1
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Ren B, Haase R, Patray S, Nguyen Q, Maco B, Dos Santos Pacheco N, Chang YW, Soldati-Favre D. Architecture of the Toxoplasma gondii apical polar ring and its role in gliding motility and invasion. Proc Natl Acad Sci U S A 2024; 121:e2416602121. [PMID: 39514309 PMCID: PMC11573658 DOI: 10.1073/pnas.2416602121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In Toxoplasma gondii, the conoid comprises a cone with spiraling tubulin fibers, preconoidal rings, and intraconoidal microtubules. This dynamic organelle undergoes extension and retraction through the apical polar ring (APR) during egress, gliding, and invasion. The forces involved in conoid extrusion are beginning to be understood, and its role in directing F-actin flux to the pellicular space, thereby controlling parasite motility, has been proposed. However, the contribution of the APR and its interactions with the conoid remain unclear. To gain insight into the APR architecture, ultrastructure expansion microscopy was applied to pinpoint known and newly identified APR proteins (APR2 to APR7). Our results revealed that the APR is constructed as a fixed multilayered structure. Notably, conditional depletion of APR2 resulted in significant impairments in motility and invasion. Electron microscopy and cryoelectron tomography revealed that depletion of APR2 alters APR integrity, affecting conoid extrusion and causing cytosolic leakage of F-actin. These findings implicate the APR structure in directing the apico-basal flux of F-actin to regulate parasite motility and invasion.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Sharon Patray
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Quynh Nguyen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| |
Collapse
|
3
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
4
|
Haase R, Puthenpurackal A, Maco B, Guérin A, Soldati-Favre D. γ-tubulin complex controls the nucleation of tubulin-based structures in Apicomplexa. Mol Biol Cell 2024; 35:ar121. [PMID: 39046777 PMCID: PMC11449391 DOI: 10.1091/mbc.e24-03-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Apicomplexan parasites rely on tubulin structures throughout their cell and life cycles, particularly in the polymerization of spindle microtubules to separate the replicated nucleus into daughter cells. Additionally, tubulin structures, including conoid and subpellicular microtubules, provide the necessary rigidity and structure for dissemination and host cell invasion. However, it is unclear whether these tubulin structures are nucleated via a highly conserved γ-tubulin complex or through a specific process unique to apicomplexans. This study demonstrates that Toxoplasma γ-tubulin is responsible for nucleating spindle microtubules, akin to higher eukaryotes, facilitating nucleus division in newly formed parasites. Interestingly, γ-tubulin colocalizes with nascent conoid and subpellicular microtubules during division, potentially nucleating these structures as well. Loss of γ-tubulin results in significant morphological defects due to impaired nucleus scission and the loss of conoid and subpellicular microtubule nucleation, crucial for parasite shape and rigidity. Additionally, the nucleation process of tubulin structures involves a concerted action of γ-tubulin and Gamma Tubulin Complex proteins (GCPs), recapitulating the localization and phenotype of γ-tubulin. This study also introduces new molecular markers for cytoskeletal structures and applies iterative expansion microscopy to reveal microtubule-based architecture in Cryptosporidium parvum sporozoites, further demonstrating the conserved localization and probable function of γ-tubulin in Cryptosporidium.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Annet Puthenpurackal
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Amandine Guérin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1221 Geneva 4, Switzerland
| |
Collapse
|
5
|
Engelberg K, Bauwens C, Ferguson DJP, Gubbels MJ. Co-dependent formation of the Toxoplasma gondii sub-pellicular microtubules and inner membrane skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595886. [PMID: 38826480 PMCID: PMC11142238 DOI: 10.1101/2024.05.25.595886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
One of the defining features of apicomplexan parasites is their cytoskeleton composed of alveolar vesicles, known as the inner membrane complex (IMC) undergirded by intermediate-like filament network and an array of subpellicular microtubules (SPMTs). In Toxoplasma gondii, this specialized cytoskeleton is involved in all aspects of the disease-causing lytic cycle, and notably acting as a scaffold for parasite offspring in the internal budding process. Despite advances in our understanding of the architecture and molecular composition, insights pertaining to the coordinated assembly of the scaffold are still largely elusive. Here, T. gondii tachyzoites were dissected by advanced, iterative expansion microscopy (pan-ExM) revealing new insights into the very early sequential formation steps of the tubulin scaffold. A comparative study of the related parasite Sarcocystis neurona revealed that different MT bundling organizations of the nascent SPMTs correlate with the number of central and basal alveolar vesicles. In absence of a so far identified MT nucleation mechanism, we genetically dissected T. gondii γ-tubulin and γ-tubulin complex protein 4 (GCP4). While γ-tubulin depletion abolished the formation of the tubulin scaffold, a set of MTs still formed that suggests SPMTs are nucleated at the outer core of the centrosome. Depletion of GCP4 interfered with the correct assembly of SPMTs into the forming daughter buds, further indicating that the parasite utilizes the γ-tubulin complex in tubulin scaffold formation .
Collapse
Affiliation(s)
- Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Ciara Bauwens
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - David J. P. Ferguson
- Department of Biological and Medical Sciences, Oxford Brookes University, and NDCLS, Oxford University, Oxford, United Kingdom
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
6
|
Currie-Olsen D, Leander BS. Novel cytoskeletal traits in the intestinal parasites (Squirmida, Platyproteum vivax) of Pacific peanut worms (Sipuncula, Phascolosoma agassizii). J Eukaryot Microbiol 2024; 71:e13023. [PMID: 38402546 DOI: 10.1111/jeu.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
The cytoskeletal organization of a squirmid, namely Platyproteum vivax, was investigated with confocal laser scanning microscopy (CLSM) to refine inferences about convergent evolution among intestinal parasites of marine invertebrates. Platyproteum inhabits Pacific peanut worms (Phascolosoma agassizii) and has traits that are similar to other lineages of myzozoan parasites, namely gregarine apicomplexans within Selenidium, such as conspicuous feeding stages, called "trophozoites," capable of dynamic undulations. SEM and CLSM of P. vivax revealed an inconspicuous flagellar apparatus and a uniform array of longitudinal microtubules organized in bundles (LMBs). Extreme flattening of the trophozoites and a consistently oblique morphology of the anterior end provided a reliable way to distinguish dorsal and ventral surfaces. CLSM revealed a novel system of microtubules oriented in the flattened dorsoventral plane. Most of these dorsoventral microtubule bundles (DVMBs) had a punctate distribution and were evenly spaced along a curved line spanning the longitudinal axis of the trophozoites. This configuration of microtubules is inferred to function in maintaining the flattened shape of the trophozoites and facilitate dynamic undulations. The novel traits in Platyproteum are consistent with phylogenomic data showing that this lineage is only distantly related to Selenidium and other marine gregarine apicomplexans with dynamic intestinal trophozoites.
Collapse
Affiliation(s)
- Danja Currie-Olsen
- Department of Zoology, Beaty Biodiversity Research Centre and Museum, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, Quadra Island, British Columbia, Canada
| | - Brian S Leander
- Department of Zoology, Beaty Biodiversity Research Centre and Museum, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
de Souza W. Contribution of microscopy to a better understanding of the anatomy of pathogenic protists. Proc Natl Acad Sci U S A 2024; 121:e2321515121. [PMID: 38621128 PMCID: PMC11046605 DOI: 10.1073/pnas.2321515121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024] Open
Abstract
In this Inaugural Article the author briefly revises its scientific career and how he starts to work with parasitic protozoa. Emphasis is given to his contribution to topics such as a) the structural organization of the surface of protozoa using freeze-fracture and deep-etching; b) the cytoskeleton of protozoa, especially structures such as the subpellicular microtubules of trypanosomatids, the conoid of Toxoplasma gondii, microtubules and inner membrane complex of this protozoan, and the costa of Tritrichomonas foetus; c) the flagellulm of trypanosomatids, that in addition to the axoneme contains a complex network of filaments that constitute the paraflagellar rod; d) special organelles such as the acidocalcisome, hydrogenosome, and glycosome; and e) the highly polarized endocytic pathway found in epimastigote forms of Trypanosoma cruzi.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem—Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Amazonas69065-001, Brazil
| |
Collapse
|
9
|
Sun SY, Segev-Zarko LA, Pintilie GD, Kim CY, Staggers SR, Schmid MF, Egan ES, Chiu W, Boothroyd JC. Cryogenic electron tomography reveals novel structures in the apical complex of Plasmodium falciparum. mBio 2024; 15:e0286423. [PMID: 38456679 PMCID: PMC11005440 DOI: 10.1128/mbio.02864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Stella Y. Sun
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, USA
| | - Li-av Segev-Zarko
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Grigore D. Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, USA
| | - Chi Yong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Sophia R. Staggers
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael F. Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Elizabeth S. Egan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Liffner B, Absalon S. Expansion microscopy of apicomplexan parasites. Mol Microbiol 2024; 121:619-635. [PMID: 37571814 DOI: 10.1111/mmi.15135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Apicomplexan parasites comprise significant pathogens of humans, livestock and wildlife, but also represent a diverse group of eukaryotes with interesting and unique cell biology. The study of cell biology in apicomplexan parasites is complicated by their small size, and historically this has required the application of cutting-edge microscopy techniques to investigate fundamental processes like mitosis or cell division in these organisms. Recently, a technique called expansion microscopy has been developed, which rather than increasing instrument resolution like most imaging modalities, physically expands a biological sample. In only a few years since its development, a derivative of expansion microscopy known as ultrastructure-expansion microscopy (U-ExM) has been widely adopted and proven extremely useful for studying cell biology of Apicomplexa. Here, we review the insights into apicomplexan cell biology that have been enabled through the use of U-ExM, with a specific focus on Plasmodium, Toxoplasma and Cryptosporidium. Further, we summarize emerging expansion microscopy modifications and modalities and forecast how these may influence the field of parasite cell biology in future.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Wang D, Jiang P, Wu X, Zhang Y, Wang C, Li M, Liu M, Yin J, Zhu G. Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan Cryptosporidium parvum. mBio 2024; 15:e0315823. [PMID: 38265238 PMCID: PMC10865969 DOI: 10.1128/mbio.03158-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
12
|
Chelaghma S, Ke H, Barylyuk K, Krueger T, Koreny L, Waller RF. Apical annuli are specialised sites of post-invasion secretion of dense granules in Toxoplasma. eLife 2024; 13:e94201. [PMID: 38270431 PMCID: PMC10857790 DOI: 10.7554/elife.94201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Apicomplexans are ubiquitous intracellular parasites of animals. These parasites use a programmed sequence of secretory events to find, invade, and then re-engineer their host cells to enable parasite growth and proliferation. The secretory organelles micronemes and rhoptries mediate the first steps of invasion. Both secrete their contents through the apical complex which provides an apical opening in the parasite's elaborate inner membrane complex (IMC) - an extensive subpellicular system of flattened membrane cisternae and proteinaceous meshwork that otherwise limits access of the cytoplasm to the plasma membrane for material exchange with the cell exterior. After invasion, a second secretion programme drives host cell remodelling and occurs from dense granules. The site(s) of dense granule exocytosis, however, has been unknown. In Toxoplasma gondii, small subapical annular structures that are embedded in the IMC have been observed, but the role or significance of these apical annuli to plasma membrane function has also been unknown. Here, we determined that integral membrane proteins of the plasma membrane occur specifically at these apical annular sites, that these proteins include SNARE proteins, and that the apical annuli are sites of vesicle fusion and exocytosis. Specifically, we show that dense granules require these structures for the secretion of their cargo proteins. When secretion is perturbed at the apical annuli, parasite growth is strongly impaired. The apical annuli, therefore, represent a second type of IMC-embedded structure to the apical complex that is specialised for protein secretion, and reveal that in Toxoplasma there is a physical separation of the processes of pre- and post-invasion secretion that mediate host-parasite interactions.
Collapse
Affiliation(s)
- Sara Chelaghma
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Thomas Krueger
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ludek Koreny
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ross F Waller
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
13
|
Dos Santos Pacheco N, Tell I Puig A, Guérin A, Martinez M, Maco B, Tosetti N, Delgado-Betancourt E, Lunghi M, Striepen B, Chang YW, Soldati-Favre D. Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins. Nat Commun 2024; 15:379. [PMID: 38191574 PMCID: PMC10774369 DOI: 10.1038/s41467-023-44631-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
In Apicomplexa, rhoptry discharge is essential for invasion and involves an apical vesicle (AV) docking one or two rhoptries to a macromolecular secretory apparatus. Toxoplasma gondii is armed with 10-12 rhoptries and 5-6 microtubule-associated vesicles (MVs) presumably for iterative rhoptry discharge. Here, we have addressed the localization and functional significance of two intraconoidal microtubule (ICMT)-associated proteins instrumental for invasion. Mechanistically, depletion of ICMAP2 leads to a dissociation of the ICMTs, their detachment from the conoid and dispersion of MVs and rhoptries. ICMAP3 exists in two isoforms that contribute to the control of the ICMTs length and the docking of the two rhoptries at the AV, respectively. This study illuminates the central role ICMTs play in scaffolding the discharge of multiple rhoptries. This process is instrumental for virulence in the mouse model of infection and in addition promotes sterile protection against T. gondii via the release of key effectors inducing immunity.
Collapse
Affiliation(s)
- Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Estefanía Delgado-Betancourt
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Tomasina R, González FC, Echeverría S, Cabrera A, Robello C. Insights into the Cell Division of Neospora caninum. Microorganisms 2023; 12:61. [PMID: 38257886 PMCID: PMC10818811 DOI: 10.3390/microorganisms12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Neospora caninum is an apicomplexan protozoan parasite responsible for causing neosporosis in a range of animal species. It results in substantial economic losses in the livestock industry and poses significant health risks to companion and wild animals. Central to its survival and pathogenicity is the process of cell division, which remains poorly understood in this parasite. In this study, we explored the cell division of Neospora caninum using a combination of modern and classic imaging tools, emphasizing its pivotal role in perpetuating the parasite's life cycle and contributing to its ability to persist within host organisms. We described the intricacies of endodyogeny in Neospora caninum, detailing the dynamics of the cell assembly and the nuclear division by ultrastructure expansion microscopy and regular confocal microscopy. Furthermore, we explored the centrosome dynamics, the centrioles and the apicoplast through the advancement of the cell cycle. Our analysis described with unprecedented detail, the endodyogeny in this parasite. By advancing our understanding of these molecular mechanisms, we aimed to inspire innovative strategies for disease management and control, with the ultimate goal of mitigating the devastating impact of neosporosis on animal health and welfare.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Fabiana C. González
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
| | - Soledad Echeverría
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
| | - Andrés Cabrera
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
15
|
Louvel V, Haase R, Mercey O, Laporte MH, Eloy T, Baudrier É, Fortun D, Soldati-Favre D, Hamel V, Guichard P. iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy. Nat Commun 2023; 14:7893. [PMID: 38036510 PMCID: PMC10689735 DOI: 10.1038/s41467-023-43582-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.
Collapse
Affiliation(s)
- Vincent Louvel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marine H Laporte
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Thibaut Eloy
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Étienne Baudrier
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Denis Fortun
- ICube - UMR7357, CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Martinez M, Mageswaran SK, Guérin A, Chen WD, Thompson CP, Chavin S, Soldati-Favre D, Striepen B, Chang YW. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. Nat Commun 2023; 14:4800. [PMID: 37558667 PMCID: PMC10412601 DOI: 10.1038/s41467-023-40520-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The phylum Apicomplexa comprises important eukaryotic parasites that invade host tissues and cells using a unique mechanism of gliding motility. Gliding is powered by actomyosin motors that translocate host-attached surface adhesins along the parasite cell body. Actin filaments (F-actin) generated by Formin1 play a central role in this critical parasitic activity. However, their subcellular origin, path and ultrastructural arrangement are poorly understood. Here we used cryo-electron tomography to image motile Cryptosporidium parvum sporozoites and reveal the cellular architecture of F-actin at nanometer-scale resolution. We demonstrate that F-actin nucleates at the apically positioned preconoidal rings and is channeled into the pellicular space between the parasite plasma membrane and the inner membrane complex in a conoid extrusion-dependent manner. Within the pellicular space, filaments on the inner membrane complex surface appear to guide the apico-basal flux of F-actin. F-actin concordantly accumulates at the basal end of the parasite. Finally, analyzing a Formin1-depleted Toxoplasma gondii mutant pinpoints the upper preconoidal ring as the conserved nucleation hub for F-actin in Cryptosporidium and Toxoplasma. Together, we provide an ultrastructural model for the life cycle of F-actin for apicomplexan gliding motility.
Collapse
Affiliation(s)
- Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William David Chen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Parker Thompson
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Chavin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Dubois DJ, Chehade S, Marq JB, Venugopal K, Maco B, Puig ATI, Soldati-Favre D, Marion S. Toxoplasma gondii HOOK-FTS-HIP Complex is Critical for Secretory Organelle Discharge during Motility, Invasion, and Egress. mBio 2023; 14:e0045823. [PMID: 37093045 PMCID: PMC10294612 DOI: 10.1128/mbio.00458-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Members of the Apicomplexa phylum possess specialized secretory organelles that discharge, apically and in a timely regulated manner, key factors implicated in parasite motility, host cell invasion, egress and subversion of host cellular functions. The mechanisms regulating trafficking and apical docking of these secretory organelles are only partially elucidated. Here, we characterized two conserved endosomal trafficking regulators known to promote vesicle transport and/or fusion, HOOK and Fused Toes (FTS), in the context of organelle discharge in Toxoplasma gondii. TgHOOK and TgFTS form a complex with a coccidian-specific partner, named HOOK interacting partner (HIP). TgHOOK displays an apically enriched vesicular pattern and concentrates at the parasite apical tip where it colocalizes with TgFTS and TgHIP. Functional investigations revealed that TgHOOK is dispensable but fitness conferring. The protein regulates the apical positioning and secretion of micronemes and contributes to egress, motility, host cell attachment, and invasion. Conditional depletion of TgFTS or TgHIP impacted on the same processes but led to more severe phenotypes. This study provides evidence of endosomal trafficking regulators involved in the apical exocytosis of micronemes and possibly as a consequence or directly on the discharge of the rhoptries. IMPORTANCE Toxoplasma gondii affects between 30 and 80% of the human population, poses a life-threatening risk to immunocompromised individuals, and is a cause of abortion and birth defects following congenital transmission. T. gondii belongs to the phylum of Apicomplexa characterized by a set of unique apical secretory organelles called the micronemes and rhoptries. Upon host cell recognition, this obligatory intracellular parasite secretes specific effectors contained in micronemes and rhoptries to promote parasite invasion of host cells and subsequent persistence. Here, we identified novel T. gondii endosomal trafficking regulators and demonstrated that they regulate microneme organelle apical positioning and exocytosis, thereby strongly contributing to host cell invasion and parasite virulence.
Collapse
Affiliation(s)
- David J. Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sylia Chehade
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kannan Venugopal
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Albert Tell I. Puig
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sabrina Marion
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
18
|
Orosz F. p25alpha Domain-Containing Proteins of Apicomplexans and Related Taxa. Microorganisms 2023; 11:1528. [PMID: 37375031 DOI: 10.3390/microorganisms11061528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
TPPP (tubulin polymerization promoting protein)-like proteins contain one or more p25alpha (Pfam05517) domains. TPPP-like proteins occur in different types as determined by their length (e.g., long-, short-, truncated-, and fungal-type TPPP) and include the protein apicortin, which possesses another domain, doublecortin (DCX, Pfam 03607). These various TPPP-like proteins are found in various phylogenomic groups. In particular, short-type TPPPs and apicortin are well-represented in the Myzozoa, which include apicomplexans and related taxa, chrompodellids, dinoflagellates, and perkinsids. The long-, truncated-, and fungal-type TPPPs are not found in the myzozoans. Apicortins are found in all apicomplexans except one piroplasmid species, present in several other myzozoans, and seem to be correlated with the conoid and apical complex. Short-type TPPPs are predominantly found in myzozoans that have flagella, suggesting a role in flagellum assembly or structure.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
19
|
Koreny L, Mercado-Saavedra BN, Klinger CM, Barylyuk K, Butterworth S, Hirst J, Rivera-Cuevas Y, Zaccai NR, Holzer VJC, Klingl A, Dacks JB, Carruthers VB, Robinson MS, Gras S, Waller RF. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 2023; 14:2167. [PMID: 37061511 PMCID: PMC10105704 DOI: 10.1038/s41467-023-37431-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Victoria J C Holzer
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
20
|
Wichers-Misterek JS, Binder AM, Mesén-Ramírez P, Dorner LP, Safavi S, Fuchs G, Lenz TL, Bachmann A, Wilson D, Frischknecht F, Gilberger TW. A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. mBio 2023; 14:e0331822. [PMID: 36625655 PMCID: PMC9973338 DOI: 10.1128/mbio.03318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Mature gametocytes of Plasmodium falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated with the inner membrane complex (IMC). Microtubule-associated proteins (MAPs) define MT populations and modulate interaction with pellicular components. Several MAPs have been identified in Toxoplasma gondii, and homologues can be found in the genomes of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here, we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium, especially within the subgenus Laverania, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in Plasmodium falciparum cause severe morphological defects during gametocytogenesis, leading to round, nonfalciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in Plasmodium berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in invasion of salivary glands, leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites, suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three-membrane pellicle, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the inner membrane complex (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here, we identified, localized, and characterized a novel subpellicular microtubule-associated protein unique to the genus Plasmodium. The knockout of this protein in the human-pathogenic species P. falciparum resulted in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbed microtubule architecture, aberrant sporozoite motility, and decreased transmission efficiency.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Annika M. Binder
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Paolo Mesén-Ramírez
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Lilian Patrick Dorner
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Soraya Safavi
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Tobias L. Lenz
- Biology Department, University of Hamburg, Hamburg, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
22
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
23
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
24
|
Roumégous C, Abou Hammoud A, Fuster D, Dupuy JW, Blancard C, Salin B, Robinson DR, Renesto P, Tardieux I, Frénal K. Identification of new components of the basal pole of Toxoplasma gondii provides novel insights into its molecular organization and functions. Front Cell Infect Microbiol 2022; 12:1010038. [PMID: 36310866 PMCID: PMC9613666 DOI: 10.3389/fcimb.2022.1010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.
Collapse
Affiliation(s)
- Chloé Roumégous
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aya Abou Hammoud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Damien Fuster
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Corinne Blancard
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Bénédicte Salin
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Derrick R. Robinson
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Karine Frénal
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- *Correspondence: Karine Frénal,
| |
Collapse
|
25
|
Holt CC, Boscaro V, Van Steenkiste NWL, Herranz M, Mathur V, Irwin NAT, Buckholtz G, Leander BS, Keeling PJ. Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi. MICROBIOME 2022; 10:161. [PMID: 36180959 PMCID: PMC9523941 DOI: 10.1186/s40168-022-01363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microbial symbioses in marine invertebrates are commonplace. However, characterizations of invertebrate microbiomes are vastly outnumbered by those of vertebrates. Protists and fungi run the gamut of symbiosis, yet eukaryotic microbiome sequencing is rarely undertaken, with much of the focus on bacteria. To explore the importance of microscopic marine invertebrates as potential symbiont reservoirs, we used a phylogenetic-focused approach to analyze the host-associated eukaryotic microbiomes of 220 animal specimens spanning nine different animal phyla. RESULTS Our data expanded the traditional host range of several microbial taxa and identified numerous undescribed lineages. A lack of comparable reference sequences resulted in several cryptic clades within the Apicomplexa and Ciliophora and emphasized the potential for microbial invertebrates to harbor novel protistan and fungal diversity. CONCLUSIONS Microscopic marine invertebrates, spanning a wide range of animal phyla, host various protist and fungal sequences and may therefore serve as a useful resource in the detection and characterization of undescribed symbioses. Video Abstract.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, Canada.
- Hakai Institute, Heriot Bay, Canada.
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
| | - Niels W L Van Steenkiste
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria Herranz
- Department of Botany, University of British Columbia, Vancouver, Canada
- Hakai Institute, Heriot Bay, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Gracy Buckholtz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brian S Leander
- Department of Botany, University of British Columbia, Vancouver, Canada
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
26
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
27
|
Segev-Zarko LA, Dahlberg PD, Sun SY, Pelt DM, Kim CY, Egan ES, Sethian JA, Chiu W, Boothroyd JC. Cryo-electron tomography with mixed-scale dense neural networks reveals key steps in deployment of Toxoplasma invasion machinery. PNAS NEXUS 2022; 1:pgac183. [PMID: 36329726 PMCID: PMC9615128 DOI: 10.1093/pnasnexus/pgac183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Host cell invasion by intracellular, eukaryotic parasites within the phylum Apicomplexa is a remarkable and active process involving the coordinated action of apical organelles and other structures. To date, capturing how these structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to image the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through stimulation with calcium ionophore. Through the application of mixed-scale dense networks for image processing, we developed a highly efficient pipeline for annotation of tomograms, enabling us to identify and extract densities of relevant subcellular organelles and accurately analyze features in 3-D. The results reveal a dramatic change in the shape of the anteriorly located apical vesicle upon its apparent fusion with a rhoptry that occurs only in the stimulated parasites. We also present information indicating that this vesicle originates from the vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. We show that a rosette structure previously proposed to be involved in rhoptry secretion is associated with apical vesicles beyond just the most anterior one. This result, suggesting multiple vesicles are primed to enable rhoptry secretion, may shed light on the mechanisms Toxoplasma employs to enable repeated invasion attempts. Using the same approach, we examine Plasmodium falciparum merozoites and show that they too possess an apical vesicle just beneath a rosette, demonstrating evolutionary conservation of this overall subcellular organization.
Collapse
Affiliation(s)
- Li-av Segev-Zarko
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Peter D Dahlberg
- Department of Chemistry, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Stella Y Sun
- Department of Bioengineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA,Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Daniël M Pelt
- Leiden Institute of Advanced Computer Science, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Chi Yong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA,Department of Pediatrics––Infectious Diseases, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Elizabeth S Egan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA,Department of Pediatrics––Infectious Diseases, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - James A Sethian
- Department of Mathematics, University of California, Berkeley, CA 94720, USA,Center for Advanced Mathematics for Energy Research Application (CAMERA), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Wah Chiu
- To whom correspondence should be addressed:
| | | |
Collapse
|
28
|
Burrell A, Marugan-Hernandez V, Wheeler R, Moreira-Leite F, Ferguson DJP, Tomley FM, Vaughan S. Cellular electron tomography of the apical complex in the apicomplexan parasite Eimeria tenella shows a highly organised gateway for regulated secretion. PLoS Pathog 2022; 18:e1010666. [PMID: 35816515 PMCID: PMC9302750 DOI: 10.1371/journal.ppat.1010666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/21/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022] Open
Abstract
The apical complex of apicomplexan parasites is essential for host cell invasion and intracellular survival and as the site of regulated exocytosis from specialised secretory organelles called rhoptries and micronemes. Despite its importance, there are few data on the three-dimensional organisation and quantification of these organelles within the apical complex or how they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which provides a structural gateway for this specialised apical secretion. Using a combination of cellular electron tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed the entire apical end of Eimeria tenella sporozoites; we report a detailed dissection of the three- dimensional organisation of the conoid and show there is high curvature of the tubulin-containing fibres that might be linked to the unusual comma-shaped arrangement of protofilaments. We quantified the number and location of rhoptries and micronemes within cells and show a highly organised gateway for trafficking and docking of rhoptries, micronemes and microtubule-associated vesicles within the conoid around a set of intra-conoidal microtubules. Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole membrane, providing a structural explanation for how rhoptry proteins may be trafficked between the parasite and the host cytoplasm.
Collapse
Affiliation(s)
- Alana Burrell
- The Royal Veterinary College, University of London, North Mymms, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Richard Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Flavia Moreira-Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - David J. P. Ferguson
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Fiona M. Tomley
- The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
29
|
Possenti A, Di Cristina M, Nicastro C, Lunghi M, Messina V, Piro F, Tramontana L, Cherchi S, Falchi M, Bertuccini L, Spano F. Functional Characterization of the Thrombospondin-Related Paralogous Proteins Rhoptry Discharge Factors 1 and 2 Unveils Phenotypic Plasticity in Toxoplasma gondii Rhoptry Exocytosis. Front Microbiol 2022; 13:899243. [PMID: 35756016 PMCID: PMC9218915 DOI: 10.3389/fmicb.2022.899243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
To gain access to the intracellular cytoplasmic niche essential for their growth and replication, apicomplexan parasites such as Toxoplasma gondii rely on the timely secretion of two types of apical organelles named micronemes and rhoptries. Rhoptry proteins are key to host cell invasion and remodeling, however, the molecular mechanisms underlying the tight control of rhoptry discharge are poorly understood. Here, we report the identification and functional characterization of two novel T. gondii thrombospondin-related proteins implicated in rhoptry exocytosis. The two proteins, already annotated as MIC15 and MIC14, were renamed rhoptry discharge factor 1 (RDF1) and rhoptry discharge factor 2 (RDF2) and found to be exclusive of the Coccidia class of apicomplexan parasites. Furthermore, they were shown to have a paralogous relationship and share a C-terminal transmembrane domain followed by a short cytoplasmic tail. Immunofluorescence analysis of T. gondii tachyzoites revealed that RDF1 presents a diffuse punctate localization not reminiscent of any know subcellular compartment, whereas RDF2 was not detected. Using a conditional knockdown approach, we demonstrated that RDF1 loss caused a marked growth defect. The lack of the protein did not affect parasite gliding motility, host cell attachment, replication and egress, whereas invasion was dramatically reduced. Notably, while RDF1 depletion did not result in altered microneme exocytosis, rhoptry discharge was found to be heavily impaired. Interestingly, rhoptry secretion was reversed by spontaneous upregulation of the RDF2 gene in knockdown parasites grown under constant RDF1 repression. Collectively, our results identify RDF1 and RDF2 as additional key players in the pathway controlling rhoptry discharge. Furthermore, this study unveils a new example of compensatory mechanism contributing to phenotypic plasticity in T. gondii.
Collapse
Affiliation(s)
- Alessia Possenti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chiara Nicastro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Lunghi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Valeria Messina
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Piro
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lorenzo Tramontana
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Cherchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
30
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
31
|
Vigetti L, Labouré T, Roumégous C, Cannella D, Touquet B, Mayer C, Couté Y, Frénal K, Tardieux I, Renesto P. The BCC7 Protein Contributes to the Toxoplasma Basal Pole by Interfacing between the MyoC Motor and the IMC Membrane Network. Int J Mol Sci 2022; 23:5995. [PMID: 35682673 PMCID: PMC9181098 DOI: 10.3390/ijms23115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
T. gondii is a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells. This process requires the assembly of several molecular complexes that, at the nascent pole, encompass structural and myosin motor elements. To characterize a recently identified basal pole marker named BCC7 with respect to the posterior myosin J and myosin C motors, we used conventional biochemistry as well as advanced proteomic and in silico analysis in conjunction with live and super resolution microscopy of transgenic fluorescent tachyzoites. We document that BCC7 forms a ribbed ring below which myosin C motor entities distribute regularly. In addition, we identified-among 13 BCC7 putative partners-two novel and five known members of the inner membrane complex (IMC) family which ends at the apical side of the ring. Therefore, BCC7 could assist the stabilization of the IMC plaques and contribute to the parasite biomechanical properties.
Collapse
Affiliation(s)
- Luis Vigetti
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Tatiana Labouré
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Chloé Roumégous
- Université de Bordeaux, Team Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, 33000 Bordeaux, France; (C.R.); (K.F.)
| | - Dominique Cannella
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France;
| | - Bastien Touquet
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Claudine Mayer
- Université Paris Cité, 75013 Paris, France;
- ICube-UMR7357, CSTB, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
| | - Yohann Couté
- INSERM, University of Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France;
| | - Karine Frénal
- Université de Bordeaux, Team Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, 33000 Bordeaux, France; (C.R.); (K.F.)
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| |
Collapse
|
32
|
Elaagip A, Absalon S, Florentin A. Apicoplast Dynamics During Plasmodium Cell Cycle. Front Cell Infect Microbiol 2022; 12:864819. [PMID: 35573785 PMCID: PMC9100674 DOI: 10.3389/fcimb.2022.864819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.
Collapse
Affiliation(s)
- Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| | - Anat Florentin
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| |
Collapse
|
33
|
Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog 2022; 18:e1010433. [PMID: 35333908 PMCID: PMC8986099 DOI: 10.1371/journal.ppat.1010433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.
Collapse
Affiliation(s)
- Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ava M. Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Sun SY, Segev-Zarko LA, Chen M, Pintilie GD, Schmid MF, Ludtke SJ, Boothroyd JC, Chiu W. Cryo-ET of Toxoplasma parasites gives subnanometer insight into tubulin-based structures. Proc Natl Acad Sci U S A 2022; 119:e2111661119. [PMID: 35121661 PMCID: PMC8832990 DOI: 10.1073/pnas.2111661119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Tubulin is a conserved protein that polymerizes into different forms of filamentous structures in Toxoplasma gondii, an obligate intracellular parasite in the phylum Apicomplexa. Two key tubulin-containing cytoskeletal components are subpellicular microtubules (SPMTs) and conoid fibrils (CFs). The SPMTs help maintain shape and gliding motility, while the CFs are implicated in invasion. Here, we use cryogenic electron tomography to determine the molecular structures of the SPMTs and CFs in vitrified intact and detergent-extracted parasites. Subvolume densities from detergent-extracted parasites yielded averaged density maps at subnanometer resolutions, and these were related back to their architecture in situ. An intralumenal spiral lines the interior of the 13-protofilament SPMTs, revealing a preferred orientation of these microtubules relative to the parasite's long axis. Each CF is composed of nine tubulin protofilaments that display a comma-shaped cross-section, plus additional associated components. Conoid protrusion, a crucial step in invasion, is associated with an altered pitch of each CF. The use of basic building blocks of protofilaments and different accessory proteins in one organism illustrates the versatility of tubulin to form two distinct types of assemblies, SPMTs and CFs.
Collapse
Affiliation(s)
- Stella Y Sun
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305
| | - Li-Av Segev-Zarko
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Muyuan Chen
- Verna Marrs and McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Grigore D Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Steven J Ludtke
- Verna Marrs and McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Cryo-EM Core, Baylor College of Medicine, Houston, TX 77030
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305;
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305;
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| |
Collapse
|
35
|
Parasitology meets cryo-electron tomography – exciting prospects await. Trends Parasitol 2022; 38:365-378. [DOI: 10.1016/j.pt.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022]
|
36
|
Abstract
Toxoplasma gondii is a parasitic protist infecting a wide group of warm-blooded animals, ranging from birds to humans. While this infection is usually asymptomatic in healthy individuals, it can also lead to severe ocular or neurological outcomes in immunocompromised individuals or in developing fetuses. This obligate intracellular parasite has the ability to infect a considerable range of nucleated cells and can propagate in the intermediate host. Yet, under the pressure of the immune system it transforms into an encysted persistent form residing primarily in the brain and muscle tissues. Encysted parasites, which are resistant to current medication, may reactivate and give rise to an acute infection. The clinical outcome of toxoplasmosis depends on a complex balance between the host immune response and parasite virulence factors. Susceptibility to the disease is thus determined by both parasite strains and host species. Recent advances on our understanding of host cell-parasite interactions and parasite virulence have brought new insights into the pathophysiology of T. gondii infection and are summarized here.
Collapse
|
37
|
Dos Santos Pacheco N, Tosetti N, Krishnan A, Haase R, Maco B, Suarez C, Ren B, Soldati-Favre D. Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex. mBio 2021; 12:e0205721. [PMID: 34607461 PMCID: PMC8546650 DOI: 10.1128/mbio.02057-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. IMPORTANCE The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii, the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion. The conditional depletion of the apical cap structural protein AC9 or AC10 leads to a disorganization of SPMTs as well as the loss of the APR and conoid, resulting in a microneme secretion defect and a block in motility, invasion, and egress. We show here that the depletion of the kinase ERK7 phenocopies AC9 and AC10 mutants. The combination of ultrastructure expansion microscopy and NHS-ester staining revealed that ERK7-depleted parasites exhibit a dilated apical plasma membrane and an altered positioning of the rhoptries, while electron microscopy images unambiguously highlight the loss of the APR.
Collapse
Affiliation(s)
- Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Wang C, Wang D, Nie J, Gao X, Yin J, Zhu G. Unique Tubulin-Based Structures in the Zoonotic Apicomplexan Parasite Cryptosporidium parvum. Microorganisms 2021; 9:microorganisms9091921. [PMID: 34576816 PMCID: PMC8464796 DOI: 10.3390/microorganisms9091921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium parasites are known to be highly divergent from other apicomplexan species at evolutionary and biological levels. Here we provide evidence showing that the zoonotic Cryptosporidium parvum also differs from other apicomplexans, such as Toxoplasma gondii, by possessing only two tubulin-based filamentous structures, rather than an array of subpellicular microtubules. Using an affinity-purified polyclonal antibody against C. parvum β-tubulin (CpTubB), we observed a long and a short microtubule that are rigid and stable in the sporozoites and restructured during the intracellular parasite development. In asexual development (merogony), the two restructuring microtubules are present in pairs (one pair per nucleus or merozoites). In sexual developmental stages, tubulin-based structures are detectable only in microgametes, but undetectable in macrogametes. These observations indicate that C. parvum parasites use unique microtubule structures that differ from other apicomplexans as part of their cytoskeletal elements.
Collapse
|
39
|
Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa. Microorganisms 2021; 9:microorganisms9071430. [PMID: 34361866 PMCID: PMC8303630 DOI: 10.3390/microorganisms9071430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Apicomplexa are unicellular eukaryotes that parasitise a wide spectrum of invertebrates and vertebrates, including humans. In their hosts, they occupy a variety of niches, from extracellular cavities (intestine, coelom) to epicellular and intracellular locations, depending on the species and/or developmental stages. During their evolution, Apicomplexa thus developed an exceptionally wide range of unique features to reach these diversified parasitic niches and to survive there, at least long enough to ensure their own transmission or that of their progeny. This review summarises the current state of knowledge on the attachment/invasive and nutrient uptake strategies displayed by apicomplexan parasites, focusing on trophozoite stages of their so far poorly studied basal representatives, which mostly parasitise invertebrate hosts. We describe their most important morphofunctional features, and where applicable, discuss existing major similarities and/or differences in the corresponding mechanisms, incomparably better described at the molecular level in the more advanced Apicomplexa species, of medical and veterinary significance, which mainly occupy intracellular niches in vertebrate hosts.
Collapse
|
40
|
Orosz F. Apicortin, a Constituent of Apicomplexan Conoid/Apical Complex and Its Tentative Role in Pathogen-Host Interaction. Trop Med Infect Dis 2021; 6:tropicalmed6030118. [PMID: 34209186 PMCID: PMC8293464 DOI: 10.3390/tropicalmed6030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.
Collapse
Affiliation(s)
- Ferenc Orosz
- Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
41
|
Sparvoli D, Lebrun M. Unraveling the Elusive Rhoptry Exocytic Mechanism of Apicomplexa. Trends Parasitol 2021; 37:622-637. [PMID: 34045149 DOI: 10.1016/j.pt.2021.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Apicomplexan parasites are unicellular eukaryotes that invade the cells in which they proliferate. The development of genetic tools in Toxoplasma, and then in Plasmodium, in the 1990s allowed the first description of the molecular machinery used for motility and invasion, revealing a crucial role for two different secretory organelles, micronemes and rhoptries. Rhoptry proteins are injected directly into the host cytoplasm not only to promote invasion but also to manipulate host functions. Nonetheless, the injection machinery has remained mysterious, a major conundrum in the field. Here we review recent progress in uncovering structural components and proteins implicated in rhoptry exocytosis and explain how revisiting early findings and considering the evolutionary origins of Apicomplexa contributed to some of these discoveries.
Collapse
Affiliation(s)
- Daniela Sparvoli
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France
| | - Maryse Lebrun
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France.
| |
Collapse
|
42
|
Ben Chaabene R, Lentini G, Soldati-Favre D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 2021; 115:453-465. [PMID: 33368727 DOI: 10.1111/mmi.14674] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Abstract
Apicomplexan parasites are defined by complex apical structures, which are necessary for interaction with incredibly diverse host cells. Two studies now amend a long-standing paradigm by showing conservation of an essential ring structure in the entire phylum.
Collapse
Affiliation(s)
- Julien Guizetti
- Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Friedrich Frischknecht
- Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
44
|
Bertiaux E, Balestra AC, Bournonville L, Louvel V, Maco B, Soldati-Favre D, Brochet M, Guichard P, Hamel V. Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biol 2021; 19:e3001020. [PMID: 33705377 PMCID: PMC7951857 DOI: 10.1371/journal.pbio.3001020] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Aurélia C. Balestra
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Lorène Bournonville
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Vincent Louvel
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Bohumil Maco
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Dominique Soldati-Favre
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Paul Guichard
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| |
Collapse
|
45
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Mathur V, Kwong WK, Husnik F, Irwin NAT, Kristmundsson Á, Gestal C, Freeman M, Keeling PJ. Phylogenomics Identifies a New Major Subgroup of Apicomplexans, Marosporida class nov., with Extreme Apicoplast Genome Reduction. Genome Biol Evol 2021; 13:evaa244. [PMID: 33566096 PMCID: PMC7875001 DOI: 10.1093/gbe/evaa244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The phylum Apicomplexa consists largely of obligate animal parasites that include the causative agents of human diseases such as malaria. Apicomplexans have also emerged as models to study the evolution of nonphotosynthetic plastids, as they contain a relict chloroplast known as the apicoplast. The apicoplast offers important clues into how apicomplexan parasites evolved from free-living ancestors and can provide insights into reductive organelle evolution. Here, we sequenced the transcriptomes and apicoplast genomes of three deep-branching apicomplexans, Margolisiella islandica, Aggregata octopiana, and Merocystis kathae. Phylogenomic analyses show that these taxa, together with Rhytidocystis, form a new lineage of apicomplexans that is sister to the Coccidia and Hematozoa (the lineages including most medically significant taxa). Members of this clade retain plastid genomes and the canonical apicomplexan plastid metabolism. However, the apicoplast genomes of Margolisiella and Rhytidocystis are the most reduced of any apicoplast, are extremely GC-poor, and have even lost genes for the canonical plastidial RNA polymerase. This new lineage of apicomplexans, for which we propose the class Marosporida class nov., occupies a key intermediate position in the apicomplexan phylogeny, and adds a new complexity to the models of stepwise reductive evolution of genome structure and organelle function in these parasites.
Collapse
Affiliation(s)
- Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Waldan K Kwong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Árni Kristmundsson
- Fish Disease Laboratory, Institute for Experimental Pathology, University of Iceland, Reykjavík, Iceland
| | - Camino Gestal
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Mark Freeman
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis, West Indies
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Dos Santos Pacheco N, Soldati-Favre D. Coupling Auxin-Inducible Degron System with Ultrastructure Expansion Microscopy to Accelerate the Discovery of Gene Function in Toxoplasma gondii. Methods Mol Biol 2021; 2369:121-137. [PMID: 34313987 DOI: 10.1007/978-1-0716-1681-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultrastructure expansion microscopy (U-ExM) is an emerging technique allowing the localization of proteins and cellular structures, at a level of resolution only distinguishable previously via immunoelectron microscopy. U-ExM, as its name indicates, is based on the physical expansion of the sample in the three dimensions without altering its internal features. The proteins of interest are later immunostained for their detection. To accelerate the discovery of gene function in the protozoan parasite Toxoplasma gondii, U-ExM can be coupled to the auxin-inducible degron system (mAiD system). This pipeline led to the subcellular localization of the gene product at unprecedented resolution and simultaneously assessed the consequences of conditional gene disruption. In this chapter, we explain the specific U-ExM protocol used for T. gondii tachyzoite samples and provide non-trivial advice and tips to successfully perform the experiments.
Collapse
Affiliation(s)
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|