more empirical data, particularly for neglected (schistosomiasis) and newly emerging (cryptosporidiosis) diseases, as well as zoonotic disease risk from the rising bush meat trade and game farm industry. As protected areas strive to become further embedded in the socio-economic systems that surround them, providing benefits to local communities, One Health approaches can help maintain the ecological integrity of ecosystems, while protecting local communities and economies from the negative impacts of disease.
Collapse
Affiliation(s)
- Anya V Tober
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom.
| | - Danny Govender
- SANParks, Scientific Services, Savanna and Grassland Research Unit, Pretoria, South Africa; Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Isa-Rita M Russo
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
6
|
Hernandez-Castro LE, Villacís AG, Jacobs A, Cheaib B, Day CC, Ocaña-Mayorga S, Yumiseva CA, Bacigalupo A, Andersson B, Matthews L, Landguth EL, Costales JA, Llewellyn MS, Grijalva MJ. Population genomics and geographic dispersal in Chagas disease vectors: Landscape drivers and evidence of possible adaptation to the domestic setting. PLoS Genet 2022; 18:e1010019. [PMID: 35120121 PMCID: PMC8849464 DOI: 10.1371/journal.pgen.1010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/16/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches. Re-infestation of recently insecticide-treated houses by wild/secondary triatomine, their potential adaptation to this new environment and capabilities to geographically disperse across multiple human communities jeopardise sustainable Chagas disease control. This is the first study in Chagas disease vectors that identifies genomic regions possibly linked to adaptations to the built environment and describes landscape drivers for accurate prediction of geographic dispersal. We sampled multiple domestic and wild Rhodnius ecuadoriensis population pairs across a mountainous terrain in southern Ecuador. We evidenced that triatomine movement from forest to built enviroments does occur at a high rate. In these highly connected population pairs we detected loci possibly linked to local adaptation among the genomic makers we evaluated and in doing so we pave the way for future triatomine genomic research. We highlighted that current haphazardous vector control in the zone will be hindered by reinfestation of triatomines from the forest. Instead, we recommend frequent and spatially-targeted vector control and provided a landacape genomic model that identifies highly connected and isolated triatomine populations to facilitate efficient vector control.
Collapse
Affiliation(s)
- Luis E. Hernandez-Castro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Epidemiology, Economics and Risk Assessment Group, The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (LEH-C); (MSL)
| | - Anita G. Villacís
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, United States of America
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Casey C. Day
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Cesar A. Yumiseva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Antonella Bacigalupo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Erin L. Landguth
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (LEH-C); (MSL)
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
7
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
8
|
Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore. Commun Biol 2021; 4:12. [PMID: 33398025 PMCID: PMC7782801 DOI: 10.1038/s42003-020-01548-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region. The most important predictors of viral spread also differed; host spatial proximity, host relatedness, and mountain ranges played a role in FIV spread in the WUI, whereas roads might have facilitated viral spread in the unbounded region. Our research demonstrates how anthropogenic landscapes can alter pathogen spread, providing a more nuanced understanding of host-pathogen relationships to inform disease ecology in free-ranging species.
Collapse
|
9
|
Doering JA, Booth T, Wiersma YF, Piercey-Normore MD. How do genes flow? Identifying potential dispersal mode for the semi-aquatic lichen Dermatocarpon luridum using spatial modelling and photobiont markers. BMC Ecol 2020; 20:56. [PMID: 33059667 PMCID: PMC7565318 DOI: 10.1186/s12898-020-00324-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background Landscape genetics is an interdisciplinary field that combines tools and techniques from population genetics with the spatially explicit principles from landscape ecology. Spatial variation in genotypes is used to test hypotheses about how landscape pattern affects dispersal in a wide range of taxa. Lichens, symbiotic associations between mycobionts and photobionts, are an entity for which little is known about their dispersal mechanism. Our objective was to infer the dispersal mechanism in the semi-aquatic lichen Dermatocarpon luridum using spatial models and the spatial variation of the photobiont, Diplosphaera chodatii. We sequenced the ITS rDNA and the β-actin gene regions of the photobiont and mapped the haplotype spatial distribution in Payuk Lake. We subdivided Payuk Lake into subpopulations and applied four spatial models based on the topography and hydrology to infer the dispersal mechanism. Results Genetic variation corresponded with the topography of the lake and the net flow of water through the waterbody. A lack of isolation-by-distance suggests high gene flow or dispersal within the lake. We infer the dispersal mechanism in D. luridum could either be by wind and/or water based on the haplotype spatial distribution of its photobiont using the ITS rDNA and β-actin markers. Conclusions We inferred that the dispersal mechanism could be either wind and/or water dispersed due to the conflicting interpretations of our landscape hypotheses. This is the first study to use spatial modelling to infer dispersal in semi-aquatic lichens. The results of this study may help to understand lichen dispersal within aquatic landscapes, which can have implications in the conservation of rare or threatened lichens.
Collapse
Affiliation(s)
- Jennifer A Doering
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Tom Booth
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Michele D Piercey-Normore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,School of Science and Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| |
Collapse
|
10
|
Kozakiewicz CP, Ricci L, Patton AH, Stahlke AR, Hendricks SA, Margres MJ, Ruiz-Aravena M, Hamilton DG, Hamede R, McCallum H, Jones ME, Hohenlohe PA, Storfer A. Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (Sarcophilus harrisii) and their transmissible tumour. Mol Ecol 2020; 29:3217-3233. [PMID: 32682353 PMCID: PMC9805799 DOI: 10.1111/mec.15558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad-scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.
Collapse
Affiliation(s)
| | - Lauren Ricci
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Amanda R. Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Sarah A. Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia,Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,corresponding author: Andrew Storfer, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
11
|
Fitak RR, Antonides JD, Baitchman EJ, Bonaccorso E, Braun J, Kubiski S, Chiu E, Fagre AC, Gagne RB, Lee JS, Malmberg JL, Stenglein MD, Dusek RJ, Forgacs D, Fountain-Jones NM, Gilbertson MLJ, Worsley-Tonks KEL, Funk WC, Trumbo DR, Ghersi BM, Grimaldi W, Heisel SE, Jardine CM, Kamath PL, Karmacharya D, Kozakiewicz CP, Kraberger S, Loisel DA, McDonald C, Miller S, O'Rourke D, Ott-Conn CN, Páez-Vacas M, Peel AJ, Turner WC, VanAcker MC, VandeWoude S, Pecon-Slattery J. The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Forecasting with a Horizon Scan-like Exercise. J Hered 2020; 110:261-274. [PMID: 31067326 DOI: 10.1093/jhered/esz001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.
Collapse
Affiliation(s)
| | - Jennifer D Antonides
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN
| | - Eric J Baitchman
- The Zoo New England Division of Animal Health and Conservation, Boston, MA
| | - Elisa Bonaccorso
- The Instituto BIOSFERA and Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, vía Interoceánica y Diego de Robles, Quito, Ecuador
| | - Josephine Braun
- The Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Steven Kubiski
- The Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Elliott Chiu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Anna C Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Justin S Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Jennifer L Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Mark D Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Robert J Dusek
- The U. S. Geological Survey, National Wildlife Health Center, Madison, WI
| | - David Forgacs
- The Interdisciplinary Graduate Program of Genetics, Texas A&M University, College Station, TX
| | | | - Marie L J Gilbertson
- The Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | | | - W Chris Funk
- The Department of Biology, Colorado State University, Fort Collins, CO
| | - Daryl R Trumbo
- The Department of Biology, Colorado State University, Fort Collins, CO
| | | | | | - Sara E Heisel
- The Odum School of Ecology, University of Georgia, Athens, GA
| | - Claire M Jardine
- The Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, Ontario, Canada
| | - Pauline L Kamath
- The School of Food and Agriculture, University of Maine, Orono, ME
| | | | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ
| | - Dagan A Loisel
- The Department of Biology, Saint Michael's College, Colchester, VT
| | - Cait McDonald
- The Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY (McDonald)
| | - Steven Miller
- The Department of Biology, Drexel University, Philadelphia, PA
| | | | - Caitlin N Ott-Conn
- The Michigan Department of Natural Resources, Wildlife Disease Laboratory, Lansing, MI
| | - Mónica Páez-Vacas
- The Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - Alison J Peel
- The Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Wendy C Turner
- The Department of Biological Sciences, University at Albany, State University of New York, Albany, NY
| | - Meredith C VanAcker
- The Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Sue VandeWoude
- The College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jill Pecon-Slattery
- The Center for Species Survival, Smithsonian Conservation Biology Institute-National Zoological Park, Front Royal, VA
| |
Collapse
|
12
|
Fraik AK, Margres MJ, Epstein B, Barbosa S, Jones M, Hendricks S, Schönfeld B, Stahlke AR, Veillet A, Hamede R, McCallum H, Lopez-Contreras E, Kallinen SJ, Hohenlohe PA, Kelley JL, Storfer A. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 2020; 74:1392-1408. [PMID: 32445281 DOI: 10.1111/evo.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164.,Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Soraia Barbosa
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Sarah Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Barbara Schönfeld
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Hamish McCallum
- School of Environment, Griffith University Nathan, Nathan, QLD, 4111, Australia
| | - Elisa Lopez-Contreras
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Samantha J Kallinen
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
13
|
Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M, Lau CL, Boakye DA, Grant WN. Genomic Epidemiology in Filarial Nematodes: Transforming the Basis for Elimination Program Decisions. Front Genet 2020; 10:1282. [PMID: 31998356 PMCID: PMC6964045 DOI: 10.3389/fgene.2019.01282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Annette C. Kuesel
- Unicef/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Katie E. Crawford
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Patricia M. Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Michel Boussinesq
- Unité Mixte Internationale 233 "TransVIHMI", Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier, Montpellier, France
| | - Colleen L. Lau
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Daniel A. Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Warwick N. Grant
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
14
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
15
|
Population Genomics Applied to Fishery Management and Conservation. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_66] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Kozakiewicz CP, Burridge CP, Funk WC, VandeWoude S, Craft ME, Crooks KR, Ernest HB, Fountain‐Jones NM, Carver S. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl 2018; 11:1763-1778. [PMID: 30459828 PMCID: PMC6231466 DOI: 10.1111/eva.12678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Landscape genetics has provided many insights into how heterogeneous landscape features drive processes influencing spatial genetic variation in free-living organisms. This rapidly developing field has focused heavily on vertebrates, and expansion of this scope to the study of infectious diseases holds great potential for landscape geneticists and disease ecologists alike. The potential application of landscape genetics to infectious agents has garnered attention at formative stages in the development of landscape genetics, but systematic examination is lacking. We comprehensively review how landscape genetics is being used to better understand pathogen dynamics. We characterize the field and evaluate the types of questions addressed, approaches used and systems studied. We also review the now established landscape genetic methods and their realized and potential applications to disease ecology. Lastly, we identify emerging frontiers in the landscape genetic study of infectious agents, including recent phylogeographic approaches and frameworks for studying complex multihost and host-vector systems. Our review emphasizes the expanding utility of landscape genetic methods available for elucidating key pathogen dynamics (particularly transmission and spread) and also how landscape genetic studies of pathogens can provide insight into host population dynamics. Through this review, we convey how increasing awareness of the complementarity of landscape genetics and disease ecology among practitioners of each field promises to drive important cross-disciplinary advances.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyGraduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColorado
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt. PaulMinnesota
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | | | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
17
|
Brunazzi A, Scaglione D, Talini RF, Miculan M, Magni F, Poland J, Enrico Pè M, Brandolini A, Dell'Acqua M. Molecular diversity and landscape genomics of the crop wild relative Triticum urartu across the Fertile Crescent. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:670-684. [PMID: 29573496 DOI: 10.1111/tpj.13888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/06/2018] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next-generation sequencing was used to generate 1.3 million genome-wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high-quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome-wide association approach, identifying several marker-environment associations (MEAs). Fifty-seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.
Collapse
Affiliation(s)
- Alice Brunazzi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Davide Scaglione
- Institute of Applied Genomics, Via J. Linussio, 51 ZIU, Udine, 33100, Italy
| | - Rebecca Fiorella Talini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Mara Miculan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Federica Magni
- Institute of Applied Genomics, Via J. Linussio, 51 ZIU, Udine, 33100, Italy
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Brandolini
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Via Po 14, Roma, 00198, Italy
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
18
|
Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/13836_2017_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Schmidt TL, Rašić G, Zhang D, Zheng X, Xi Z, Hoffmann AA. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Negl Trop Dis 2017; 11:e0006009. [PMID: 29045401 PMCID: PMC5662242 DOI: 10.1371/journal.pntd.0006009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations. Aedes albopictus, the Asian Tiger Mosquito, is a highly invasive disease vector with a growing global distribution. Designing strategies to prevent invasion and to control Ae. albopictus populations in invaded regions requires knowledge of how Ae. albopictus disperses. Studies comparing Ae. albopictus populations have found little evidence of genetic structure even between distant populations, suggesting that dispersal along human transportation networks is common. However, a more specific understanding of dispersal processes has been unavailable due to an absence of studies using high-resolution genetic markers. Here we present a study using high-resolution markers, which investigates genetic structure among 152 Ae. albopictus from Guangzhou, China. We found that human transportation networks, particularly shipping terminals, had an influence on genetic structure. We also found genetic distance was correlated with geographical distance, the first such observation in this species. This study demonstrates how high-resolution markers can be used to investigate ecological processes that may otherwise escape detection. We conclude that strategies for controlling Ae. albopictus will have to consider both passive reinvasion along human transportation networks and active reinvasion from neighbouring regions.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Gordana Rašić
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Zhiyong Xi
- Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Hernandez-Castro LE, Paterno M, Villacís AG, Andersson B, Costales JA, De Noia M, Ocaña-Mayorga S, Yumiseva CA, Grijalva MJ, Llewellyn MS. 2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador. PLoS Negl Trop Dis 2017; 11:e0005710. [PMID: 28723901 PMCID: PMC5536387 DOI: 10.1371/journal.pntd.0005710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/31/2017] [Accepted: 06/13/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. CONCLUSIONS/SIGNIFICANCE Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment.
Collapse
Affiliation(s)
- Luis E. Hernandez-Castro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Marta Paterno
- Department of Biology, University of Padua, Padua, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Anita G. Villacís
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jaime A. Costales
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Michele De Noia
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Sofía Ocaña-Mayorga
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Cesar A. Yumiseva
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Mario J. Grijalva
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Ohio, United States of America
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|