1
|
Ilani P, Nyarko PB, Camara A, Amenga-Etego LN, Aniweh Y. PfRH5 vaccine; from the bench to the vial. NPJ Vaccines 2025; 10:82. [PMID: 40274841 PMCID: PMC12022022 DOI: 10.1038/s41541-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
The search for potent malaria vaccine candidate has seen several twists and turns. Here, we provide a perspective on the current state of PfRH5-based malaria vaccine development, the progress, existing challenges, and future research directions. We discuss the clinical trials in endemic regions, immune correlates of protection, prospects of integrating PfRH5 into multi-antigen vaccine strategies and considerations on the onward development/deployment of PfRH5 vaccine from the laboratory to endemic communities.
Collapse
Affiliation(s)
- Philip Ilani
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prince B Nyarko
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Laboratory of Pathogens and Host Immunity (LPHI), CNRS, University of Montpellier, Montpellier, France
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
| | - Abdouramane Camara
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
2
|
Sallam M, Al-Khatib AO, Al-Mahzoum KS, Abdelaziz DH, Sallam M. Current Developments in Malaria Vaccination: A Concise Review on Implementation, Challenges, and Future Directions. Clin Pharmacol 2025; 17:29-47. [PMID: 40191019 PMCID: PMC11971972 DOI: 10.2147/cpaa.s513282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Malaria remains a persistent challenge in global health, disproportionately affecting populations in endemic regions (eg, sub-Saharan Africa). Despite decades of international collaborative efforts, malaria continues to claim hundreds of thousands of lives each year, with young children and pregnant women enduring the heaviest burden. This concise review aimed to provide an up-to-date assessment of malaria vaccines progress, challenges, and future directions. Methods A PubMed/MEDLINE search (2015-2024) was conducted to identify studies on malaria vaccine development, implementation barriers, efficacy, and vaccination hesitancy. Clinical trials, reviews, and global health reports were included based on relevance to the review aims. No strict inclusion criteria were applied, and selection was guided by key review themes and policy relevance. Results The introduction of pre-erythrocytic malaria vaccines (RTS,S/AS01 and R21/Matrix-M), represents an important milestone in malaria control efforts with promising results from the erythrocytic vaccine RH5.1/Matrix-M in recent clinical trials. However, the approval of these vaccines is accompanied by significant challenges such as the limited efficacy, the complexity of multi-dose regimens, and numerous barriers to widespread implementation in resource-limited settings. The review identified the complex challenges to broad malaria vaccination coverage, including logistical barriers, healthcare infrastructure effect, financial limitations, malaria vaccine hesitancy, among other obstacles in malaria-endemic regions. Promising developments in malaria vaccination, such as next-generation candidates (eg, mRNA-based vaccines), hold the potential to offer improved efficacy, longer-lasting protection, and greater scalability. There is a critical need to integrate malaria vaccination efforts with established malaria control interventions (eg, insecticide-treated bed nets, vector control strategies, and anti-malarial drugs). Conclusion Achieving sustained control of malaria morbidity and mortality will require strong global collaboration, sufficient funding, and continuous efforts to address inequities in access and delivery of malaria control measures including the malaria vaccines.
Collapse
Affiliation(s)
- Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Arwa Omar Al-Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Doaa H Abdelaziz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Clinical Pharmacy, the National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Mohammed Sallam
- Department of Pharmacy, Mediclinic Parkview Hospital, Mediclinic Middle East, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Yoo R, Jore MM, Julien J. Targeting Bottlenecks in Malaria Transmission: Antibody-Epitope Descriptions Guide the Design of Next-Generation Biomedical Interventions. Immunol Rev 2025; 330:e70001. [PMID: 39907429 PMCID: PMC11796336 DOI: 10.1111/imr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Malaria continues to pose a significant burden to global health. Thus, a strong need exists for the development of a diverse panel of intervention strategies and modalities to combat malaria and achieve elimination and eradication goals. Deploying interventions that target bottlenecks in the transmission life cycle of the causative agent of malaria, Plasmodium parasites, is an attractive strategy. The development of highly potent antibody-based biologics, including vaccines, can be greatly facilitated by an in-depth molecular understanding of antibody-epitope interactions. Here, we provide an overview of structurally characterized antibodies targeting lead vaccine candidates expressed during the bottlenecks of the Plasmodium life cycle which include the pre-erythrocytic and sexual stages. The repeat region of the circumsporozoite protein (CSP), domain 1 of Pfs230 and domains 1 and 3 of Pfs48/45 are critical Plasmodium regions targeted by the most potent antibodies at the two bottlenecks of transmission, with other promising targets emerging and requiring further characterization.
Collapse
Affiliation(s)
- Randy Yoo
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
| | - Matthijs M. Jore
- Department of Medical MicrobiologyRadboudumcNijmegenThe Netherlands
| | - Jean‐Philippe Julien
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Takashima E, Tsuboi T. RH5: rationally-designed malaria vaccine antigen improving efficacy. Trends Parasitol 2024; 40:870-872. [PMID: 39277508 DOI: 10.1016/j.pt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a unique asexual blood-stage malaria vaccine candidate because of its high conservation and essential biological function of binding to basigin on the erythrocyte surface. Recent studies by Barrett et al., Wang et al., and King et al., have brought RH5-based vaccine development a step forward based on a rational antigen design strategy.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
5
|
Silk SE, Kalinga WF, Salkeld J, Mtaka IM, Ahmed S, Milando F, Diouf A, Bundi CK, Balige N, Hassan O, Mkindi CG, Rwezaula S, Athumani T, Mswata S, Lilolime NS, Simon B, Msami H, Mohamed M, David DM, Mohammed L, Nyaulingo G, Mwalimu B, Juma O, Mwamlima TG, Sasamalo IA, Mkumbange RP, Kamage JJ, Barrett JR, King LDW, Hou MM, Pulido D, Carnrot C, Lawrie AM, Cowan RE, Nugent FL, Roberts R, Cho JS, Long CA, Nielsen CM, Miura K, Draper SJ, Olotu AI, Minassian AM. Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1105-1117. [PMID: 38880111 DOI: 10.1016/s1473-3099(24)00312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. METHODS We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18-45 years) and children (aged 5-17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 μg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 μg RH5.1 at 0 and 1 month and 10 μg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 μg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 μg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 μg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. FINDINGS Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per μg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 μg/mL (95% CI 13·4-15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 μg/mL [IQR 511-1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81-94]). INTERPRETATION The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5-17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. FUNDING The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust.
Collapse
Affiliation(s)
- Sarah E Silk
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Wilmina F Kalinga
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jo Salkeld
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ivanny M Mtaka
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Saumu Ahmed
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Florence Milando
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Caroline K Bundi
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme and Accredited Research Centre, Open University, Kilifi, Kenya
| | - Neema Balige
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Omar Hassan
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Catherine G Mkindi
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Thabit Athumani
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Sarah Mswata
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Nasoro S Lilolime
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Beatus Simon
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hania Msami
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Mohamed Mohamed
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Damiano M David
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Latipha Mohammed
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Gloria Nyaulingo
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Bakari Mwalimu
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Omary Juma
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Tunu G Mwamlima
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ibrahim A Sasamalo
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Rose P Mkumbange
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Janeth J Kamage
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jordan R Barrett
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lloyd D W King
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mimi M Hou
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David Pulido
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | | | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Rachel E Cowan
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fay L Nugent
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Rachel Roberts
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jee-Sun Cho
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carolyn M Nielsen
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Simon J Draper
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Angela M Minassian
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Barrett JR, Pipini D, Wright ND, Cooper AJR, Gorini G, Quinkert D, Lias AM, Davies H, Rigby CA, Aleshnick M, Williams BG, Bradshaw WJ, Paterson NG, Martinson T, Kirtley P, Picard L, Wiggins CD, Donnellan FR, King LDW, Wang LT, Popplewell JF, Silk SE, de Ruiter Swain J, Skinner K, Kotraiah V, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Minassian AM, Lauffenburger DA, Miura K, Long CA, Wilder BK, Koekemoer L, Tan J, Nielsen CM, McHugh K, Draper SJ. Analysis of the diverse antigenic landscape of the malaria protein RH5 identifies a potent vaccine-induced human public antibody clonotype. Cell 2024; 187:4964-4980.e21. [PMID: 39059380 PMCID: PMC11380582 DOI: 10.1016/j.cell.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
Collapse
Affiliation(s)
- Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Dimitra Pipini
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Nathan D Wright
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Giacomo Gorini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - William J Bradshaw
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Neil G Paterson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Thomas Martinson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Luc Picard
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Francesca R Donnellan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | | | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jed de Ruiter Swain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
7
|
Wang LT, Cooper AJR, Farrell B, Miura K, Diouf A, Müller-Sienerth N, Crosnier C, Purser L, Kirtley PJ, Maciuszek M, Barrett JR, McHugh K, Ogwang R, Tucker C, Li S, Doumbo S, Doumtabe D, Pyo CW, Skinner J, Nielsen CM, Silk SE, Kayentao K, Ongoiba A, Zhao M, Nguyen DC, Lee FEH, Minassian AM, Geraghty DE, Traore B, Seder RA, Wilder BK, Crompton PD, Wright GJ, Long CA, Draper SJ, Higgins MK, Tan J. Natural malaria infection elicits rare but potent neutralizing antibodies to the blood-stage antigen RH5. Cell 2024; 187:4981-4995.e14. [PMID: 39059381 PMCID: PMC11383431 DOI: 10.1016/j.cell.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.
Collapse
Affiliation(s)
- Lawrence T Wang
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Medical Scientist Training Program, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Brendan Farrell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Cécile Crosnier
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Payton J Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Maciej Maciuszek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Rodney Ogwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
8
|
Kals E, Kals M, Lees RA, Introini V, Kemp A, Silvester E, Collins CR, Umrekar T, Kotar J, Cicuta P, Rayner JC. Application of optical tweezer technology reveals that PfEBA and PfRH ligands, not PfMSP1, play a central role in Plasmodium falciparum merozoite-erythrocyte attachment. PLoS Pathog 2024; 20:e1012041. [PMID: 39312588 PMCID: PMC11449297 DOI: 10.1371/journal.ppat.1012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/03/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Malaria pathogenesis and parasite multiplication depend on the ability of Plasmodium merozoites to invade human erythrocytes. Invasion is a complex multi-step process involving multiple parasite proteins which can differ between species and has been most extensively studied in P. falciparum. However, dissecting the precise role of individual proteins has to date been limited by the availability of quantifiable phenotypic assays. In this study, we apply a new approach to assigning function to invasion proteins by using optical tweezers to directly manipulate recently egressed P. falciparum merozoites and erythrocytes and quantify the strength of attachment between them, as well as the frequency with which such attachments occur. Using a range of inhibitors, antibodies, and genetically modified strains including some generated specifically for this work, we quantitated the contribution of individual P. falciparum proteins to these merozoite-erythrocyte attachment interactions. Conditional deletion of the major P. falciparum merozoite surface protein PfMSP1, long thought to play a central role in initial attachment, had no impact on the force needed to pull merozoites and erythrocytes apart, whereas interventions that disrupted the function of several members of the EBA-175 like Antigen (PfEBA) family and Reticulocyte Binding Protein Homologue (PfRH) invasion ligand families did have a significant negative impact on attachment. Deletion of individual PfEBA and PfRH ligands reinforced the known redundancy within these families, with the deletion of some ligands impacting detachment force while others did not. By comparing over 4000 individual merozoite-erythrocyte interactions in a range of conditions and strains, we establish that the PfEBA/PfRH families play a central role in P. falciparum merozoite attachment, not the major merozoite surface protein PfMSP1.
Collapse
Affiliation(s)
- Emma Kals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Morten Kals
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca A. Lees
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- EMBL Barcelona, Barcelona, Spain
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Silvester
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Trishant Umrekar
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Tang WK, Salinas ND, Kolli SK, Xu S, Urusova DV, Kumar H, Jimah JR, Subramani PA, Ogbondah MM, Barnes SJ, Adams JH, Tolia NH. Multistage protective anti-CelTOS monoclonal antibodies with cross-species sterile protection against malaria. Nat Commun 2024; 15:7487. [PMID: 39209843 PMCID: PMC11362571 DOI: 10.1038/s41467-024-51701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
CelTOS is a malaria vaccine antigen that is conserved in Plasmodium and other apicomplexan parasites and plays a role in cell-traversal. The structural basis and mechanisms of CelTOS-induced protective immunity to parasites are unknown. Here, CelTOS-specific monoclonal antibodies (mAbs) 7g7 and 4h12 demonstrated multistage activity, protecting against liver infection and preventing parasite transmission to mosquitoes. Both mAbs demonstrated cross-species activity with sterile protection against in vivo challenge with transgenic parasites containing either P. falciparum or P. vivax CelTOS, and with transmission reducing activity against P. falciparum. The mAbs prevented CelTOS-mediated pore formation providing insight into the protective mechanisms. X-ray crystallography and mutant-library epitope mapping revealed two distinct broadly conserved neutralizing epitopes. 7g7 bound to a parallel dimer of CelTOS, while 4h12 bound to a novel antiparallel dimer architecture. These findings inform the design of antibody therapies and vaccines and raise the prospect of a single intervention to simultaneously combat P. falciparum and P. vivax malaria.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Animals
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Malaria Vaccines/immunology
- Antibodies, Protozoan/immunology
- Mice
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/parasitology
- Crystallography, X-Ray
- Epitopes/immunology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Antigens, Protozoan/immunology
- Humans
- Female
- Epitope Mapping
- Malaria/immunology
- Malaria/prevention & control
- Malaria/parasitology
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
Collapse
Affiliation(s)
- Wai Kwan Tang
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nichole D Salinas
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Surendra Kumar Kolli
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Darya V Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pradeep Annamalai Subramani
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Samantha J Barnes
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Niraj H Tolia
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Björnsson KH, Bassi MR, Knudsen AS, Aves KL, Morella Roig È, Sander AF, Barfod L. Leveraging Immunofocusing and Virus-like Particle Display to Enhance Antibody Responses to the Malaria Blood-Stage Invasion Complex Antigen PfCyRPA. Vaccines (Basel) 2024; 12:859. [PMID: 39203985 PMCID: PMC11359962 DOI: 10.3390/vaccines12080859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
A vaccine protecting against malaria caused by Plasmodium falciparum is urgently needed. The blood-stage invasion complex PCRCR consists of the five malarial proteins PfPTRAMP, PfCSS, PfRipr, PfCyRPA, and PfRH5. As each subcomponent represents an essential and highly conserved antigen, PCRCR is considered a promising vaccine target. Furthermore, antibodies targeting the complex can block red blood cell invasion by the malaria parasite. However, extremely high titers of neutralizing antibodies are needed for this invasion-blocking effect, and a vaccine based on soluble PfRH5 protein has proven insufficient in inducing a protective response in a clinical trial. Here, we present the results of two approaches to increase the neutralizing antibody titers: (A) immunofocusing and (B) increasing the immunogenicity of the antigen via multivalent display on capsid virus-like particles (cVLPs). The immunofocusing strategies included vaccinating with peptides capable of binding the invasion-blocking anti-PfCyRPA monoclonal antibody CyP1.9, as well as removing non-neutralizing epitopes of PfCyRPA through truncation. Vaccination with PfCyRPA coupled to the AP205 cVLP induced nearly two-fold higher IgG responses compared to vaccinating with soluble PfCyRPA protein. Immunofocusing using a linear peptide greatly increased the neutralizing capacity of the anti-PfCyRPA antibodies. However, significantly lower total anti-PfCyRPA titers were achieved using this strategy. Our results underline the potential of a cVLP-based malaria vaccine including full-length PfCyRPA, which could be combined with other leading malaria vaccine antigens presented on cVLPs.
Collapse
Affiliation(s)
- Kasper H. Björnsson
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Maria R. Bassi
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Anne S. Knudsen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Kara-Lee Aves
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Èlia Morella Roig
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Adam F. Sander
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
- AdaptVac, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Lea Barfod
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| |
Collapse
|
11
|
King LDW, Pulido D, Barrett JR, Davies H, Quinkert D, Lias AM, Silk SE, Pattinson DJ, Diouf A, Williams BG, McHugh K, Rodrigues A, Rigby CA, Strazza V, Suurbaar J, Rees-Spear C, Dabbs RA, Ishizuka AS, Zhou Y, Gupta G, Jin J, Li Y, Carnrot C, Minassian AM, Campeotto I, Fleishman SJ, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Long CA, Miura K, Ashfield R, Skinner K, Howarth MR, Biswas S, Draper SJ. Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved antimalarial antibodies. Cell Rep Med 2024; 5:101654. [PMID: 39019011 PMCID: PMC11293324 DOI: 10.1016/j.xcrm.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.
Collapse
Affiliation(s)
- Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ana Rodrigues
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Veronica Strazza
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Jonathan Suurbaar
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG 54, Ghana
| | - Chloe Rees-Spear
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; London School of Hygiene and Tropical Medicine, WC1E 7HT London, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Andrew S Ishizuka
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yu Zhou
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Gaurav Gupta
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ivan Campeotto
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Rebecca Ashfield
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
12
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Williams BG, King LDW, Pulido D, Quinkert D, Lias AM, Silk SE, Ragotte RJ, Davies H, Barrett JR, McHugh K, Rigby CA, Alanine DGW, Barfod L, Shea MW, Cowley LA, Dabbs RA, Pattinson DJ, Douglas AD, Lyth OR, Illingworth JJ, Jin J, Carnrot C, Kotraiah V, Christen JM, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Skinner K, Miura K, Long CA, Higgins MK, Draper SJ. Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex. Nat Commun 2024; 15:4857. [PMID: 38849365 PMCID: PMC11161584 DOI: 10.1038/s41467-024-48721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.
Collapse
Affiliation(s)
- Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Daniel G W Alanine
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Michael W Shea
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Li An Cowley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Oliver R Lyth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | | | | | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
- Latham BioPharm Group, Elkridge, MD, USA
| | | | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | | | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
14
|
Malik S, Waheed Y. Recent advances on vaccines against malaria: A review. ASIAN PAC J TROP MED 2024; 17:143-159. [DOI: 10.4103/apjtm.apjtm_678_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/21/2024] [Indexed: 12/06/2024] Open
Abstract
This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines. Data on malaria vaccine development was collected through a comprehensive review. The literature search was performed using databases including Google Scholar, PubMed, NIH, and Web of Science. Various novel approaches of vaccination are being developed, including those based on radiation-attenuated strategies, monoclonal antibodies, targeted immunogenic peptides, RNA and DNA vaccines, nanoparticle-based vaccines, protein-based vaccination protocols, and whole organism-based vaccination strategies. Trials on RTS, S have entered phase III testing, and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials. Mathematical modeling, combined drug and vaccine strategies, mass drug administration, polyvalent vaccine formulations, and targeted vaccination campaigns is playing an important role in malarial prevention. Furthermore, assessing coverage, accessibility, acceptability, deployment, compilation, and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
| |
Collapse
|
15
|
King NR, Martins Freire C, Touhami J, Sitbon M, Toye AM, Satchwell TJ. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 2024; 20:e1011989. [PMID: 38315723 PMCID: PMC10868855 DOI: 10.1371/journal.ppat.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.
Collapse
Affiliation(s)
- Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
16
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
17
|
Kepple D, Ford CT, Williams J, Abagero B, Li S, Popovici J, Yewhalaw D, Lo E. Comparative transcriptomics reveal differential gene expression among Plasmodium vivax geographical isolates and implications on erythrocyte invasion mechanisms. PLoS Negl Trop Dis 2024; 18:e0011926. [PMID: 38285730 PMCID: PMC10901308 DOI: 10.1371/journal.pntd.0011926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
The documentation of Plasmodium vivax malaria across Africa especially in regions where Duffy negatives are dominant suggests possibly alternative erythrocyte invasion mechanisms. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa is unclear. In this study, we examined the expression of 4,404 gene transcripts belong to 12 functional groups and 43 erythrocyte binding gene candidates in Ethiopian isolates and compared them with the Cambodian and Brazilian P. vivax transcriptomes. Overall, there were 10-26% differences in the gene expression profile amongst geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian isolates. Members of the reticulocyte binding protein PvRBP2a and PvRBP3 expressed six-fold higher than Duffy binding protein PvDBP1 and 60-fold higher than PvEBP/DBP2 in the Ethiopian isolates. Other genes including PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression patterns were observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, gametocyte genes including PvAP2-G, PvGAP (female gametocytes), and Pvs47 (male gametocytes) were highly expressed across geographical samples.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Colby T. Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, United States of America
- School of Data Science, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Beka Abagero
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Shaoyu Li
- Mathematics and Statistics, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
- Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Silk SE, Kalinga WF, Mtaka IM, Lilolime NS, Mpina M, Milando F, Ahmed S, Diouf A, Mkwepu F, Simon B, Athumani T, Rashid M, Mohammed L, Lweno O, Ali AM, Nyaulingo G, Mwalimu B, Mswata S, Mwamlima TG, Barrett JR, Wang LT, Themistocleous Y, King LDW, Hodgson SH, Payne RO, Nielsen CM, Lawrie AM, Nugent FL, Cho JS, Long CA, Miura K, Draper SJ, Minassian AM, Olotu AI. Superior antibody immunogenicity of a viral-vectored RH5 blood-stage malaria vaccine in Tanzanian infants as compared to adults. MED 2023; 4:668-686.e7. [PMID: 37572659 DOI: 10.1016/j.medj.2023.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING Medical Research Council, London, UK.
Collapse
Affiliation(s)
- Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Wilmina F Kalinga
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ivanny M Mtaka
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Nasoro S Lilolime
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Maximillian Mpina
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Florence Milando
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Saumu Ahmed
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Fatuma Mkwepu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Beatus Simon
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Thabit Athumani
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mohammed Rashid
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Latipha Mohammed
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Omary Lweno
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ali M Ali
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Gloria Nyaulingo
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Bakari Mwalimu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Mswata
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Tunu G Mwamlima
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Yrene Themistocleous
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Susanne H Hodgson
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Ruth O Payne
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Fay L Nugent
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
19
|
Weiss GE, Ragotte RJ, Quinkert D, Lias AM, Dans MG, Boulet C, Looker O, Ventura OD, Williams BG, Crabb BS, Draper SJ, Gilson PR. The dual action of human antibodies specific to Plasmodium falciparum PfRH5 and PfCyRPA: Blocking invasion and inactivating extracellular merozoites. PLoS Pathog 2023; 19:e1011182. [PMID: 37713419 PMCID: PMC10529537 DOI: 10.1371/journal.ppat.1011182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/27/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the current leading blood-stage malaria vaccine candidate. PfRH5 functions as part of the pentameric PCRCR complex containing PTRAMP, CSS, PfCyRPA and PfRIPR, all of which are essential for infection of human red blood cells (RBCs). To trigger RBC invasion, PfRH5 engages with RBC protein basigin in a step termed the RH5-basigin binding stage. Although we know increasingly more about how antibodies specific for PfRH5 can block invasion, much less is known about how antibodies recognizing other members of the PCRCR complex can inhibit invasion. To address this, we performed live cell imaging using monoclonal antibodies (mAbs) which bind PfRH5 and PfCyRPA. We measured the degree and timing of the invasion inhibition, the stage at which it occurred, as well as subsequent events. We show that parasite invasion is blocked by individual mAbs, and the degree of inhibition is enhanced when combining a mAb specific for PfRH5 with one binding PfCyRPA. In addition to directly establishing the invasion-blocking capacity of the mAbs, we identified a secondary action of certain mAbs on extracellular parasites that had not yet invaded where the mAbs appeared to inactivate the parasites by triggering a developmental pathway normally only seen after successful invasion. These findings suggest that epitopes within the PfCyRPA-PfRH5 sub-complex that elicit these dual responses may be more effective immunogens than neighboring epitopes by both blocking parasites from invading and rapidly inactivating extracellular parasites. These two protective mechanisms, prevention of invasion and inactivation of uninvaded parasites, resulting from antibody to a single epitope indicate a possible route to the development of more effective vaccines.
Collapse
Affiliation(s)
- Greta E. Weiss
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Robert J. Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Amelia M. Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Madeline G. Dans
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Coralie Boulet
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Oliver Looker
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Olivia D. Ventura
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Barnabas G. Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Brendan S. Crabb
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Paul R. Gilson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
21
|
Shukla N, Tang WK, Coelho CH, Long CA, Healy SA, Sagara I, Miura K, Duffy PE, Tolia NH. A human antibody epitope map of the malaria vaccine antigen Pfs25. NPJ Vaccines 2023; 8:108. [PMID: 37542029 PMCID: PMC10403551 DOI: 10.1038/s41541-023-00712-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
Pfs25 is a leading antigen for a malaria transmission-blocking vaccine and shows moderate transmission-blocking activity and induction of rapidly decreasing antibody titers in clinical trials. A comprehensive definition of all transmission-reducing epitopes of Pfs25 will inform structure-guided design to enhance Pfs25-based vaccines, leading to potent transmission-blocking activity. Here, we compiled a detailed human antibody epitope map comprising epitope binning data and structures of multiple human monoclonal antibodies, including three new crystal structures of Pfs25 in complex with transmission-reducing antibodies from Malian volunteers immunized with Pfs25 conjugated to EPA and adjuvanted with AS01. These structures revealed additional epitopes in Pfs25 capable of reducing transmission and expanded this characterization to malaria-exposed humans. This work informs immunogen design to focus the antibody response to transmission-reducing epitopes of Pfs25, enabling development of more potent transmission-blocking vaccines for malaria.
Collapse
Affiliation(s)
- Niharika Shukla
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Camila H Coelho
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sara A Healy
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Issaka Sagara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technology, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Patrick E Duffy
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
22
|
Tamborrini M, Schäfer A, Hauser J, Zou L, Paris DH, Pluschke G. The malaria blood stage antigen PfCyRPA formulated with the TLR-4 agonist adjuvant GLA-SE elicits parasite growth inhibitory antibodies in experimental animals. Malar J 2023; 22:210. [PMID: 37454145 DOI: 10.1186/s12936-023-04638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. In contrast to several previously clinically tested merozoite vaccine candidate antigens, PfCyRPA is not polymorphic, making it a promising candidate antigen for blood stage vaccine development. METHODS Mice and rabbits were immunized with vaccine formulations of recombinantly expressed PfCyRPA adjuvanted either with the glucopyranosyl lipid A (GLA) containing adjuvants GLA-LSQ, GLA-SE, GLA-Alum or with Nanoalum. ELISA and indirect immunofluorescence assays (IFA) were used to analyse elicited IgG titers and the P. falciparum growth inhibitory activity was determined with a standardized in vitro [3H]-hypoxanthine incorporation assay. RESULTS In the mouse experiments, the GLA adjuvanted formulations were superior to the Nanoalum formulation with respect to antibody titer development, IFA sero-conversion rates and in vitro parasite growth-inhibitory activity. In rabbits, the highest titers of parasite growth inhibitory antibodies were obtained with the GLA-SE formulation. Comparable mean ELISA IgG endpoint titers were reached in rabbits after three immunizations with GLA-SE adjuvanted PfCyRPA doses of 5, 25 and 100 µg, but with 100 µg of antigen, only two immunizations were required to reach this titer. CONCLUSION PfCyRPA formulated with the human-compatible adjuvant GLA-SE represents an attractive vaccine candidate for early clinical testing in a controlled P. falciparum blood stage challenge trial.
Collapse
Affiliation(s)
- Marco Tamborrini
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Linghui Zou
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Daniel H Paris
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
23
|
Muthye V, Wasmuth JD. Proteome-wide comparison of tertiary protein structures reveals molecular mimicry in Plasmodium-human interactions. FRONTIERS IN PARASITOLOGY 2023; 2:1162697. [PMID: 39816809 PMCID: PMC11732093 DOI: 10.3389/fpara.2023.1162697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/05/2023] [Indexed: 01/18/2025]
Abstract
Introduction Molecular mimicry is a strategy used by parasites to evade the host's immune system and facilitate transmission to a new host. To date, high-throughput examples of molecular mimicry have been limited to comparing protein sequences. However, recent advances in the prediction of tertiary structural models, led by Deepmind's AlphaFold, enable the comparison of thousands of proteins from parasites and their hosts at the structural level, allowing for the identification of more mimics. Here, we present the first proteome-level search for tertiary structure similarity between proteins from Plasmodium falciparum, a malaria-causing parasite, and humans. Methods We assembled a database of experimentally-characterized protein tertiary structures (from the Protein Data Bank) and AlphaFold-generated protein tertiary structures from P. falciparum, human, and 15 negative control species, i.e., species not infected by P. falciparum. We aligned human and control structures to the parasite structures using Foldseek. Results We identified molecular mimicry in three proteins that have been previously proposed as mediators of Plasmodium-human interactions. By extending this approach to all P. falciparum proteins, we identified an additional 41 potential mimics that are supported by additional experimental data. Discussion Our findings demonstrate a valuable application of AlphaFold-derived tertiary structural models, and we discuss key considerations for its effective use in other host-parasite systems.
Collapse
Affiliation(s)
- Viraj Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Miura K, Diouf A, Fay MP, Barrett JR, Payne RO, Olotu AI, Minassian AM, Silk SE, Draper SJ, Long CA. Assessment of precision in growth inhibition assay (GIA) using human anti-PfRH5 antibodies. Malar J 2023; 22:159. [PMID: 37208733 PMCID: PMC10196285 DOI: 10.1186/s12936-023-04591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ruth O Payne
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
25
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
26
|
Kepple D, Ford CT, Williams J, Abagero B, Li S, Popovici J, Yewhalaw D, Lo E. Comparative transcriptomics reveal differential gene expression in Plasmodium vivax geographical isolates and implications on erythrocyte invasion mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528793. [PMID: 36824754 PMCID: PMC9949051 DOI: 10.1101/2023.02.16.528793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plasmodium vivax uses Duffy binding protein (PvDBP1) to bind to the Duffy Antigen-Chemokine Receptor (DARC) to invade human erythrocytes. Individuals who lack DARC expression (Duffy-negative) are thought to be resistance to P. vivax. In recent years, P. vivax malaria is becoming more prevalent in Africa with a portion of these cases detected in Duffy-negatives. Apart from DBP1, members of the reticulocyte binding protein (RBP) and tryptophan-rich antigen (TRAg) families may also play a role in erythrocyte invasion. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa and more specifically the expression level of several erythrocyte binding gene candidates as compared to DBP1 are largely unknown. This paper characterized the first P. vivax transcriptome in Africa and compared with those from the Southeast Asian and South American isolates. The expression of 4,404 gene transcripts belong to 12 functional groups including 43 specific erythrocyte binding gene candidates were examined. Overall, there were 10-26% differences in the gene expression profile amongst the geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian P. vivax. Erythrocyte binding genes including PvRBP2a and PvRBP3 expressed six-fold higher than PvDBP1and 60-fold higher than PvEBP/DBP2. Other genes including PvRBP1a, PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression was observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, the standard biomarker for detecting female gametocytes, PvAP2-G (PVP01_1440800), GAP (PVP01_1403000), and Pvs47 (PVP01_1208000) were highly expressed across geographical samples. These findings provide an important baseline for future comparisons of P. vivax transcriptomes from Duffy-negative infections and highlight potential biomarkers for improved gametocyte detection.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Colby T. Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Beka Abagero
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Shaoyu Li
- Mathematics and Statistics, University of North Carolina, Charlotte, NC 28223, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
27
|
Malaria Vaccines. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
28
|
Sun Y, Shi X, Lu F, Fu H, Yin Y, Xu J, Jin C, Han ET, Huang X, Chen Y, Dong C, Cheng Y. Vesicular stomatitis virus-based vaccine targeting plasmodium blood-stage antigens elicits immune response and protects against malaria with protein booster strategy. Front Microbiol 2022; 13:1042414. [PMID: 36504817 PMCID: PMC9731671 DOI: 10.3389/fmicb.2022.1042414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Merozoite invasion of the erythrocytes in humans is a key step in the pathogenesis of malaria. The proteins involved in the merozoite invasion could be potential targets for the development of malaria vaccines. Novel viral-vector-based malaria vaccine regimens developed are currently under clinical trials. Vesicular stomatitis virus (VSV) is a single-stranded negative-strand RNA virus widely used as a vector for virus or cancer vaccines. Whether the VSV-based malarial vaccine is more effective than conventional vaccines based on proteins involved in parasitic invasion is still unclear. In this study, we have used the reverse genetics system to construct recombinant VSVs (rVSVs) expressing apical membrane protein 1 (AMA1), rhoptry neck protein 2 (RON2), and reticulocyte-binding protein homolog 5 (RH5), which are required for Plasmodium falciparum invasion. Our results showed that VSV-based viral vaccines significantly increased Plasmodium-specific IgG levels and lymphocyte proliferation. Also, VSV-PyAMA1 and VSV-PyRON2sp prime-boost regimens could significantly increase the levels of IL-2 and IFN-γ-producing by CD4+ and CD8+ T cells and suppress invasion in vitro. The rVSV prime-protein boost regimen significantly increase Plasmodium antigen-specific IgG levels in the serum of mice compared to the homologous rVSV prime-boost. Furthermore, the protective efficacy of rVSV prime protein boost immunization in the mice challenged with P. yoelii 17XL was better compared to traditional antigen immunization. Together, our results show that VSV vector is a novel strategy for malarial vaccine development and preventing the parasitic diseases.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China,Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaodan Shi
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Haitian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jiahui Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Xuan Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Chunsheng Dong,
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Yang Cheng,
| |
Collapse
|
29
|
Takashima E, Nagaoka H, Correia R, Alves PM, Roldão A, Christensen D, Guderian JA, Fukushima A, Viebig NK, Depraetere H, Tsuboi T. A novel asexual blood-stage malaria vaccine candidate: PfRipr5 formulated with human-use adjuvants induces potent growth inhibitory antibodies. Front Immunol 2022; 13:1002430. [PMID: 36389677 PMCID: PMC9647036 DOI: 10.3389/fimmu.2022.1002430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2023] Open
Abstract
PfRipr is a highly conserved asexual-blood stage malaria vaccine candidate against Plasmodium falciparum. PfRipr5, a protein fragment of PfRipr inducing the most potent inhibitory antibodies, is a promising candidate for the development of next-generation malaria vaccines, requiring validation of its potential when formulated with adjuvants already approved for human use. In this study, PfRipr5 antigen was efficiently produced in a tank bioreactor using insect High Five cells and the baculovirus expression vector system; purified PfRipr5 was thermally stable in its monomeric form, had high purity and binding capacity to functional monoclonal anti-PfRipr antibody. The formulation of purified PfRipr5 with Alhydrogel®, GLA-SE or CAF®01 adjuvants accepted for human use showed acceptable compatibility. Rabbits immunized with these formulations induced comparable levels of anti-PfRipr5 antibodies, and significantly higher than the control group immunized with PfRipr5 alone. To investigate the efficacy of the antibodies, we used an in vitro parasite growth inhibition assay (GIA). The highest average GIA activity amongst all groups was attained with antibodies induced by immunization with PfRipr5 formulated with CAF®01. Overall, this study validates the potential of adjuvanted PfRipr5 as an asexual blood-stage malaria vaccine candidate, with PfRipr5/CAF®01 being a promising formulation for subsequent pre-clinical and clinical development.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ricardo Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut (SSI), Copenhagen, Denmark
| | | | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
30
|
Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5886687. [PMID: 36277884 PMCID: PMC9584662 DOI: 10.1155/2022/5886687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Malaria is the most pernicious parasitic infection, and Plasmodium falciparum is the most virulent species with substantial morbidity and mortality worldwide. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the 14 blood-stage proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, various web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physicochemical properties, posttranslational modification sites (PTMs), the presence of signal peptide, and transmembrane domains. Moreover, structural analysis for secondary and 3D model predictions were performed for all and stable proteins, respectively. Finally, human helper T lymphocyte (HTL) epitopes were predicted using HLA reference set of IEDB server and screened in terms of antigenicity, allergenicity, and IFN-γ induction as well as population coverage. Also, a multiserver B-cell epitope prediction was done with subsequent screening for antigenicity, allergenicity, and solubility. Altogether, these proteins showed appropriate antigenicity, abundant PTMs, and many B-cell and HTL epitopes, which could be directed for future vaccination studies in the context of multiepitope vaccine design.
Collapse
|
31
|
Correia R, Fernandes B, Castro R, Nagaoka H, Takashima E, Tsuboi T, Fukushima A, Viebig NK, Depraetere H, Alves PM, Roldão A. Asexual Blood-Stage Malaria Vaccine Candidate PfRipr5: Enhanced Production in Insect Cells. Front Bioeng Biotechnol 2022; 10:908509. [PMID: 35845392 PMCID: PMC9280424 DOI: 10.3389/fbioe.2022.908509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
The malaria asexual blood-stage antigen PfRipr and its most immunogenic fragment PfRipr5 have recently risen as promising vaccine candidates against this infectious disease. Continued development of high-yielding, scalable production platforms is essential to advance the malaria vaccine research. Insect cells have supplied the production of numerous vaccine antigens in a fast and cost-effective manner; improving this platform further could prove key to its wider use. In this study, insect (Sf9 and High Five) and human (HEK293) cell hosts as well as process-optimizing strategies (new baculovirus construct designs and a culture temperature shift to hypothermic conditions) were employed to improve the production of the malaria asexual blood-stage vaccine candidate PfRipr5. Protein expression was maximized using High Five cells at CCI of 2 × 106 cell/mL and MOI of 0.1 pfu/cell (production yield = 0.49 mg/ml), with high-purity PfRipr5 binding to a conformational anti-PfRipr monoclonal antibody known to hold GIA activity and parasite PfRipr staining capacity. Further improvements in the PfRipr5 expression were achieved by designing novel expression vector sequences and performing a culture temperature shift to hypothermic culture conditions. Addition of one alanine (A) amino acid residue adjacent to the signal peptide cleavage site and a glycine-serine linker (GGSGG) between the PfRipr5 sequence and the purification tag (His6) induced a 2.2-fold increase in the expression of secreted PfRipr5 over using the expression vector with none of these additions. Performing a culture temperature shift from the standard 27–22°C at the time of infection improved the PfRipr5 expression by up to 1.7 fold. Notably, a synergistic effect was attained when combining both strategies, enabling to increase production yield post-purification by 5.2 fold, with similar protein quality (i.e., purity and binding to anti-PfRipr monoclonal antibody). This work highlights the potential of insect cells to produce the PfRipr5 malaria vaccine candidate and the importance of optimizing the expression vector and culture conditions to boost the expression of secreted proteins.
Collapse
Affiliation(s)
- Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Castro
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
32
|
Nacer A, Kivi G, Pert R, Juronen E, Holenya P, Aliprandini E, Amino R, Silvie O, Quinkert D, Le Duff Y, Hurley M, Reimer U, Tover A, Draper SJ, Gilbert S, Ho MM, Bowyer PW. Expanding the Malaria Antibody Toolkit: Development and Characterisation of Plasmodium falciparum RH5, CyRPA, and CSP Recombinant Human Monoclonal Antibodies. Front Cell Infect Microbiol 2022; 12:901253. [PMID: 35782147 PMCID: PMC9243361 DOI: 10.3389/fcimb.2022.901253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria, an infection caused by apicomplexan parasites of the genus Plasmodium, continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines. Here we describe the development of recombinant human antibodies to three target proteins from Plasmodium falciparum: reticulocyte binding protein homologue 5 (PfRH5), cysteine-rich protective antigen (PfCyRPA), and circumsporozoite protein (PfCSP). All three proteins are key targets in the development of vaccines for blood-stage or pre-erythrocytic stage infections. We have developed potent anti-PfRH5, PfCyRPA and PfCSP monoclonal antibodies that will prove useful tools for the standardisation of assays in preclinical research and the assessment of these antigens in clinical trials. We have generated some very potent anti-PfRH5 and anti-PfCyRPA antibodies with some clones >200 times more potent than the polyclonal anti-AMA-1 antibodies used for the evaluation of blood stage antigens. While the monoclonal and polyclonal antibodies are not directly comparable, the data provide evidence that these new antibodies are very good at blocking invasion. These antibodies will therefore provide a valuable resource and have potential as biological standards to help harmonise pre-clinical malaria research.
Collapse
Affiliation(s)
- Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Gaily Kivi
- Icosagen Cell Factory OÜ, Tartumaa, Estonia
| | - Raini Pert
- Icosagen Cell Factory OÜ, Tartumaa, Estonia
| | | | - Pavlo Holenya
- Research and Development, JPT Peptide Technologies GmbH, Berlin, Germany
| | | | - Rogerio Amino
- Malaria Infection & Immunity Unit, Institut Pasteur, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yann Le Duff
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Matthew Hurley
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Ulf Reimer
- Research and Development, JPT Peptide Technologies GmbH, Berlin, Germany
| | | | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Gilbert
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Mei Mei Ho
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Paul W. Bowyer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| |
Collapse
|
33
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
34
|
Abstract
The first malaria vaccine has been recently approved for children living in malaria-endemic areas. While this is long-awaited and welcome news, the modest efficacy of the vaccine highlights several areas that require further attention. Here, we describe the likely impact of the vaccine and where clinical and basic discovery research will still be required.
Collapse
Affiliation(s)
| | - Cristiana Cairo
- Institute for Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
36
|
Molina-Franky J, Patarroyo ME, Kalkum M, Patarroyo MA. The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2022; 12:816574. [PMID: 35433504 PMCID: PMC9008539 DOI: 10.3389/fcimb.2022.816574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle’s blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite’s biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- PhD Programme in Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| |
Collapse
|
37
|
Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nat Commun 2022; 13:933. [PMID: 35177602 PMCID: PMC8854392 DOI: 10.1038/s41467-022-28601-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023] Open
Abstract
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets. Antibodies can have synergistic effects, but mechanisms are not well understood. Here, Ragotte et al. identify three antibodies that bind neighbouring epitopes on CyRPA, a malaria vaccine candidate, and show that lateral interactions between the antibodies slow dissociation and inhibit parasite growth synergistically.
Collapse
|
38
|
Bjerkan L, Visweswaran GRR, Gudjonsson A, Labbé GM, Quinkert D, Pattinson DJ, Spång HCL, Draper SJ, Bogen B, Braathen R. APC-Targeted DNA Vaccination Against Reticulocyte-Binding Protein Homolog 5 Induces Plasmodium falciparum-Specific Neutralizing Antibodies and T Cell Responses. Front Immunol 2021; 12:720550. [PMID: 34733274 PMCID: PMC8558525 DOI: 10.3389/fimmu.2021.720550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named “Vaccibody”, has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.
Collapse
Affiliation(s)
- Louise Bjerkan
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Arnar Gudjonsson
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Heidi C L Spång
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ranveig Braathen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Knudsen AS, Björnsson KH, Bassi MR, Walker MR, Kok A, Cristinoi B, Jensen AR, Barfod L. Strain-Dependent Inhibition of Erythrocyte Invasion by Monoclonal Antibodies Against Plasmodium falciparum CyRPA. Front Immunol 2021; 12:716305. [PMID: 34447381 PMCID: PMC8383283 DOI: 10.3389/fimmu.2021.716305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The highly conserved Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) is a key target for next-generation vaccines against blood-stage malaria. PfCyRPA constitute the core of a ternary complex, including the reticulocyte binding-like homologous protein 5 (PfRh5) and the Rh5-interacting protein (PfRipr), and is fundamental for merozoite invasion of erythrocytes. In this study, we show that monoclonal antibodies (mAbs) specific to PfCyRPA neutralize the in vitro growth of Ghanaian field isolates as well as numerous laboratory-adapted parasite lines. We identified subsets of mAbs with neutralizing activity that bind to distinct sites on PfCyRPA and that in combination potentiate the neutralizing effect. As antibody responses against multiple merozoite invasion proteins are thought to improve the efficacy of blood-stage vaccines, we also demonstrated that combinations of PfCyRPA- and PfRh5 specific mAbs act synergistically to neutralize parasite growth. Yet, we identified prominent strain-dependent neutralization potencies, which our results suggest is independent of PfCyRPA expression level and polymorphism, demonstrating the importance of addressing functional converseness when evaluating blood-stage vaccine candidates. Finally, our results suggest that blood-stage vaccine efficacy can be improved by directing the antibody response towards defined protective epitopes on multiple parasite antigens.
Collapse
Affiliation(s)
- Anne S Knudsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria R Bassi
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R Walker
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kok
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bogdan Cristinoi
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Kotraiah V, Phares TW, Terry FE, Hindocha P, Silk SE, Nielsen CM, Moise L, Tucker KD, Ashfield R, Martin WD, De Groot AS, Draper SJ, Gutierrez GM, Noe AR. Identification and Immune Assessment of T Cell Epitopes in Five Plasmodium falciparum Blood Stage Antigens to Facilitate Vaccine Candidate Selection and Optimization. Front Immunol 2021; 12:690348. [PMID: 34305923 PMCID: PMC8294059 DOI: 10.3389/fimmu.2021.690348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses – by percentage of responders and response magnitude – associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5.
Collapse
Affiliation(s)
| | | | | | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Rebecca Ashfield
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Anne S De Groot
- EpiVax Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Amy R Noe
- Leidos Life Sciences, Leidos Inc., Frederick, MD, United States
| |
Collapse
|
41
|
Ndwiga L, Osoti V, Ochwedo KO, Wamae K, Bejon P, Rayner JC, Githinji G, Ochola-Oyier LI. The Plasmodium falciparum Rh5 invasion protein complex reveals an excess of rare variant mutations. Malar J 2021; 20:278. [PMID: 34162366 PMCID: PMC8220363 DOI: 10.1186/s12936-021-03815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The invasion of the red blood cells by Plasmodium falciparum merozoites involves the interplay of several proteins that are also targets for vaccine development. The proteins PfRh5-PfRipr-PfCyRPA-Pfp113 assemble into a complex at the apical end of the merozoite and are together essential for erythrocyte invasion. They have also been shown to induce neutralizing antibodies and appear to be less polymorphic than other invasion-associated proteins, making them high priority blood-stage vaccine candidates. Using available whole genome sequencing data (WGS) and new capillary sequencing data (CS), this study describes the genetic polymorphism in the Rh5 complex in P. falciparum isolates obtained from Kilifi, Kenya. METHODS 162 samples collected in 2013 and 2014 were genotyped by capillary sequencing (CS) and re-analysed WGS from 68 culture-adapted P. falciparum samples obtained from a drug trial conducted from 2005 to 2007. The frequency of polymorphisms in the merozoite invasion proteins, PfRh5, PfRipr, PfCyRPA and PfP113 were examined and where possible polymorphisms co-occurring in the same isolates. RESULTS From a total 70 variants, including 2 indels, 19 SNPs [27.1%] were identified by both CS and WGS, while an additional 15 [21.4%] and 36 [51.4%] SNPs were identified only by either CS or WGS, respectively. All the SNPs identified by CS were non-synonymous, whereas WGS identified 8 synonymous and 47 non-synonymous SNPs. CS identified indels in repeat regions in the p113 gene in codons 275 and 859 that were not identified in the WGS data. The minor allele frequencies of the SNPs ranged between 0.7 and 34.9% for WGS and 1.1-29.6% for CS. Collectively, 12 high frequency SNPs (> 5%) were identified: four in Rh5 codon 147, 148, 203 and 429, two in p113 at codons 7 and 267 and six in Ripr codons 190, 259, 524, 985, 1003 and 1039. CONCLUSION This study reveals that the majority of the polymorphisms are rare variants and confirms a low level of genetic polymorphisms in all proteins within the Rh5 complex.
Collapse
Affiliation(s)
- Leonard Ndwiga
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Omondi Ochwedo
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | | |
Collapse
|
42
|
Willcox AC, Huber AS, Diouf A, Barrett JR, Silk SE, Pulido D, King LDW, Alanine DGW, Minassian AM, Diakite M, Draper SJ, Long CA, Miura K. Antibodies from malaria-exposed Malians generally interact additively or synergistically with human vaccine-induced RH5 antibodies. CELL REPORTS MEDICINE 2021; 2:100326. [PMID: 34337556 PMCID: PMC8324462 DOI: 10.1016/j.xcrm.2021.100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
Reticulocyte-binding protein homolog 5 (RH5) is a leading Plasmodium falciparum blood-stage vaccine candidate. Another possible candidate, apical membrane antigen 1 (AMA1), was not efficacious in malaria-endemic populations, likely due to pre-existing antimalarial antibodies that interfered with the activity of vaccine-induced AMA1 antibodies, as judged by in vitro growth inhibition assay (GIA). To determine how pre-existing antibodies interact with vaccine-induced RH5 antibodies, we purify total and RH5-specific immunoglobulin Gs (IgGs) from malaria-exposed Malians and malaria-naive RH5 vaccinees. Infection-induced RH5 antibody titers are much lower than those induced by vaccination, and RH5-specific IgGs show differences in the binding site between the two populations. In GIA, Malian polyclonal IgGs show additive or synergistic interactions with RH5 human monoclonal antibodies and overall additive interactions with vaccine-induced polyclonal RH5 IgGs. These results suggest that pre-existing antibodies will interact favorably with vaccine-induced RH5 antibodies, in contrast to AMA1 antibodies. This study supports RH5 vaccine trials in malaria-endemic regions. RH5 IgG titers induced by infection are lower than those induced by RH5 vaccination Infection- and vaccine-induced RH5 IgGs have different specificity and avidity Infection- and vaccine-induced RH5 IgGs interact differently with RH5 mAbs Infection-induced IgGs generally do not reduce the activity of vaccine-induced IgGs
Collapse
Affiliation(s)
- Alexandra C Willcox
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alex S Huber
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jordan R Barrett
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Lloyd D W King
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Angela M Minassian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
43
|
Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michell AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Maxwell-Scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Lopez Ramon R, Ramos Lopez F, Barfod L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. MED 2021; 2:701-719.e19. [PMID: 34223402 PMCID: PMC8240500 DOI: 10.1016/j.medj.2021.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 μg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.
Collapse
Affiliation(s)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolin Loos
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ashlin R. Michell
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael T. White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Marks
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Hector Maxwell-Scott
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Antonio Querol-Rubiera
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Tatiana Ogrina
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Daniel Silman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Mehreen Datoo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J. Taylor
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Willem A. de Jongh
- ExpreSion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Robert Smith
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | - Eleanor Berrie
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | | | | | | | | | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anna L. Goodman
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
44
|
Higgins MK. Can We AlphaFold Our Way Out of the Next Pandemic? J Mol Biol 2021; 433:167093. [PMID: 34116123 PMCID: PMC8186955 DOI: 10.1016/j.jmb.2021.167093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
The announcement of the outstanding performance of AlphaFold 2 in the CASP 14 protein structure prediction competition came at the end of a long year defined by the COVID-19 pandemic. With an infectious organism dominating the world stage, the developers of Alphafold 2 were keen to play their part, accurately predicting novel structures of two proteins from SARS-CoV-2. In their blog post of December 2020, they highlighted this contribution, writing “we’ve also seen signs that protein structure prediction could be useful in future pandemic response efforts”. So, what role does structural biology play in guiding vaccine immunogen design and what might be the contribution of AlphaFold 2?
Collapse
Affiliation(s)
- Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
45
|
Sleebs BE, Jarman KE, Frolich S, Wong W, Healer J, Dai W, Lucet IS, Wilson DW, Cowman AF. Development and application of a high-throughput screening assay for identification of small molecule inhibitors of the P. falciparum reticulocyte binding-like homologue 5 protein. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:188-200. [PMID: 33152623 PMCID: PMC7645381 DOI: 10.1016/j.ijpddr.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The P. falciparum parasite, responsible for the disease in humans known as malaria, must invade erythrocytes to provide an environment for self-replication and survival. For invasion to occur, the parasite must engage several ligands on the host erythrocyte surface to enable adhesion, tight junction formation and entry. Critical interactions include binding of erythrocyte binding-like ligands and reticulocyte binding-like homologues (Rhs) to the surface of the host erythrocyte. The reticulocyte binding-like homologue 5 (Rh5) is the only member of this family that is essential for invasion and it binds to the basigin host receptor. The essential nature of Rh5 makes it an important vaccine target, however to date, Rh5 has not been targeted by small molecule intervention. Here, we describe the development of a high-throughput screening assay to identify small molecules which interfere with the Rh5-basigin interaction. To validate the utility of this assay we screened a known drug library and the Medicines for Malaria Box and demonstrated the reproducibility and robustness of the assay for high-throughput screening purposes. The screen of the known drug library identified the known leukotriene antagonist, pranlukast. We used pranlukast as a model inhibitor in a post screening evaluation cascade. We procured and synthesised analogues of pranlukast to assist in the hit confirmation process and show which structural moieties of pranlukast attenuate the Rh5 – basigin interaction. Evaluation of pranlukast analogues against P. falciparum in a viability assay and a schizont rupture assay show the parasite activity was not consistent with the biochemical inhibition of Rh5, questioning the developability of pranlukast as an antimalarial. The high-throughput assay developed from this work has the capacity to screen large collections of small molecules to discover inhibitors of P. falciparum Rh5 for future development of invasion inhibitory antimalarials. A high-throughput screening assay was developed to identify inhibitors of Rh5. The assay was applied in a screen of the MMV Malaria Box and a known drug library. Pranlukast was identified as a hit, but could not be conclusively validated. Assay enables future screens of large compound libraries to discover Rh5 inhibitors.
Collapse
Affiliation(s)
- Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sonja Frolich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wilson Wong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
46
|
Fotoran WL, Kleiber N, Glitz C, Wunderlich G. A DNA Vaccine Encoding Plasmodium falciparum PfRH5 in Cationic Liposomes for Dermal Tattooing Immunization. Vaccines (Basel) 2020; 8:vaccines8040619. [PMID: 33092277 PMCID: PMC7711581 DOI: 10.3390/vaccines8040619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines are the primary means of controlling and preventing pandemics and outbreaks of pathogens such as bacteria, viruses, and parasites. However, a major drawback of naked DNA-based vaccines is their low immunogenicity and the amount of plasmid DNA necessary to elicit a response. Nano-sized liposomes can overcome this limitation, enhancing both nucleic acid stability and targeting to cells after administration. We tested two different DNA vaccines in cationic liposomes to improve the immunogenic properties. For this, we cloned the coding sequences of the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) either alone or fused with small the small hepatitis virus (HBV) envelope antigen (HBsAg) encoding sequences, potentially resulting in HBsAg particles displaying PfRH5 on their outside. Instead of invasive intraperitoneal or intramuscular immunization, we employed intradermal immunization by tattooing nano-encapsulated DNA. Mice were immunized with 10 μg encapsulated DNA encoding PfRH5 alone or in fusion with HBsAg and this elicited antibodies against schizont extracts (titer of 104). Importantly, only IgG from animals immunized with PfRH5-HBs demonstrated sustained IgG-mediated inhibition in in vitro growth assays showing 58% and 39% blocking activity after 24 and 48 h, respectively. Intradermal tattoo-vaccination of encapsulated PfRH5-HBsAg coding plasmid DNA is effective and superior compared with an unfused PfRH5-DNA vaccine, suggesting that the HBsAg fusion may be advantageous with other vaccine antigens.
Collapse
Affiliation(s)
- Wesley Luzetti Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
| | - Nicole Kleiber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
| | - Christiane Glitz
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany;
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
- Correspondence: ; Tel.: +55-11-3091-7265
| |
Collapse
|
47
|
The Structure of the Cysteine-Rich Domain of Plasmodium falciparum P113 Identifies the Location of the RH5 Binding Site. mBio 2020; 11:mBio.01566-20. [PMID: 32900802 PMCID: PMC7482062 DOI: 10.1128/mbio.01566-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum. It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it—and the other parasite proteins it interacts with—promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet. Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5.
Collapse
|