1
|
Chaudhari UK, Hansen BC. Amylase and lipase levels in the metabolic syndrome and type 2 diabetes: A longitudinal study in rhesus monkeys. Physiol Rep 2024; 12:e16097. [PMID: 38955666 PMCID: PMC11219193 DOI: 10.14814/phy2.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Latent associations between low serum amylase and reduced plasma insulin levels and increased adiposity have been described previously in a small study of asymptomatic middle-aged humans. In the present study, we sought to determine the nature of such changes during the longitudinal progression from metabolically normal to overt type 2 diabetes mellitus (T2DM) in nonhuman primates (NHPs), a disease that appears to be the same in both pathophysiology and underlying mechanisms as that which most commonly develops in middle-aged adult humans. Amylase and lipase levels were characterized in 157 unrelated adult rhesus monkeys (Macaca mulatta); 38% developed T2DM while under study. In all monkeys, multivariable linear regression analysis revealed that amylase could be negatively predicted by % body fat (β -0.29; p = 0.002), age (β -0.27; p = 0.005), and HbA1c (β -0.18; p = 0.037). Amylase levels were positively predicted by lipase levels (β = 0.19; p = -0.024) in all NHPs included in the study. Amylase was significantly lower in NHPs with metabolic syndrome (p < 0.001), prediabetes (PreDM) (p < 0.001), and T2DM (p < 0.001) compared to metabolically normal adult NHPs. Lipase increased in NHPs with PreDM (p = 0.005) and T2DM (p = 0.04) compared to normal NHPs. This is the first longitudinal study of any species, including humans, to show the dynamics of amylase and lipase during the metabolic progression from normal to metabolic syndrome, to PreDM and then to overt T2DM. The extraordinary similarity between humans and monkeys in T2DM, in pancreatic pathophysiology and in metabolic functions give these findings high translational value.
Collapse
Affiliation(s)
- Uddhav K. Chaudhari
- Department of Internal Medicine, Obesity Diabetes and Aging Research Center, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- ICMR‐National Institute for Research in Reproductive and Child Health (NIRRCH)MumbaiIndia
| | - Barbara C. Hansen
- Department of Internal Medicine, Obesity Diabetes and Aging Research Center, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
2
|
Gabriela R, Vera V, Pavel R, Helena R, Igor S, Marie D, Marketa M, Alena MF, Ales T. Discovering the Radiation Biomarkers in the Plasma of Total-Body Irradiated Leukemia Patients. Radiat Res 2024; 201:418-428. [PMID: 38315067 DOI: 10.1667/rade-23-00137.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.
Collapse
Affiliation(s)
- Rydlova Gabriela
- Department of Radiobiology
- Department of Biology, Faculty of Natural Sciences, University of Hradec Králové, Czech Republic, Hradec Králové, Czech Republic
| | | | | | - Rehulkova Helena
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Sirak Igor
- Department of Oncology and Radiotherapy and 4th Department of Internal Medicine - Haematology, University Hospital, Hradec Kralove, Czech Republic
| | - Davidkova Marie
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markova Marketa
- Department of Haematology and Blood Transfusion, University Hospital Na Bulovce, Prague, Czech Republic
| | - Myslivcova-Fucikova Alena
- Department of Biology, Faculty of Natural Sciences, University of Hradec Králové, Czech Republic, Hradec Králové, Czech Republic
| | | |
Collapse
|
3
|
Mukherjee P, Kumar K, Babu B, Purkayastha J, Chandna S. Alterations in the expression pattern of RBC membrane associated proteins (RMAPs) in whole body γ-irradiated Sprague Dawley rats. Int J Radiat Biol 2023; 99:1724-1737. [PMID: 37315317 DOI: 10.1080/09553002.2023.2219726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Peripheral blood serum/plasma proteins are frequently studied for their potential use as radiation exposure biomarkers. Here we report RBC membrane associated proteins (RMAPs), which show alterations in expression level following whole-body γ-irradiation of rats at sub-lethal/lethal doses. MATERIALS AND METHODS RBCs from peripheral blood of Sprague Dawley rats were segregated using the Ficoll-Hypaque method, and membrane fractions were hypotonically isolated at various time points (6 h, 24 h, 48 h) after γ-irradiation at 2 Gy, 5 Gy, and 7.5 Gy doses. Following purification of proteins from these fractions, two-dimensional electrophoresis (2-DE) was carried out. Treatment induced differentially expressed protein spots (≥2 fold increase/decrease) were picked up, trypsinized, and identified using LC-MS/MS analysis. Western immunoblots using protein specific antibodies were used to confirm the results. Gene ontology and interactions of these proteins were also studied. RESULTS From a number of differentially expressed radiation-responsive 2-DE protein spots detected, eight were identified unequivocally using LC-MS/MS. Out of these, actin, cytoplasmic 1 (ACTB) showed detectable yet insignificant variation (<50%) in expression. In contrast, peroxiredoxin-2 (PRDX2) and 26S proteasome regulatory subunit RPN11 (PSMD14) were the two most prominently over-expressed proteins. Five more proteins, namely tropomyosin alpha-3 chain (TPM3), exosome component 6 (EXOSC6), isoform 4 of tropomyosin alpha-1 chain (TPM1), serum albumin (ALB), and the 55 kDa erythrocyte membrane protein (P55) showed distinct alteration in their expression at different time-points and doses. ALB, EXOSC6, and PSMD14 were the most responsive at 2 Gy, albeit at different time-points. While EXOSC6 and PSMD14 showed maximum over-expression (5-12 fold) at 6 h post-irradiation, ALB expression increased progressively (4 up to 7 fold) from 6 h to 48 h. TPM1 showed over-expression (2-3 fold) at all doses and time-points tested. TPM3 showed a dose-dependent response at all time-points studied; with no variation at 2 Gy, ∼2 fold increase at 5 Gy, and 3-6 fold at the highest dose used (7.5 Gy). The p55 protein was over-expressed (∼2.5 fold) only transiently at 24 h following the lethal (7.5 Gy) dose. CONCLUSION This is the first study to report γ-radiation induced alterations in the RBC membrane associated proteins. We are further evaluating the potential of these proteins as radiation biomarkers. Due to the abundance and easy use of RBCs, this approach can prove very useful for detecting ionizing radiation exposure.
Collapse
Affiliation(s)
- Prabuddho Mukherjee
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. S K Majumdar Marg, Timarpur, Delhi, India
| | - Kamendra Kumar
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. S K Majumdar Marg, Timarpur, Delhi, India
| | - Bincy Babu
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. S K Majumdar Marg, Timarpur, Delhi, India
| | - Jubilee Purkayastha
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. S K Majumdar Marg, Timarpur, Delhi, India
| | - Sudhir Chandna
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Brig. S K Majumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
4
|
Peanlikhit T, Honikel L, Liu J, Zimmerman T, Rithidech K. Countermeasure efficacy of apigenin for silicon-ion-induced early damage in blood and bone marrow of exposed C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:44-52. [PMID: 36336369 DOI: 10.1016/j.lssr.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
We investigated the countermeasure efficacy of apigenin (AP), given as a diet supplement, for radiation-induced damage in the hematopoietic tissues collected on day 7 after a total-body exposure of male C57BL/6J mice to 0 or 0.5 Gy of 260 MeV/n silicon (28Si) ions. We gave food with AP at the concentration of 20 mg/kg body weight (bw) (AP20) or without AP (AP0) to mice before and after irradiation. There were four groups of mice (six mice in each): Group 1- Control, i.e. No Radiation (0 Gy) with AP0; Group 2 - Radiation (0.5 Gy) with AP0; Group 3 - No Radiation (0 Gy) with AP20; and Group 4 - Radiation (0.5 Gy) with AP20. The complete blood count (CBC) and differential blood count were performed for each mouse. In the same mouse, an anti-clastogenic activity of AP was evaluated using the in vivo blood-erythrocyte micronucleus (MN) assay. Further in each mouse, bone marrow (BM) cells were collected and used for measuring the levels of activated nuclear factor-kappa B (NF-κB), and pro-inflammatory cytokines (i.e. tumor necrotic factor-alpha (TNF-α), interleukin-1α (IL-1α), IL-1 beta (IL-1β), and IL-6). We used the colony-forming unit assay (CFU-A) as a tool to study the countermeasure efficacy of AP against the harmful effects of 28Si ions on the proliferation of the hematopoietic stem/progenitor cells (HSPCs). Our results showed that AP is highly effective not only in the prevention of leukopenia and thrombocytopenia but also in the enhancement of erythropoiesis and the proliferation of HSPCs. We also observed the potent anti-clastogenic activity of AP given to mice as a diet supplement. Further, we found that AP is very effective in the suppression of activated NF-κB and pro-inflammatory cytokines, suggesting that AP given as a diet supplement protects mice from 28Si-ion-induced damage in the hematopoietic tissues of irradiated male C57BL/6J mice via its anti-inflammation activity.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Jingxuan Liu
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Thomas Zimmerman
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Division of Laboratory Animal Resources, Stony Brook University, Stony Brook, NY 11794-8611, USA
| | - Kanokporn Rithidech
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| |
Collapse
|
5
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
6
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
7
|
Satyamitra M, Reyes Turcu FE, Pantoja-Galicia N, Wathen L. Challenges and Strategies in the Development of Radiation Biodosimetry Tests for Patient Management. Radiat Res 2021; 196:455-467. [PMID: 34143223 PMCID: PMC9923779 DOI: 10.1667/rade-21-00072.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/28/2021] [Indexed: 11/03/2022]
Abstract
The public health and medical response to a radiological or nuclear incident requires the capability to sort, assess, treat, triage and ultimately discharge, as well as to refer or transport people to their next step in medical care. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE), directed by the U.S. Department of Health and Human Services (HHS), facilitates a comprehensive, multi-agency effort to develop and deploy radiation biodosimetry tests. Within HHS, discovery and development of biodosimetry tests includes the National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), the Office of the Assistant Secretary of Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), and the Food and Drug Administration (FDA) as primary partners in this endeavor. The study of radiation biodosimetry has advanced significantly, with expansion into the fields of cytogenetics, genomics, proteomics, metabolomics, lipidomics and transcriptomics. In addition, expansion of traditional cytogenetic assessment methods using automated platforms, and development of laboratory surge capacity networks have helped to advance biodefense preparedness. This article describes various programs and coordinating efforts between NIAID, BARDA and FDA in the development of radiation biodosimetry approaches to respond to radiological and nuclear threats.
Collapse
Affiliation(s)
- Merriline Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Francisca E. Reyes Turcu
- United States Food and Drug Administration (U.S. FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland 20993-0002
| | - Norberto Pantoja-Galicia
- United States Food and Drug Administration (U.S. FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland 20993-0002
| | - Lynne Wathen
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS), Washington, DC 20201
| |
Collapse
|
8
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
9
|
Goans RE, Iddins CJ. The Neutrophil to Lymphocyte Ratio as a Triage Tool in Criticality Accidents. HEALTH PHYSICS 2021; 120:410-416. [PMID: 33229945 DOI: 10.1097/hp.0000000000001342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ABSTRACT During triage of possibly irradiated individuals after a criticality accident or nuclear weapon event, it is necessary to decide whether a patient has experienced a clinically significant dose (> 2 Gy) that would require referral for additional evaluation and medical treatment. This is a binary decision: yes or no. The neutrophil-to-lymphocyte ratio (NLR) is an appropriate decision parameter, is simple to obtain in field operations, and is recognized in clinical medicine as an independent marker of systemic inflammation. NLR is evaluated for usefulness in triage using data from the Radiation Accident Registry at the Radiation Emergency Assistance Center/Training Site (REAC/TS). A criticality accident data set has been prepared using historic complete blood counts from 12 criticality events with 33 patients. In addition, a cohort of 125 normal controls has been assembled for comparison with the radiation accident data. In the control set, NLR is found to be 2.1 ± 0.06 (mean ± SEM) and distributed consistent with a Gaussian distribution. A patient from the 1958 Y-12 criticality accident is presented as an example of the time dependence of NLR after an event. In this case, NLR is statistically elevated above controls from <4 h until ~20 d post-event, and for times >20 d post-event, NLR is less than the control value, returning to baseline > ~40 d. The latter result has been confirmed using late hematological data taken from patients at Hiroshima and Nagasaki, and this appears to be a general finding. Since triage is a binary decision, analyzing NLR with receiver operating characteristic (ROC) statistics is appropriate. Maximizing the Youden J statistic (sensitivity + specificity -1) determines an appropriate decision point. For this data set, the decision point for NLR is found to be 3.33, with area under the curve (AUC) 0.865, sensitivity 0.67, specificity 0.97, positive predictive value (PPV) 0.85, and negative predictive value (NPV) 0.92. Therefore, when a known criticality accident or nuclear weapon event has occurred and if the patient's NLR is greater than 3.33 early post-event, then that person should be referred for further health physics and medical evaluation.
Collapse
Affiliation(s)
| | - Carol J Iddins
- Radiation Emergency Assistance Center/Training Site, Oak Ridge, TN
| |
Collapse
|
10
|
Rios CI, Cassatt DR, Hollingsworth BA, Satyamitra MM, Tadesse YS, Taliaferro LP, Winters TA, DiCarlo AL. Commonalities Between COVID-19 and Radiation Injury. Radiat Res 2021; 195:1-24. [PMID: 33064832 PMCID: PMC7861125 DOI: 10.1667/rade-20-00188.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023]
Abstract
As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Yeabsera S. Tadesse
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
11
|
Ossetrova NI, Stanton P, Krasnopolsky K, Ismail M, Doreswamy A, Hieber KP. Comparison of Biodosimetry Biomarkers for Radiation Dose and Injury Assessment After Mixed-Field (Neutron and Gamma) and Pure Gamma Radiation in the Mouse Total-Body Irradiation Model. HEALTH PHYSICS 2018; 115:743-759. [PMID: 33289997 DOI: 10.1097/hp.0000000000000939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The detonation of a nuclear weapon and the occurrence of a nuclear accident represent possible mass-casualty events with significant exposure to mixed neutron and gamma radiation fields in the first few minutes after the event with the ensuing fallout, extending for miles from the epicenter, that would result primarily in photon (gamma- and/or x-ray) exposure. Circulating biomarkers represent a crucial source of information in a mass-casualty radiation exposure triage scenario. We evaluated multiple blood biodosimetry and organ-specific biomarkers for early-response assessment of radiation exposure using a mouse (B6D2F1, males and females) total-body irradiation model exposed to Co gamma rays over a broad dose range (3-12 Gy) and dose rates of either 0.6 or 1.9 Gy min and compared the results with those obtained after exposure of mice to a mixed field (neutrons and gamma rays) using the Armed Forces Radiobiology Research Institute Co gamma-ray source and TRIGA Mark F nuclear research reactor. The mixed-field studies were performed previously over a broad dose range (1.5-6 Gy), with dose rates of either 0.6 or 1.9 Gy min, and using different proportions of neutrons and gammas: either (67% neutrons + 33% gammas) or (30% neutrons + 70% gammas). Blood was collected 1, 2, 4, and 7 d after total-body irradiation. Results from Co gamma-ray studies demonstrate: (1) significant dose- and time-dependent reductions in circulating mature hematopoietic cells; (2) dose- and time-dependent changes in fms-related tyrosine kinase 3 ligand, interleukins IL-5, IL-10, IL-12, and IL-18, granulocyte colony-stimulating factors, thrombopoietin, erythropoietin, acute-phase proteins (serum amyloid A and lipopolysaccharide binding protein), surface plasma neutrophil (CD45) and lymphocyte (CD27) markers, ratio of CD45 to CD27, procalcitonin but not in intestinal fatty acid binding protein; (3) no significant differences were observed between dose-rate groups in hematological and protein profiles (fms-related tyrosine kinase 3 ligand, IL-5, IL-12, IL-18, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, CD27, CD45, and ratio of CD45 to CD27) for any radiation dose at any time after exposure (p > 0.148); (4) no significant differences were observed between sex groups in hematological and protein profiles (fms-related tyrosine kinase 3 ligand, IL-18, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, serum amyloid A, CD45) for any radiation dose at any time after exposure (p > 0.114); and (5) PCT level significantly increased (p < 0.008) in mice irradiated with 12 Gy on day 7 post-total-body irradiation without significant differences between groups irradiated at dose rates of either 0.6 or 1.9 Gy min (p > 0.287). Radiation-quality comparison results demonstrate that: (1) equivalent doses of pure gamma rays and mixed-field radiation do not produce equivalent biological effects, and hematopoietic syndrome occurs at lower doses of mixed-field radiation; (2) ratios of hematological and protein biomarker means in the Co study compared to mixed-field studies using 2× Co doses vs. 1× TRIGA radiation doses (i.e., 3 Gy Co vs. 1.5 Gy TRIGA) ranged from roughly 0.2 to as high as 26.5 but 57% of all ratios fell within 0.7 and 1.3; and (3) in general, biomarker results are in agreement with the relative biological effectiveness = 1.95 (Dn/Dt = 0.67) reported earlier by Armed Forces Radiobiology Research Institute scientists in mouse survival countermeasure studies.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- 1Uniformed Services University, Armed Forces Radiobiology Research Institute, Scientific Research Department, 4555 South Palmer Road Bethesda, MD 20889-5648
| | | | | | | | | | | |
Collapse
|
12
|
Blakely WF, Bolduc DL, Debad J, Sigal G, Port M, Abend M, Valente M, Drouet M, Hérodin F. Use of Proteomic and Hematology Biomarkers for Prediction of Hematopoietic Acute Radiation Syndrome Severity in Baboon Radiation Models. HEALTH PHYSICS 2018; 115:29-36. [PMID: 29787428 DOI: 10.1097/hp.0000000000000819] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Use of plasma proteomic and hematological biomarkers represents a promising approach to provide useful diagnostic information for assessment of the severity of hematopoietic acute radiation syndrome. Eighteen baboons were evaluated in a radiation model that underwent total-body and partial-body irradiations at doses of Co gamma rays from 2.5 to 15 Gy at dose rates of 6.25 cGy min and 32 cGy min. Hematopoietic acute radiation syndrome severity levels determined by an analysis of blood count changes measured up to 60 d after irradiation were used to gauge overall hematopoietic acute radiation syndrome severity classifications. A panel of protein biomarkers was measured on plasma samples collected at 0 to 28 d after exposure using electrochemiluminescence-detection technology. The database was split into two distinct groups (i.e., "calibration," n = 11; "validation," n = 7). The calibration database was used in an initial stepwise regression multivariate model-fitting approach followed by down selection of biomarkers for identification of subpanels of hematopoietic acute radiation syndrome-responsive biomarkers for three time windows (i.e., 0-2 d, 2-7 d, 7-28 d). Model 1 (0-2 d) includes log C-reactive protein (p < 0.0001), log interleukin-13 (p < 0.0054), and procalcitonin (p < 0.0316) biomarkers; model 2 (2-7 d) includes log CD27 (p < 0.0001), log FMS-related tyrosine kinase 3 ligand (p < 0.0001), log serum amyloid A (p < 0.0007), and log interleukin-6 (p < 0.0002); and model 3 (7-28 d) includes log CD27 (p < 0.0012), log serum amyloid A (p < 0.0002), log erythropoietin (p < 0.0001), and log CD177 (p < 0.0001). The predicted risk of radiation injury categorization values, representing the hematopoietic acute radiation syndrome severity outcome for the three models, produced least squares multiple regression fit confidences of R = 0.73, 0.82, and 0.75, respectively. The resultant algorithms support the proof of concept that plasma proteomic biomarkers can supplement clinical signs and symptoms to assess hematopoietic acute radiation syndrome risk severity.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), 4555 South Palmer Road, Bldg. 42, Bethesda, MD 20889-5648
| | - David L Bolduc
- Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), 4555 South Palmer Road, Bldg. 42, Bethesda, MD 20889-5648
| | - Jeff Debad
- Meso Scale Diagnostics, LLC, 1601 Research Blvd., Rockville, MD 20850
| | - George Sigal
- Meso Scale Diagnostics, LLC, 1601 Research Blvd., Rockville, MD 20850
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Marco Valente
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, 91220 Brétigny sur Orge, France
| | - Michel Drouet
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, 91220 Brétigny sur Orge, France
| | - Francis Hérodin
- Effets Biologiques des Rayonnements Département, Institut de Recherche Biomédicale des Armées, 91220 Brétigny sur Orge, France
| |
Collapse
|
13
|
Rithidech KN, Reungpatthanaphong P, Tungjai M, Jangiam W, Honikel L, Whorton EB. Persistent depletion of plasma gelsolin (pGSN) after exposure of mice to heavy silicon ions. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:83-90. [PMID: 29753417 DOI: 10.1016/j.lssr.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Little is known about plasma proteins that can be used as biomarkers for early and late responses to radiation. The purpose of this study was to determine a link between depletion of plasma gelsolin (pGSN) and cell-death as well as inflammatory responses in the lung (one of the tissues known to be radiosensitive) of the same exposed CBA/CaJ mice after exposure to heavy silicon (28Si) ions. To prevent the development of multiple organ dysfunctions, pGSN (an important component of the extracellular actin-scavenging system) is responsible for the removal of actin that is released into the circulation during inflammation and from dying cells. We evaluated the levels of pGSN in plasma collected from groups of mice (5 mice in each) at 1 week (wk) and 1 month (1 mo) after exposure whole body to different doses of 28Si ions, i.e. 0, 0.1, 0.25, or 0.5 Gy (2 fractionated exposures, 15 days apart that totaled each selected dose). In the same mouse, the measurements of pGSN levels were coupled with the quantitation of injuries in the lung, determined by (a) the levels of cleaved poly (ADP-ribose) polymerase (cleaved-PARP), a marker of apoptotic cell-death, (b) the levels of activated nuclear factor-kappa B (NF-κB) and selected cytokines, i.e. tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6, from tissue-lysates of the lung. Further, the ratio of neutrophils and lymphocytes (N/L) was determined in the same mouse. Our data indicated: (i) the magnitude of pGSN depletion was dependent to radiation dose at both harvest times, (ii) a persistent depletion of pGSN up to 1 mo post-exposure to 0.25 or 0.5 Gy of 28Si ions, (iii) an inverse-correlation between pGSN depletion and increased levels of cleaved-PARP, including activated NF-κB/pro-inflammatory cytokines in the lung, and (iv) at both harvest times, statistically significant increases in the N/L ratio in groups of mice exposed to 0.5 Gy only. Our findings suggested that depletion in pGSN levels reflects not only the responses to 28Si-ion exposure at both harvest times but also early and late-occurring damage.
Collapse
Affiliation(s)
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | |
Collapse
|
14
|
Bolduc DL, Bünger R, Moroni M, Blakely WF. MODELING H-ARS USING HEMATOLOGICAL PARAMETERS: A COMPARISON BETWEEN THE NON-HUMAN PRIMATE AND MINIPIG. RADIATION PROTECTION DOSIMETRY 2016; 172:161-173. [PMID: 27466458 DOI: 10.1093/rpd/ncw159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multiple hematological biomarkers (i.e. complete blood counts and serum chemistry parameters) were used in a multivariate linear-regression fit to create predictive algorithms for estimating the severity of hematopoietic acute radiation syndrome (H-ARS) using two different species (i.e. Göttingen Minipig and non-human primate (NHP) (Macacca mulatta)). Biomarker data were analyzed prior to irradiation and between 1-60 days (minipig) and 1-30 days (NHP) after irradiation exposures of 1.6-3.5 Gy (minipig) and 6.5 Gy (NHP) 60Co gamma ray doses at 0.5-0.6 Gy min-1 and 0.4 Gy min-1, respectively. Fitted radiation risk and injury categorization (RRIC) values and RRIC prediction percent accuracies were compared between the two models. Both models estimated H-ARS severity with over 80% overall predictive power and with receiver operating characteristic curve area values of 0.884 and 0.825. These results based on two animal radiation models support the concept for the use of a hematopoietic-based algorithm for predicting the risk of H-ARS in humans.
Collapse
Affiliation(s)
- David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - Rolf Bünger
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
15
|
Ossetrova NI, Blakely WF, Nagy V, McGann C, Ney PH, Christensen CL, Koch AL, Gulani J, Sigal GB, Glezer EN, Hieber KP. Non-human Primate Total-body Irradiation Model with Limited and Full Medical Supportive Care Including Filgrastim for Biodosimetry and Injury Assessment. RADIATION PROTECTION DOSIMETRY 2016; 172:174-191. [PMID: 27473690 DOI: 10.1093/rpd/ncw176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An assessment of multiple biomarkers from radiation casualties undergoing limited- or full-supportive care including treatment with filgrastim is critical to develop rapid and effective diagnostic triage strategies. The efficacy of filgrastim with full-supportive care was compared with results with limited-supportive care by analyzing survival, necropsy, histopathology and serial blood samples for hematological, serum chemistry and protein profiles in a non-human primate (Macaca mulatta, male and female) model during 60-d post-monitoring period following sham- and total-body irradiation with 6.5 Gy 60Co gamma-rays at 0.6 Gy min-1 Filgrastim (10 μg kg-1) was administered beginning on Day 1 post-exposure and continued daily until neutrophil counts were ≥2,000 μL-1 for two consecutive days. Filgrastim and full-supportive care significantly decreased the pancytopenia duration and resulted in improved animal survival and recovery compared to animals with a limited-supportive care. These findings also identified and validated a multiparametric biomarker panel to support radiation diagnostic device development.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Vitaly Nagy
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Camille McGann
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Patrick H Ney
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Christine L Christensen
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
- Tri-Service Research Laboratory (TRSL), 4141 Petroleum Road, JBSA-Fort Sam Houston, TX 78234, USA
| | - Amory L Koch
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
- Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Jatinder Gulani
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - George B Sigal
- Meso Scale Diagnostics, LLC. (MSD), 1601 Research Boulevard, Rockville, MD 20850, USA
| | - Eli N Glezer
- Meso Scale Diagnostics, LLC. (MSD), 1601 Research Boulevard, Rockville, MD 20850, USA
| | - Kevin P Hieber
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| |
Collapse
|
16
|
Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. RADIATION PROTECTION DOSIMETRY 2016; 172:58-71. [PMID: 27886989 DOI: 10.1093/rpd/ncw295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The U.S. Department of Defense (USDOD) service members are at risk of exposure to ionizing radiation due to radiation accidents, terrorist attacks and national defense activities. The use of biodosimetry is a standard of care for the triage and treatment of radiation injuries. Resources and procedures need to be established to implement a multiple-parameter biodosimetry system coupled with expert medial guidance to provide an integrated radiation diagnostic system to meet USDOD requirements. Current USDOD biodosimetry capabilities were identified and recommendations to fill the identified gaps are provided. A USDOD Multi-parametric Biodosimetry Network, based on the expertise that resides at the Armed Forces Radiobiology Research Institute and the Naval Dosimetry Center, was designed. This network based on the use of multiple biodosimetry modalities would provide diagnostic and triage capabilities needed to meet USDOD requirements. These are not available with sufficient capacity elsewhere but could be needed urgently after a major radiological/nuclear event.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | | | - Ricardo A Reyes
- Defense Health Agency, Walter Reed National Military Medical Command, Bethesda, MD 20889, USA
| | | | - Matthew H Hoefer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | - Thad Sharp
- Naval Dosimetry Center, Bethesda, MD 20889, USA
| | - L Andrew Huff
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
17
|
Christensen DM, Iddins CJ, Parrillo SJ, Glassman ES, Goans RE. Management of ionizing radiation injuries and illnesses, part 4: acute radiation syndrome. J Osteopath Med 2016; 114:702-11. [PMID: 25170040 DOI: 10.7556/jaoa.2014.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To provide proper medical care for patients after a radiation incident, it is necessary to make the correct diagnosis in a timely manner and to ascertain the relative magnitude of the incident. The present article addresses the clinical diagnosis and management of high-dose radiation injuries and illnesses in the first 24 to 72 hours after a radiologic or nuclear incident. To evaluate the magnitude of a high-dose incident, it is important for the health physicist, physician, and radiobiologist to work together and to assess many variables, including medical history and physical examination results; the timing of prodromal signs and symptoms (eg, nausea, vomiting, diarrhea, transient incapacitation, hypotension, and other signs and symptoms suggestive of high-level exposure); and the incident history, including system geometry, source-patient distance, and the suspected radiation dose distribution.
Collapse
Affiliation(s)
- Doran M Christensen
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Carol J Iddins
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Steven J Parrillo
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Erik S Glassman
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| | - Ronald E Goans
- From the Radiation Emergency Assistance Center/Training Site (Drs Christensen, Iddins, and Goans) and the National Security and Emergency Management Programs (Mr Glassman) at the Oak Ridge Institute for Science and Education in Tennessee; the Division of Emergency Medicine at Einstein Medical Center Elkins Park and the Philadelphia University Disaster Medicine and Management Master's Program, both in Philadelphia, Pennsylvania (Dr Parrillo); and the MJW Corporation in Amherst, New York (Dr Goans)
| |
Collapse
|
18
|
Broeckhoven C, Plessis A, Roux SG, Mouton PLFN, Hui C. Beauty is more than skin deep: a non‐invasive protocol for
in vivo
anatomical study using micro‐CT. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chris Broeckhoven
- Department of Botany & Zoology Stellenbosch University Private Bag X1 Matieland 7602 Stellenbosch South Africa
- Theoretical Ecology Group Department of Mathematical Sciences Stellenbosch University Private Bag X1 Matieland 7602 Stellenbosch South Africa
| | - Anton Plessis
- CT Scanner Facility Central Analytical Facilities Stellenbosch University Matieland 7602 Stellenbosch South Africa
| | - Stephan Gerhard Roux
- CT Scanner Facility Central Analytical Facilities Stellenbosch University Matieland 7602 Stellenbosch South Africa
| | | | - Cang Hui
- Theoretical Ecology Group Department of Mathematical Sciences Stellenbosch University Private Bag X1 Matieland 7602 Stellenbosch South Africa
- Theoretical and Physical Biosciences African Institute for Mathematical Sciences Cape Town 7945 South Africa
| |
Collapse
|
19
|
Freitas RB, González P, Martins NMB, Andrade ER, Cesteros Morante MJ, Conles Picos I, Costilla García S, Bauermann LF, Barrio JP. Ameliorative effect of black grape juice on systemic alterations and mandibular osteoradionecrosis induced by whole brain irradiation in rats. Int J Radiat Biol 2016; 93:204-213. [PMID: 27600691 DOI: 10.1080/09553002.2017.1231945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Whole brain irradiation (WBI) causes a variety of secondary side-effects including anorexia and bone necrosis. We evaluated the radiomodifying effect of black grape juice (BGJ) on WBI alterations in rats measuring food and water intake, body weight, hemogram, and morphological and histological mandibular parameters. MATERIALS AND METHODS Forty male rats (200-250 g) were exposed to eight sessions of cranial X-ray irradiation. The total dose absorbed was 32 Gy delivered over 2 weeks. Four groups were defined: (i) NG: non-irradiated, glucose and fructose solution-supplemented (GFS); (ii) NJ: non-irradiated, BGJ-supplemented; (iii) RG: irradiated, GFS-supplemented; and (iv) RJ: irradiated, BGJ-supplemented. Rats received daily BGJ or GFS dosing by gavage starting 4 days before, continuing during, and ending 4 days after WBI. RESULTS RJ rats ingested more food and water and showed less body weight loss than RG rats during the irradiation period. Forty days after WBI, irradiated animals started losing weight again compared with controls as a consequence of masticatory hypofunction by mandibular osteoradionecrosis (ORN). Osteoclastic activity and inflammation were apparent in RG rat mandibles. BGJ was able to attenuate the severity of ORN as well as to improve white and red blood cell counts. CONCLUSIONS Fractionated whole brain irradiation induces mandibular changes that interfere with normal feeding. BGJ can be used to mitigate systemic side-effects of brain irradiation and ORN.
Collapse
Affiliation(s)
- Robson B Freitas
- a Post-graduate program in Pharmaceutical Sciences, University of Santa Maria , Santa Maria , Rio Grande do Sul , Brazil
| | - Paquita González
- b Department of Biomedical Sciences , University of León , León , Spain
| | - Nara Maria B Martins
- c Department of Pathology , University of Santa Maria , Santa Maria , Rio Grande do Sul , Brazil
| | - Edson R Andrade
- d Nuclear Engineering Program, Military Institute of Engineering , Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Iban Conles Picos
- e Servicio de Radiofísica y Protección Radiológica, Hospital Universitario de León , León , Spain
| | | | - Liliane F Bauermann
- g Department of Physiology and Pharmacology , University of Santa Maria , Santa Maria , Rio Grande do Sul , Brazil
| | - Juan Pablo Barrio
- b Department of Biomedical Sciences , University of León , León , Spain
| |
Collapse
|
20
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
21
|
Koch A, Gulani J, King G, Hieber K, Chappell M, Ossetrova N. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model. PLoS One 2016; 11:e0161079. [PMID: 27579862 PMCID: PMC5007026 DOI: 10.1371/journal.pone.0161079] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023] Open
Abstract
Acute radiation sickness (ARS) following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI) has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS) developed at the Veterinary Sciences Department (VSD) of the Armed Forces Radiobiology Research Institute (AFRRI) to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male) TBI model (6–14 Gy, 60Co γ-rays at 0.6 Gy min-1), which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated), 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors). In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2–4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies.
Collapse
Affiliation(s)
- Amory Koch
- Veterinary Science Department, Armed Forces Radiobiology Research Institute (AFRRI) Uniformed Services University (USU), Bethesda, Maryland, United States of America
- * E-mail:
| | - Jatinder Gulani
- Veterinary Science Department, Armed Forces Radiobiology Research Institute (AFRRI) Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Gregory King
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Kevin Hieber
- The Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Mark Chappell
- Veterinary Science Department, Armed Forces Radiobiology Research Institute (AFRRI) Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Natalia Ossetrova
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU), Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Ossetrova NI, Ney PH, Condliffe DP, Krasnopolsky K, Hieber KP. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model. HEALTH PHYSICS 2016; 111:134-144. [PMID: 27356057 DOI: 10.1097/hp.0000000000000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- *Uniformed Services University (USU), Armed Forces Radiobiology Research Institute (AFRRI), Scientific Research Department, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603; †United States Army Medical Command (MEDCOM), United States Army Medical Research Institute of Chemical Defense (USAMRICD), 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400
| | | | | | | | | |
Collapse
|
23
|
Jang WG, Park JY, Lee J, Bang E, Kim SR, Lee EK, Yun HJ, Kang CM, Hwang GS. Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS (1)H NMR and solution (1)H NMR. NMR IN BIOMEDICINE 2016; 29:507-518. [PMID: 26871685 DOI: 10.1002/nbm.3485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Excess exposure to ionizing radiation generates reactive oxygen species and increases the cellular inflammatory response by modifying various metabolic pathways. However, an investigation of metabolic perturbations and organ-specific responses based on the amount of radiation during the acute phase has not been conducted. In this study, high-resolution magic-angle-spinning (HR-MAS) NMR and solution NMR-based metabolic profiling were used to investigate dose-dependent metabolic changes in multiple organs and tissues--including the jejunum, spleen, liver, and plasma--of rats exposed to X-ray radiation. The organs, tissues, and blood samples were obtained 24, 48, and 72 h after exposure to low-dose (2 Gy) and high-dose (6 Gy) X-ray radiation and subjected to metabolite profiling and multivariate analyses. The results showed the time course of the metabolic responses, and many significant changes were detected in the high-dose compared with the low-dose group. Metabolites with antioxidant properties showed acute responses in the jejunum and spleen after radiation exposure. The levels of metabolites related to lipid and protein metabolism were decreased in the jejunum. In addition, amino acid levels increased consistently at all post-irradiation time points as a consequence of activated protein breakdown. Consistent with these changes, plasma levels of tricarboxylic acid cycle intermediate metabolites decreased. The liver did not appear to undergo remarkable metabolic changes after radiation exposure. These results may provide insight into the major metabolic perturbations and mechanisms of the biological systems in response to pathophysiological damage caused by X-ray radiation.
Collapse
Affiliation(s)
- Won Gyo Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Bang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - So Ra Kim
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Eun Kyeong Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyun Jin Yun
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Mo Kang
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Do VH, Tran PL, Ni L, Park KH. A continuous coupled spectrophotometric assay for debranching enzyme activity using reducing end-specific α-glucosidase. Anal Biochem 2016; 492:21-6. [DOI: 10.1016/j.ab.2015.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
|
25
|
Application of multivariate modeling for radiation injury assessment: a proof of concept. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:685286. [PMID: 25165485 PMCID: PMC4140144 DOI: 10.1155/2014/685286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
Abstract
Multivariate radiation injury estimation algorithms were formulated for estimating severe hematopoietic acute radiation syndrome (H-ARS) injury (i.e., response category three or RC3) in a rhesus monkey total-body irradiation (TBI) model. Classical CBC and serum chemistry blood parameters were examined prior to irradiation (d 0) and on d 7, 10, 14, 21, and 25 after irradiation involving 24 nonhuman primates (NHP) (Macaca mulatta) given 6.5-Gy 60Co Υ-rays (0.4 Gy min−1) TBI. A correlation matrix was formulated with the RC3 severity level designated as the “dependent variable” and independent variables down selected based on their radioresponsiveness and relatively low multicollinearity using stepwise-linear regression analyses. Final candidate independent variables included CBC counts (absolute number of neutrophils, lymphocytes, and platelets) in formulating the “CBC” RC3 estimation algorithm. Additionally, the formulation of a diagnostic CBC and serum chemistry “CBC-SCHEM” RC3 algorithm expanded upon the CBC algorithm model with the addition of hematocrit and the serum enzyme levels of aspartate aminotransferase, creatine kinase, and lactate dehydrogenase. Both algorithms estimated RC3 with over 90% predictive power. Only the CBC-SCHEM RC3 algorithm, however, met the critical three assumptions of linear least squares demonstrating slightly greater precision for radiation injury estimation, but with significantly decreased prediction error indicating increased statistical robustness.
Collapse
|
26
|
Blakely WF, Sandgren DJ, Nagy V, Kim SY, Sigal GB, Ossetrova NI. Further biodosimetry investigations using murine partial-body irradiation model. RADIATION PROTECTION DOSIMETRY 2014; 159:46-51. [PMID: 24757174 DOI: 10.1093/rpd/ncu127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study evaluates both the effects of physical restraint and use of candidate biomarkers in a CD2F1 male mouse partial-body irradiation model for biological dosimetry diagnostic assays. Mice were irradiated (6-Gy, 250-kVp X ray) to 3/3rd (total body), 2/3rd (gut and torso), 1/3rd (gut only) and 0/3rd (sham) of total body. Blood was sampled for haematology and blood plasma proteomic biomarkers at 1 and 2 d after exposure. Increases in the body fraction exposed showed progressive decreases in lymphocyte counts and increases in the neutrophil-to-lymphocyte ratios with no significant differences in the neutrophil and platelet counts. The radioresponse for plasma biomarker Flt3L showed proportional increases; however, G-CSF and SAA levels exhibited dramatic and non-proportional increases in levels. Physical restraint at 1 d post-exposure increased lymphocyte counts and SAA, decreased neutrophil-to-lymphocyte ratio and Flt3L and showed no effects on neutrophil and platelet counts or G-CSF.
Collapse
Affiliation(s)
- W F Blakely
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - D J Sandgren
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - V Nagy
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - S-Y Kim
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | - G B Sigal
- Meso Scale Diagnostics, Rockville, MD 20850, USA
| | - N I Ossetrova
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
27
|
Ossetrova NI, Condliffe DP, Ney PH, Krasnopolsky K, Hieber KP, Rahman A, Sandgren DJ. Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model. HEALTH PHYSICS 2014; 106:772-786. [PMID: 24776912 DOI: 10.1097/hp.0000000000000094] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nuclear accidents or terrorist attacks could expose large numbers of people to ionizing radiation. Early biomarkers of radiation injury will be critical for triage, treatment, and follow-up of such individuals. The authors evaluated the utility of multiple blood biomarkers for early-response assessment of radiation exposure using a murine (CD2F1, males) total-body irradiation (TBI) model exposed to ⁶⁰Co γ rays (0.6 Gy min⁻¹) over a broad dose range (0-14 Gy) and timepoints (4 h-5 d). Results demonstrate: 1) dose-dependent changes in hematopoietic cytokines: Flt-3 ligand (Flt3L), interleukin 6 (IL-6), granulocyte colony stimulating factor (G-CSF), thrombopoietin (TPO), erythropoietin (EPO), and acute phase protein serum amyloid A (SAA); 2) dose-dependent changes in blood cell counts: lymphocytes, neutrophils, platelets, and ratio of neutrophils to lymphocytes; 3) protein results coupled with peripheral blood cell counts established very successful separation of groups irradiated to different doses; and 4) enhanced separation of dose was observed as the number of biomarkers increased. Results show that the dynamic changes in the levels of SAA, IL-6, G-CSF, and Flt3L reflect the time course and severity of acute radiation syndrome (ARS) and may function as prognostic indicators of ARS outcome. These results also demonstrate proof-in-concept that plasma proteins show promise as a complimentary approach to conventional biodosimetry for early assessment of radiation exposures and, coupled with peripheral blood cell counts, provide early diagnostic information to manage radiation casualty incidents effectively, closing a gap in capabilities to rapidly and effectively assess radiation exposure early, especially needed in case of a mass-casualty radiological incident.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- *Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), 8901 Wisconsin Avenue, Bethesda, MD 20889-5603
| | | | | | | | | | | | | |
Collapse
|
28
|
Sullivan JM, Prasanna PGS, Grace MB, Wathen L, Wallace RL, Koerner JF, Coleman CN. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. HEALTH PHYSICS 2013; 105:540-54. [PMID: 24162058 PMCID: PMC3810609 DOI: 10.1097/hp.0b013e31829cf221] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Following a mass-casualty nuclear disaster, effective medical triage has the potential to save tens of thousands of lives. In order to best use the available scarce resources, there is an urgent need for biodosimetry tools to determine an individual's radiation dose. Initial triage for radiation exposure will include location during the incident, symptoms, and physical examination. Stepwise triage will include point of care assessment of less than or greater than 2 Gy, followed by secondary assessment, possibly with high throughput screening, to further define an individual's dose. Given the multisystem nature of radiation injury, it is unlikely that any single biodosimetry assay can be used as a standalone tool to meet the surge in capacity with the timeliness and accuracy needed. As part of the national preparedness and planning for a nuclear or radiological incident, the authors reviewed the primary literature to determine the capabilities and limitations of a number of biodosimetry assays currently available or under development for use in the initial and secondary triage of patients. Understanding the requirements from a response standpoint and the capability and logistics for the various assays will help inform future biodosimetry technology development and acquisition. Factors considered include: type of sample required, dose detection limit, time interval when the assay is feasible biologically, time for sample preparation and analysis, ease of use, logistical requirements, potential throughput, point-of-care capability, and the ability to support patient diagnosis and treatment within a therapeutically relevant time point.
Collapse
Affiliation(s)
- Julie M. Sullivan
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- AAAS Science and Technology Policy Fellow, Washington DC
| | - Pataje G. S. Prasanna
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Marcy B. Grace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Lynne Wathen
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Rodney L. Wallace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - John F. Koerner
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - C. Norman Coleman
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| |
Collapse
|
29
|
Rithidech KN, Tungjai M, Reungpatthanaphong P, Honikel L, Simon SR. Attenuation of oxidative damage and inflammatory responses by apigenin given to mice after irradiation. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:29-38. [DOI: 10.1016/j.mrgentox.2012.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 04/08/2023]
|
30
|
De Freitas RB, Augusti PR, De Andrade ER, Rother FC, Rovani BT, Quatrin A, Alves NM, Emanuelli T, Bauermann LF. Black Grape Juice Protects Spleen from Lipid Oxidation Induced by Gamma Radiation in Rats. J Food Biochem 2012. [DOI: 10.1111/j.1745-4514.2012.00651.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Dainiak N, Gent RN, Carr Z, Schneider R, Bader J, Buglova E, Chao N, Coleman CN, Ganser A, Gorin C, Hauer-Jensen M, Huff LA, Lillis-Hearne P, Maekawa K, Nemhauser J, Powles R, Schünemann H, Shapiro A, Stenke L, Valverde N, Weinstock D, White D, Albanese J, Meineke V. Literature review and global consensus on management of acute radiation syndrome affecting nonhematopoietic organ systems. Disaster Med Public Health Prep 2011; 5:183-201. [PMID: 21986999 PMCID: PMC3638239 DOI: 10.1001/dmp.2011.73] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The World Health Organization convened a panel of experts to rank the evidence for medical countermeasures for management of acute radiation syndrome (ARS) in a hypothetical scenario involving the hospitalization of 100 to 200 victims. The goal of this panel was to achieve consensus on optimal management of ARS affecting nonhematopoietic organ systems based upon evidence in the published literature. METHODS English-language articles were identified in MEDLINE and PubMed. Reference lists of retrieved articles were distributed to conferees in advance of and updated during the meeting. Published case series and case reports of ARS, publications of randomized controlled trials of relevant interventions used to treat nonirradiated individuals, reports of studies in irradiated animals, and prior recommendations of subject matter experts were selected. Studies were extracted using the Grading of Recommendations Assessment Development and Evaluation system. In cases in which data were limited or incomplete, a narrative review of the observations was made. RESULTS No randomized controlled trials of medical countermeasures have been completed for individuals with ARS. Reports of countermeasures were often incompletely described, making it necessary to rely on data generated in nonirradiated humans and in experimental animals. A strong recommendation is made for the administration of a serotonin-receptor antagonist prophylactically when the suspected exposure is >2 Gy and topical steroids, antibiotics, and antihistamines for radiation burns, ulcers, or blisters; excision and grafting of radiation ulcers or necrosis with intractable pain; provision of supportive care to individuals with neurovascular syndrome; and administration of electrolyte replacement therapy and sedatives to individuals with significant burns, hypovolemia, and/or shock. A strong recommendation is made against the use of systemic steroids in the absence of a specific indication. A weak recommendation is made for the use of fluoroquinolones, bowel decontamination, loperamide, and enteral nutrition, and for selective oropharyngeal/digestive decontamination, blood glucose maintenance, and stress ulcer prophylaxis in critically ill patients. CONCLUSIONS High-quality studies of therapeutic interventions in humans exposed to nontherapeutic radiation are not available, and because of ethical concerns regarding the conduct of controlled studies in humans, such studies are unlikely to emerge in the near future.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Yale University School of Medicine and Yale-New Haven Health-Bridgeport Hospital, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Blakely WF, Sandgren DJ, Nagy V, Kim SY, Ossetrova NI. Murine partial-body radiation exposure model for biodosimetry studies — Preliminary report. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Ossetrova N, Sandgren D, Blakely W. C-reactive protein and serum amyloid A as early-phase and prognostic indicators of acute radiation exposure in nonhuman primate total-body irradiation model. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Bocharova V, Halámek J, Zhou J, Strack G, Wang J, Katz E. Alert-type biological dosimeter based on enzyme logic system. Talanta 2011; 85:800-3. [DOI: 10.1016/j.talanta.2011.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/12/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023]
|
35
|
Drouet M, Hérodin F. Radiation victim management and the haematologist in the future: time to revisit therapeutic guidelines? Int J Radiat Biol 2010; 86:636-48. [PMID: 20597842 DOI: 10.3109/09553001003789604] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The use of nuclear/radiation devices against the civilian population is now a realistic scenario. Haematopoietic syndrome is the primary therapeutic challenge in the case of whole body acute exposure over 2 Grays (Gy) whereas burns and combined injuries would be frequently observed in myelo-suppressed patients. Optimisation of scoring and treatments are important goals to achieve. CONCLUSION The European Response Category (RC) concept represents an attempt to integratively assess haematological/extrahematological radiation-induced lesions. Based on the frequently observed heterogeneity of bone marrow damage in accidental/intentional irradiations, the stimulation of residual stem cells using granulocyte Colony-stimulating factor remains the therapeutic standard after exposure to less than the lethal dose 50 % (Haematopoietic[H] score 3-H3). Allogeneic stem cell transplantation is indicated in case of medullary eradication (Haematopoietic score 4-H4) whereas extramedullary toxicity may determine the outcome. Especially in case of numerous casualties exhibiting acute radiation syndrome, the administration of survival factor combinations remains questionable, at least as a palliative treatment. In addition pleiotropic cytokines injection such as erythropoietin and keratinocyte growth factor and grafting multipotent mesenchymal stem cells - from underexposed bone marrow areas or fat tissues - could be proposed to prevent multiple organ failure syndrome development. Multi-disciplinary teams should be prepared to manage such patients.
Collapse
|
36
|
Pandey BN, Kumar A, Tiwari P, Mishra KP. Radiobiological basis in management of accidental radiation exposure. Int J Radiat Biol 2010; 86:613-35. [DOI: 10.3109/09553001003746059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Dainiak N. Rationale and recommendations for treatment of radiation injury with cytokines. HEALTH PHYSICS 2010; 98:838-842. [PMID: 20445391 DOI: 10.1097/hp.0b013e3181b3fce5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Treatment of the hematopoietic syndrome includes replacement with blood products, stem cell transplantation, and the use of hematopoietic cytokines. Cytokines have predictable effects based upon their mechanism of action. Those acting on early hematopoietic stem/progenitor cells have multilineage effects, while those acting upon more differentiated progenitor cells have lineage restricted activity. The selection of cytokines for treatment of acute hematopoietic toxicity in man is largely based upon results of experiments in non-human primates and canines. Since randomized controlled trials are unable to be performed in man after accidental radiation exposure, recommendations for therapy are largely based upon expert opinion. There is general agreement that granulocyte colony-stimulating factor (G-CSF) is an acceptable choice for treatment of individuals receiving a whole-body dose of 3 Gy or more, or 2 Gy or more in the presence of mechanical trauma and/or burns (i.e., combined injury). G-CSF is available in radiation stockpiles that have been developed in the U.S. and by the World Health Organization.
Collapse
|
38
|
Riecke A, Ruf CG, Meineke V. Assessment of radiation damage-the need for a multiparametric and integrative approach with the help of both clinical and biological dosimetry. HEALTH PHYSICS 2010; 98:160-7. [PMID: 20065678 DOI: 10.1097/hp.0b013e3181b97306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Accidental exposure to ionizing radiation leads to damage on different levels of the biological organization of an organism. Depending on exposure conditions, such as the nature of radiation, time and affected organs and organ systems, the clinical endpoint of radiation damage and the resulting acute and chronic radiation syndromes may vary to a great extent. Exposure situations range from purely localized radiation scenarios and partial-body exposures to whole-body exposures. Therefore, clinical pictures vary from localized radiation injuries up to the extreme situation of radiation-induced multi-organ involvement and failure requiring immediate, intensive, and interdisciplinary medical treatment. These totally different and complex clinical situations not only appear most different in clinical diagnostic and therapeutic aspects, but also, due to different levels of underlying biological damage, biological indicators of effects may vary to a wide extent. This fact means that an exact assessment of the extent of radiation damage within individual patients can only be performed when taking into consideration clinical as well as different biological indicators. Among the clinical indicators, routine laboratory parameters such as blood counts and the documentation of clinical signs and symptoms (using such methods as the METREPOL system) are the key parameters, but dicentric assay, the gold standard for biological dosimetry, and other methods under development, such as the gamma-H2AX focus assay or gene expression analysis of radiosensitive genes, must also be taken into account. Each method provides best results in different situations, or, in other words, there are methods that work better in a specific exposure condition or at a given time of examination (e.g., time after exposure) than others. Some methods show results immediately; others require days to weeks until results are available for clinical decision-making. Therefore, to provide the best basis for triage and planning and to provide medical treatment after accidental radiation exposure, different and independent diagnostic procedures integrating all clinical aspects as well as different biological indicators have to be applied. This multiparametric approach has been suggested after recent radiation accidents but needs to be adopted and standardized worldwide. A new integrative concept is shown and discussed.
Collapse
Affiliation(s)
- Armin Riecke
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstrasse 11, 80937 Munich.
| | | | | |
Collapse
|
39
|
Blakely WF, Ossetrova NI, Whitnall MH, Sandgren DJ, Krivokrysenko VI, Shakhov A, Feinstein E. Multiple parameter radiation injury assessment using a nonhuman primate radiation model-biodosimetry applications. HEALTH PHYSICS 2010; 98:153-9. [PMID: 20065677 DOI: 10.1097/hp.0b013e3181b0306d] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There are urgent needs to establish capability to rapidly assess radiation injury in mass casualty and population monitoring scenarios. This study's objective was to evaluate several currently available biomarkers that can provide early diagnostic triage information after radiation exposure. Hematology and blood chemistry measurements were performed on samples derived from a nonhuman primate (Macaca mulatta; n = 8) total-body irradiation (TBI) model (6.5-Gy Co gamma rays at 0.6 Gy min). The results from this study demonstrate: a) time course for changes in C-reactive protein (CRP) (-2 d to 15 d after TBI); b) time-dependent (-2 d, 1-4 d after TBI) changes in blood cell counts [i.e., lymphocytes decrease to 5-8% of pre-study levels at 1 to 4 d after TBI; ratio of neutrophil to lymphocytes increases by 44 +/- 18 (p = 0.016), 12 +/- 4 (p = 0.001), 8 +/- 2 (p = 0.0020), and 5.0 +/- 2 (p = 0.002) fold at 1, 2, 3, and 4 days after TBI, respectively]; and c) 4.5 +/- 0.8 (p = 0.002)-fold increases in serum amylase activity 1 d after TBI. Plasma CRP levels at 1 d after exposure were 22 +/- 13 (p = 0.0005) (females) and 44 +/- 11 (p = 0.0004) (males)-fold elevated above baseline levels. One hundred percent successful separation of samples from exposed macaques (24 h after TBI) vs. samples from the same macaque taken before irradiation using a discriminant analysis based on four biomarkers (i.e., lymphocytes, neutrophils, ratio of neutrophils to lymphocytes, and serum amylase activity) was demonstrated. These results demonstrate the practical use of multiple parameter biomarkers to enhance the discrimination of exposed vs. non-exposed individuals and justify a follow-on rhesus macaque dose-response study.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Prasanna PGS, Blakely WF, Bertho JM, Chute JP, Cohen EP, Goans RE, Grace MB, Lillis-Hearne PK, Lloyd DC, Lutgens LCHW, Meineke V, Ossetrova NI, Romanyukha A, Saba JD, Weisdorf DJ, Wojcik A, Yukihara EG, Pellmar TC. Synopsis of partial-body radiation diagnostic biomarkers and medical management of radiation injury workshop. Radiat Res 2010; 173:245-53. [PMID: 20095857 PMCID: PMC8914528 DOI: 10.1667/rr1993.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Radiation exposures from accidents, nuclear detonations or terrorist incidents are unlikely to be homogeneous; however, current biodosimetric approaches are developed and validated primarily in whole-body irradiation models. A workshop was held at the Armed Forces Radiobiology Research Institute in May 2008 to draw attention to the need for partial-body biodosimetry, to discuss current knowledge, and to identify the gaps to be filled. A panel of international experts and the workshop attendees discussed the requirements and concepts for a path forward. This report addresses eight key areas identified by the Workshop Program Committee for future focus: (1) improved cytogenetics, (2) clinical signs and symptoms, (3) cutaneous bioindicators, (4) organ-specific biomarkers, (5) biophysical markers of dose, (6) integrated diagnostic approaches, (7) confounding factors, and (8) requirements for post-event medical follow-up. For each area, the status, advantages and limitations of existing approaches and suggestions for new directions are presented.
Collapse
Affiliation(s)
- Pataje G. S. Prasanna
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Jean-Marc Bertho
- Institut de Radioprotection et de Sûreté Nucléaire, 92262 Fontenay aux roses cedex, France
| | - John P. Chute
- Division of Cellular Therapy and Stem Cell Transplantation, Duke University Medical Center, Durham, North Carolina 27710
| | - Eric P. Cohen
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ronald E. Goans
- MJW Corp., Amherst, New York 14228, and Radiation Emergency Assistance Center/Training Site, Oak Ridge, Tennessee, 37830
| | - Marcy B. Grace
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Patricia K. Lillis-Hearne
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - David C. Lloyd
- UK Health Protection Agency, Centre for Radiation, Chemical, and Environmental Hazards, Chilton, OX11 0RQ, United Kingdom
| | - Ludy C. H. W. Lutgens
- Maastricht Radiotherapy and Oncology Clinic (MAASTRO Clinic), Maastricht, the Netherlands
| | - Viktor Meineke
- Bundeswehr Institute of Radiobiology, D-80937 Munich, Germany
| | - Natalia I. Ossetrova
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alexander Romanyukha
- Naval Dosimetry Center, Bethesda, Maryland 20889, and Uniformed Services University, Bethesda, Maryland 20814
| | - Julie D. Saba
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California 94609
| | | | | | | | - Terry C. Pellmar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
41
|
Ossetrova NI, Sandgren DJ, Gallego S, Blakely WF. Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. HEALTH PHYSICS 2010; 98:204-208. [PMID: 20065684 DOI: 10.1097/hp.0b013e3181abaabf] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Early treatment of populations exposed to ionizing radiation requires accurate and rapid biodosimetry with a precision as high as possible to determine an individual's exposure level and risk for morbidity and mortality. The purpose of this study was to evaluate the utility of multiple blood biomarkers for early-response assessment of radiation exposure using a murine (BALB/c, males) in vivo radiation model. Present results for mice exposed to whole-body Co gamma-rays (0.1 Gy min) over a broad dose range (0-7 Gy) demonstrate at 24 h after exposure: 1) dose-dependent increase in the acute phase protein serum amyloid A or SAA; 2) dose-dependent changes in blood cell counts (lymphocytes, neutrophils, and ratio of neutrophils to lymphocytes); 3) SAA results coupled with peripheral blood cell counts analyzed with use of multivariate discriminant analysis established very successful separation of irradiated animals; 4) an enhanced separation as the number of biomarkers increased. These results also demonstrate proof-in-concept that plasma protein SAA shows promise as a complimentary approach to conventional biodosimetry for early assessment of radiation exposures and, coupled with peripheral blood cell counts, provides early diagnostic information to effectively manage radiation casualty incidents.
Collapse
|
42
|
Ossetrova NI, Blakely WF. Multiple blood-proteins approach for early-response exposure assessment using an in vivo murine radiation model. Int J Radiat Biol 2009. [DOI: 10.1080/09553000903154799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Waller E, Millage K, Blakely WF, Ross JA, Mercier JR, Sandgren DJ, Levine IH, Dickerson WE, Nemhauser JB, Nasstrom JS, Sugiyama G, Homann S, Buddemeier BR, Curling CA, Disraelly DS. Overview of hazard assessment and emergency planning software of use to RN first responders. HEALTH PHYSICS 2009; 97:145-156. [PMID: 19590274 DOI: 10.1097/01.hp.0000348464.78396.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There are numerous software tools available for field deployment, reach-back, training and planning use in the event of a radiological or nuclear terrorist event. Specialized software tools used by CBRNe responders can increase information available and the speed and accuracy of the response, thereby ensuring that radiation doses to responders, receivers, and the general public are kept as low as reasonably achievable. Software designed to provide health care providers with assistance in selecting appropriate countermeasures or therapeutic interventions in a timely fashion can improve the potential for positive patient outcome. This paper reviews various software applications of relevance to radiological and nuclear events that are currently in use by first responders, emergency planners, medical receivers, and criminal investigators.
Collapse
Affiliation(s)
- E Waller
- University of Ontario Institute of Technology, Faculty of Energy Systems and Nuclear Science, 2000 Simcoe Street N., Oshawa, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Straume T, Amundson SA, Blakely WF, Burns FJ, Chen A, Dainiak N, Franklin S, Leary JA, Loftus DJ, Morgan WF, Pellmar TC, Stolc V, Turteltaub KW, Vaughan AT, Vijayakumar S, Wyrobek AJ. NASA Radiation Biomarker Workshop, September 27-28, 2007. Radiat Res 2008; 170:393-405. [PMID: 18763867 DOI: 10.1667/rr1382.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/10/2008] [Indexed: 11/03/2022]
Abstract
A summary is provided of presentations and discussions at the NASA Radiation Biomarker Workshop held September 27-28, 2007 at NASA Ames Research Center in Mountain View, CA. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including those exposed during long-duration space travel. Topics discussed included the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage after large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. A summary of conclusions is provided at the end of the report.
Collapse
Affiliation(s)
- Tore Straume
- NASA Ames Research Center, Moffett Field, California 94035, B. Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|