1
|
Durdik M, Markova E, Kosik P, Vigasova K, Gulati S, Jakl L, Vrobelova K, Fekete M, Zavacka I, Pobijakova M, Dolinska Z, Belyaev I. Assessment of Individual Radiosensitivity in Breast Cancer Patients Using a Combination of Biomolecular Markers. Biomedicines 2023; 11:biomedicines11041122. [PMID: 37189740 DOI: 10.3390/biomedicines11041122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
About 5% of patients undergoing radiotherapy (RT) develop RT-related side effects. To assess individual radiosensitivity, we collected peripheral blood from breast cancer patients before, during and after the RT, and γH2AX/53BP1 foci, apoptosis, chromosomal aberrations (CAs) and micronuclei (MN) were analyzed and correlated with the healthy tissue side effects assessed by the RTOG/EORTC criteria. The results showed a significantly higher level of γH2AX/53BP1 foci before the RT in radiosensitive (RS) patients in comparison to normal responding patients (NOR). Analysis of apoptosis did not reveal any correlation with side effects. CA and MN assays displayed an increase in genomic instability during and after RT and a higher frequency of MN in the lymphocytes of RS patients. We also studied time kinetics of γH2AX/53BP1 foci and apoptosis after in vitro irradiation of lymphocytes. Higher levels of primary 53BP1 and co-localizing γH2AX/53BP1 foci were detected in cells from RS patients as compared to NOR patients, while no difference in the residual foci or apoptotic response was found. The data suggested impaired DNA damage response in cells from RS patients. We suggest γH2AX/53BP1 foci and MN as potential biomarkers of individual radiosensitivity, but they need to be evaluated with a larger cohort of patients for clinics.
Collapse
Affiliation(s)
- Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarina Vigasova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarina Vrobelova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marta Fekete
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Ingrid Zavacka
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Margita Pobijakova
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Zuzana Dolinska
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Lapierre A, Bourillon L, Larroque M, Gouveia T, Bourgier C, Ozsahin M, Pèlegrin A, Azria D, Brengues M. Improving Patients' Life Quality after Radiotherapy Treatment by Predicting Late Toxicities. Cancers (Basel) 2022; 14:2097. [PMID: 35565227 PMCID: PMC9099838 DOI: 10.3390/cancers14092097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/26/2022] Open
Abstract
Personalized treatment and precision medicine have become the new standard of care in oncology and radiotherapy. Because treatment outcomes have considerably improved over the last few years, permanent side-effects are becoming an increasingly significant issue for cancer survivors. Five to ten percent of patients will develop severe late toxicity after radiotherapy. Identifying these patients before treatment start would allow for treatment adaptation to minimize definitive side effects that could impair their long-term quality of life. Over the last decades, several tests and biomarkers have been developed to identify these patients. However, out of these, only the Radiation-Induced Lymphocyte Apoptosis (RILA) assay has been prospectively validated in multi-center cohorts. This test, based on a simple blood draught, has been shown to be correlated with late radiation-induced toxicity in breast, prostate, cervical and head and neck cancer. It could therefore greatly improve decision making in precision radiation oncology. This literature review summarizes the development and bases of this assay, as well as its clinical results and compares its results to the other available assays.
Collapse
Affiliation(s)
- Ariane Lapierre
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
- Department of Radiotherapy-Oncology, Lyon-Sud Hospital Center, 69310 Pierre-Bénite, France
| | - Laura Bourillon
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Marion Larroque
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Tiphany Gouveia
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| |
Collapse
|
3
|
Mohankumar MN. Biomarkers for translational oncology - Peggy Olive's contribution. Int J Radiat Biol 2021; 98:303-307. [PMID: 34473601 DOI: 10.1080/09553002.2021.1976865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Peggy Olive of the BC cancer research center (BCCRC), Vancouver, Canada, dedicated her career to improving the efficiency of radiation in the treatment of cancer. Keenly interested in the study of hypoxic cell radiosensitizers, she recognized the importance of DNA repair in improving the efficacy of radiotherapy. At the BCCRC she developed two methods for clinical practice that detect and quantitate DNA damage in mammalian cells. The alkaline comet assay and phosphorylated gamma histone H2AX (γH2AX) protein foci staining were two sensitive and attractive techniques that she attempted to apply in clinical practice. CONCLUSION Peggy Olive was able to establish the comet and the γH2AX assays as prospective predictive biomarkers in the application of personalized radiation treatment and improved cancer treatment outcomes. Nevertheless, several studies with a large number of samples are required before application of these biomarkers in routine radiotherapy could become a reality. The advent of 'omis' and microchip technologies envisage successful outcomes of future research in this direction.
Collapse
Affiliation(s)
- Mary N Mohankumar
- Department of Atomic Energy, Indira Gandhi Center for Atomic Research, Kalpakkam, India
| |
Collapse
|
4
|
Nuijens AC, Oei AL, van Oorschot B, Visser J, van Os RM, Moerland PD, Franken NAP, Rasch CRN, Stalpers LJA. Gamma-H2AX Foci Decay Ratio as a Stronger Predictive Factor of Late Radiation Toxicity Than Dose-Volume Parameters in a Prospective Cohort of Prostate Cancer Patients. Int J Radiat Oncol Biol Phys 2021; 112:212-221. [PMID: 34419566 DOI: 10.1016/j.ijrobp.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Late radiation toxicity is a major dose-limiting factor in curative cancer radiation therapy. Previous studies identified several risk factors for late radiation toxicity, including both dose-volume factors and genetic predisposition. Herein, we investigated the contribution of genetic predisposition, particularly compared with dose-volume factors, to the risk of late radiation toxicity in patients treated with highly conformal radiation therapy. METHODS AND MATERIALS We included 179 patients with prostate cancer who underwent treatment with curative external beam radiation therapy between 2009 and 2013. Toxicity was graded according to the Common Terminology Criteria for Adverse Events version 4.0. Transcriptional responsiveness of homologous recombination repair genes and γ-H2AX foci decay ratios (FDRs) were determined in ex vivo irradiated lymphocytes in a previous analysis. Dose-volume parameters were retrieved by delineating the organs at risk (OARs) on CT planning images. Associations between risk factors and grade ≥2 urinary and bowel late radiation toxicities were assessed using univariable and multivariable logistic regression analyses. The analyses were performed using the highest toxicity grade recorded during the follow-up per patient. RESULTS The median follow-up period was 31 months. One hundred and one patients (56%) developed grade ≥2 late radiation toxicity. Cumulative rates for urinary and bowel grade ≥2 late toxicities were 46% and 17%, respectively. In the multivariable analysis, factors significantly associated with grade ≥2 late toxicity were transurethral resection of the prostate (P = .013), γ-H2AX FDR <3.41 (P = .008), and rectum V70 >11.52% (P = .017). CONCLUSIONS Our results suggest that impaired DNA double-strand break repair in lymphocytes, as quantified by γ-H2AX FDR, is the most critical determining factor of late radiation toxicity. The limited influence of dose-volume parameters could be due to the use of increasingly conformal techniques, leading to improved dose-volume parameters of the organs at risk.
Collapse
Affiliation(s)
- Anna C Nuijens
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Bregje van Oorschot
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Rob M van Os
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
6
|
Dulong J, Kouakou C, Mesloub Y, Rorteau J, Moratille S, Chevalier FP, Vinasco-Sandoval T, Martin MT, Lamartine J. NFATC2 Modulates Radiation Sensitivity in Dermal Fibroblasts From Patients With Severe Side Effects of Radiotherapy. Front Oncol 2020; 10:589168. [PMID: 33392083 PMCID: PMC7772431 DOI: 10.3389/fonc.2020.589168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Although it is well established that 5 to 15% of radiotherapy patients exhibit severe side-effects in non-cancerous tissues, the molecular mechanisms involved are still poorly known, and the links between cellular and tissue radiosensitivity are still debated. We here studied fibroblasts from non-irradiated skin of patients with severe sequelae of radiotherapy, to determine whether specific basal cell activities might be involved in susceptibility to side-effects in normal tissues. Compared to control cells, patient fibroblasts exhibited higher radiosensitivity together with defects in DNA repair. Transcriptome profiling of dermal fibroblasts from 16 radiotherapy patients with severe side-effects and 8 healthy individuals identified 540 genes specifically deregulated in the patients. Nuclear factor of activated T cells 2 (NFATC2) was the most differentially expressed gene, poorly expressed at both transcript and protein level, whereas the NFATC2 gene region was hypermethylated. Furthermore, NFATC2 expression correlated with cell survival after irradiation. Finally, silencing NFATC2 in normal cells by RNA interference led to increased cellular radiosensitivity and defects in DNA repair. This study demonstrates that patients with clinical hypersensitivity also exhibit intrinsic cellular radiosensitivity in their normal skin cells. It further reveals a new role for NFATC2 as a potential regulator of cellular sensitivity to ionizing radiation.
Collapse
Affiliation(s)
- Joshua Dulong
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Clara Kouakou
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Yasmina Mesloub
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Julie Rorteau
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Sandra Moratille
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Fabien P. Chevalier
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Tatiana Vinasco-Sandoval
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Michèle T. Martin
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Jérôme Lamartine
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| |
Collapse
|
7
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
8
|
Chargari C, Supiot S, Hennequin C, Chapel A, Simon JM. [Treatment of radiation-induced late effects: What's new?]. Cancer Radiother 2020; 24:602-611. [PMID: 32855027 DOI: 10.1016/j.canrad.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms of late radio-induced lesions are the result of multiple and complex phenomena, with many entangled cellular and tissue factors. The biological continuum between acute and late radio-induced effects will be described, with firstly a break in homeostasis that leads to cellular redistributions. New insights into late toxicity will finally be addressed. Individual radiosensitivity is a primary factor for the development of late toxicity, and clinicians urgently need predictive tests to offer truly personalized radiation therapy. An update will be made on the various functional and genetic tests currently being validated. The management of radio-induced side effects remains a frequent issue for radiation oncologists, and an update will be made for certain specific clinical situations. Finally, an innovative management for patients with significant side effects after pelvic radiotherapy will be developed, involved mesenchymal stem cell transplantation, with the presentation of the "PRISME" protocol currently open to patients recruitment.
Collapse
Affiliation(s)
- C Chargari
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif France
| | - S Supiot
- Département d'oncologie radiothérapie, institut de cancérologie de l'ouest - centre René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain cedex, France; Institut de recherche en santé de l'université de Nantes, université de Nantes, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; Inserm, U1232 Centre de recherche en cancérologie et immunologie de Nantes - Angers (CRCINA), 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; CNRS, ERL 6001, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefeaux, 75475 Paris, France
| | - A Chapel
- Service de recherche en radiobiologie et en médecine régénérative, laboratoire de radiobiologie des expositions médicales, Institut de radioprotection et de sûreté nucléaire (IRSN), 31, avenue de la Division-Leclerc, 92260 Fontenay-aux-Roses, France
| | - J-M Simon
- Sorbonne université, 21, rue de l'École-de-Médecine, 75006 Paris, France; Service d'oncologie radiothérapie, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
9
|
Radiobiology of brachytherapy: The historical view based on linear quadratic model and perspectives for optimization. Cancer Radiother 2018; 22:312-318. [PMID: 29858137 DOI: 10.1016/j.canrad.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Most preclinical studies examining the radiobiology of brachytherapy have focused on dose rate effects. Scarcer data are available on other major parameters of therapeutic index, such as cell cycle distribution, repopulation or reoxygenation. The linear quadratic model describes the effect of radiotherapy in terms of normal tissue or tumour response. It allows some comparisons between various irradiation schemes. This model should be applied cautiously for brachytherapy, because it relies on cell death analysis only, and therefore partially reflects the biological effects of an irradiation. Moreover, the linear quadratic model validity has not been demonstrated for very high doses per fraction. A more thorough analysis of mechanisms involved in radiation response is required to better understand the true effect of brachytherapy on normal tissue. The modulation of immune response is one promising strategy to be tested with brachytherapy. A translational approach applied to brachytherapy should lead to design trials testing pharmacological agents modulating radiation response, in order to improve not only local control, but also decrease the risk of distant failure. Here we review the radiobiology of brachytherapy, from the historical view based on linear quadratic model to recent perspectives for biological optimization.
Collapse
|
10
|
Habash M, Bohorquez LC, Kyriakou E, Kron T, Martin OA, Blyth BJ. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer. Cancers (Basel) 2017; 9:cancers9110147. [PMID: 29077012 PMCID: PMC5704165 DOI: 10.3390/cancers9110147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.
Collapse
Affiliation(s)
- Mohammad Habash
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Luis C Bohorquez
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Elizabeth Kyriakou
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Olga A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin J Blyth
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| |
Collapse
|
11
|
Werner E, Wang Y, Doetsch PW. A Single Exposure to Low- or High-LET Radiation Induces Persistent Genomic Damage in Mouse Epithelial Cells In Vitro and in Lung Tissue. Radiat Res 2017; 188:373-380. [PMID: 28753066 DOI: 10.1667/rr14685.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to low- and high-linear energy transfer (LET) radiation induce clustered damage in DNA that is difficult to repair. These lesions are manifested as DNA-associated foci positive for DNA repair proteins and have been shown to persist in vitro and in vivo for days in several cell types and tissues in response to low-LET radiation. Although in some experimental conditions these residual foci have been linked with genomic instability and chromosomal aberrations, it remains poorly understood what type of damage they represent. Because high-LET radiation induces complex DNA lesions more efficiently than low-LET radiation, we compared the efficacy of several heavy ions (oxygen, silicon and iron) in a range (17 , 70 and 175 keV/μm, respectively) of LET and X rays at a 1 Gy dose. Persistent genomic damage was measured by γ-H2AX-53BP1-positive residual foci and micronucleus levels during the first three days and up to a week after in vitro and in vivo irradiation in lung cells and tissue. We demonstrate that in an in vitro irradiated mouse bronchial epithelial cell line, the expression of residual foci is readily detectable at 24 h with levels declining in the following 72 h postirradiation, but still persisting elevated over background at day 7. At this time, foci numbers are low but significant and proportional to the dose and quality of the radiation. The expression of residual foci in vitro was mirrored by increased micronuclei generation measured in cytokinesis-blocked cells, indicating long-term, persistent effects of genomic damage in this cell type. We also tested the expression of residual foci in lung tissue of C57BL/6 mice that received whole-body X-ray or heavy-ion irradiation. We found that at day 7 postirradiation, Clara/Club cells, but not pro-SPC-positive pneumocytes, contained a subpopulation of cells expressing γ-H2AX-53BP1-positive foci in a radiation quality-dependent manner. These findings suggest that in vivo persistent DNA repair foci reflect the initial genotoxic damage induced by radiation and a differential vulnerability among cells in the lung.
Collapse
Affiliation(s)
- Erica Werner
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Ya Wang
- b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Paul W Doetsch
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia.,c Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Azria D, Lapierre A, Gourgou S, De Ruysscher D, Colinge J, Lambin P, Brengues M, Ward T, Bentzen SM, Thierens H, Rancati T, Talbot CJ, Vega A, Kerns SL, Andreassen CN, Chang-Claude J, West CML, Gill CM, Rosenstein BS. Data-Based Radiation Oncology: Design of Clinical Trials in the Toxicity Biomarkers Era. Front Oncol 2017; 7:83. [PMID: 28497027 PMCID: PMC5406456 DOI: 10.3389/fonc.2017.00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to stratify patients using a set of biomarkers, which predict that toxicity risk would allow for radiotherapy (RT) modulation and serve as a valuable tool for precision medicine and personalized RT. For patients presenting with tumors with a low risk of recurrence, modifying RT schedules to avoid toxicity would be clinically advantageous. Indeed, for the patient at low risk of developing radiation-associated toxicity, use of a hypofractionated protocol could be proposed leading to treatment time reduction and a cost-utility advantage. Conversely, for patients predicted to be at high risk for toxicity, either a more conformal form or a new technique of RT, or a multidisciplinary approach employing surgery could be included in the trial design to avoid or mitigate RT when the potential toxicity risk may be higher than the risk of disease recurrence. In addition, for patients at high risk of recurrence and low risk of toxicity, dose escalation, such as a greater boost dose, or irradiation field extensions could be considered to improve local control without severe toxicities, providing enhanced clinical benefit. In cases of high risk of toxicity, tumor control should be prioritized. In this review, toxicity biomarkers with sufficient evidence for clinical testing are presented. In addition, clinical trial designs and predictive models are described for different clinical situations.
Collapse
Affiliation(s)
- David Azria
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Ariane Lapierre
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Sophie Gourgou
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Dirk De Ruysscher
- Department of Radiation Oncology, Maastricht University Medical Centre, MAASTRO Clinic, Maastricht, Netherlands
- Radiation Oncology, KU Leuven, Leuven, Belgium
| | - Jacques Colinge
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Philippe Lambin
- Department of Radiation Oncology, Maastricht University Medical Centre, MAASTRO Clinic, Maastricht, Netherlands
| | - Muriel Brengues
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Tim Ward
- Patient Advocate, Manchester, UK
| | - Søren M. Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hubert Thierens
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Sarah L. Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharine M. L. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Trust, Manchester, UK
| | - Corey M. Gill
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barry S. Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Someya M, Hasegawa T, Hori M, Matsumoto Y, Nakata K, Masumori N, Sakata KI. Local tumor control and DNA-PK activity of peripheral blood lymphocytes in prostate cancer patients receiving radiotherapy. JOURNAL OF RADIATION RESEARCH 2017; 58:225-231. [PMID: 28399576 PMCID: PMC5571613 DOI: 10.1093/jrr/rrw099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/14/2016] [Accepted: 09/04/2016] [Indexed: 06/07/2023]
Abstract
Repair of DNA damage is critical for genomic stability, and DNA-dependent protein kinase (DNA-PK) has an important role in repairing double-strand breaks. We examined whether the DNA-PK activity of peripheral blood lymphocytes (PBLs) was related to biochemical (prostate-specific antigen: PSA) relapse and radiation toxicity in prostate cancer patients who have received radiotherapy. A total of 69 patients with localized adenocarcinoma of the prostate participated in this study. Peripheral blood was collected 2 years or later after radiotherapy and centrifuged, then DNA-PK activity was measured by a filter binding assay. The high DNA-PK activity group had a significantly higher PSA relapse-free survival rate than the low DNA-PK activity group. The 10-year PSA relapse-free survival was 87.0% in the high DNA-PK activity group, whereas it was 52.7% in the low DNA-PK activity group. Multivariate analysis showed the Gleason score and the level of DNA-PK activity were significant predictors of PSA relapse after radiotherapy. In addition, the low DNA-PK activity group tended to have a higher incidence of Grade 1-2 urinary toxicity than the high DNA-PK activity group. Prostate cancer patients with low DNA-PK activity had a higher rate of PSA relapse and a higher incidence of urinary toxicity. DNA-PK activity in PBLs might be a useful marker for predicting PSA relapse and urinary toxicity, possibly contributing to personalized treatment of prostate cancer.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Masakazu Hori
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
| | - Kensei Nakata
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Koh-ichi Sakata
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
14
|
Brengues M, Lapierre A, Bourgier C, Pèlegrin A, Özsahin M, Azria D. T lymphocytes to predict radiation-induced late effects in normal tissues. Expert Rev Mol Diagn 2016; 17:119-127. [DOI: 10.1080/14737159.2017.1271715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muriel Brengues
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | - Ariane Lapierre
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | - Céline Bourgier
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | - André Pèlegrin
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | | | - David Azria
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| |
Collapse
|
15
|
Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett 2016; 383:212-219. [PMID: 27693457 DOI: 10.1016/j.canlet.2016.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Abstract
A small percentage of cancer radiotherapy patients develop abnormally severe side effects as a consequence of intrinsic radiosensitivity. We analysed the γ-H2AX response to ex-vivo irradiation of peripheral blood lymphocytes (PBL) and plucked eyebrow hair follicles from 16 patients who developed severe late radiation toxicity following radiotherapy, and 12 matched control patients. Longer retention of the γ-H2AX signal and lower colocalization efficiency of repair factors in over-responding patients confirmed that DNA repair in these individuals was compromised. Five of the radiosensitive patients harboured LoF mutations in DNA repair genes. An extensive range of quantitative parameters of the γ-H2AX response were studied with the objective to establish a predictor for radiosensitivity status. The most powerful predictor was the combination of the fraction of the unrepairable component of γ-H2AX foci and repair rate in PBL, both derived from non-linear regression analysis of foci repair kinetics. We introduce a visual representation of radiosensitivity status that allocates a position for each patient on a two-dimensional "radiosensitivity map". This analytical approach provides the basis for larger prospective studies to further refine the algorithm, ultimately to triage capability.
Collapse
|
16
|
Somaiah N, Chua MLK, Bourne S, Daley F, A' Hern R, Nuta O, Gothard L, Boyle S, Herskind C, Pearson A, Warrington J, Helyer S, Owen R, Rothkamm K, Yarnold J. Correlation between DNA damage responses of skin to a test dose of radiation and late adverse effects of earlier breast radiotherapy. Radiother Oncol 2016; 119:244-9. [PMID: 27106550 DOI: 10.1016/j.radonc.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
Abstract
AIM To correlate residual double strand breaks (DSB) 24h after 4Gy test doses to skin in vivo and to lymphocytes in vitro with adverse effects of earlier breast radiotherapy (RT). PATIENTS AND METHODS Patients given whole breast RT ⩾5years earlier were identified on the basis of moderate/marked or minimal/no adverse effects despite the absence ('RT-Sensitive', RT-S) or presence ('RT-Resistant', RT-R) of variables predisposing to late adverse effects. Residual DSB were quantified in skin 24h after a 4Gy test dose in 20 RT-S and 15 RT-R patients. Residual DSB were quantified in lymphocytes irradiated with 4Gy in vitro in 30/35 patients. RESULTS Mean foci per dermal fibroblast were 3.29 (RT-S) vs 2.80 (RT-R) (p=0.137); 3.28 (RT-S) vs 2.60 (RT-R) in endothelium (p=0.158); 2.50 (RT-S) vs 2.41 (RT-R) in suprabasal keratinocytes (p=0.633); 2.70 (RT-S) vs 2.35 (RT-R) in basal epidermis (p=0.419); 12.1 (RT-S) vs 10.3 (RT-R) in lymphocytes (p=0.0052). CONCLUSIONS Residual DSB in skin following a 4Gy dose were not significantly associated with risk of late adverse effects of breast radiotherapy, although exploratory analyses suggested an association in severely affected individuals. By contrast, a significant association was detected based on the in vitro response of lymphocytes.
Collapse
Affiliation(s)
- Navita Somaiah
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | - Melvin L K Chua
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK; Division of Radiation Oncology, National Cancer Centre, Singapore, Duke-NUS Graduate Medical School, Singapore
| | - Sara Bourne
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Frances Daley
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Roger A' Hern
- ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Otilia Nuta
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Lone Gothard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sue Boyle
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ann Pearson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Jim Warrington
- Physics Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Sarah Helyer
- Radiotherapy Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Roger Owen
- Gloucestershire Oncology Centre, Cheltenham General Hospital, UK
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK; Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Germany
| | - John Yarnold
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
17
|
Abstract
DNA double-strand breaks (DSB) and blocked replication forks activate the DNA damage response (DDR), a signaling pathway marked by phosphorylation of histone 2AX (H2AX). The phosphorylated form, γH2AX, accumulates at the site of damage and can be detected as foci by immunocytochemistry. Therefore, γH2AX is a sensitive and robust biomarker of DNA damage, notably DSB. Cells from peripheral blood are often used for studies on genotoxic exposure of humans. They are limited, however, by the amount of blood required and the costly blood purification method. Here, we present a method that enables the detection of DNA damage by the analysis of γH2AX foci in a drop of blood. The blood drop method (BDM) is simple, fast, inexpensive and allows large series of blood sampling and storage over time. It can be combined with genotoxic treatment of cells in the collected blood sample for experimental purposes on DNA damage induction and repair. The BDM is suitable for rapid and large-scale screenings of genetic damage in human and animal populations.
Collapse
|
18
|
Cheng Y, Li F, Mladenov E, Iliakis G. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing. Radiother Oncol 2015; 116:366-73. [PMID: 26303013 DOI: 10.1016/j.radonc.2015.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). MATERIALS AND METHODS We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. RESULTS We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. CONCLUSIONS We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application.
Collapse
Affiliation(s)
- Yanlei Cheng
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Germany.
| |
Collapse
|
19
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
20
|
Someya M, Yamamoto H, Nojima M, Hori M, Tateoka K, Nakata K, Takagi M, Saito M, Hirokawa N, Tokino T, Sakata KI. Relation between Ku80 and microRNA-99a expression and late rectal bleeding after radiotherapy for prostate cancer. Radiother Oncol 2015; 115:235-9. [PMID: 25937401 DOI: 10.1016/j.radonc.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/16/2015] [Accepted: 04/12/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Late rectal bleeding is one of the severe adverse events after radiotherapy for prostate cancer. New biomarkers are needed to allow a personalized treatment. MATERIALS AND METHODS Four patients each with grade 0-1 or grade 2-3 rectal bleeding were randomly selected for miRNA array to examine miRNA expression in peripheral blood lymphocytes (PBLs). Based on results of miRNA array, 1 of 348 miRNAs was selected for microRNA assays. Then, expression of DNA-dependent protein kinase mRNA and miR-99a was analyzed in the PBLs of 97 patients. PBLs were exposed to 4Gy of X-ray ex-vivo. RESULTS In the discovery cohort, grade 2-3 rectal bleeding was significantly higher in the Ku80 <1.09 expression group compared with ⩾1.09 group (P=0.011). In radiation-induced expression of miR-99a, grade 2-3 rectal bleeding was significantly higher in the miR-99a IR(+)/IR(-) >0.93 group compared with ⩽0.93 group (P=0.013). Most patients with grade 2-3 rectal bleeding were in the group with low Ku80 and high miR-99a expression. In the validation cohort, similar results were obtained. CONCLUSION A combination of low Ku80 expression and highly-induced miR-99a expression could be a promising marker for predicting rectal bleeding after radiotherapy.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University School of Medicine, Japan.
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masanori Nojima
- The Institute of Medical Science Hospital, The University of Tokyo, Japan
| | - Masakazu Hori
- Department of Radiology, Sapporo Medical University School of Medicine, Japan
| | - Kunihiko Tateoka
- Department of Radiology, Sapporo Medical University School of Medicine, Japan
| | - Kensei Nakata
- Department of Radiology, Sapporo Medical University School of Medicine, Japan
| | - Masaru Takagi
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno-shi, Japan
| | - Masato Saito
- Department of Radiology, Sapporo Medical University School of Medicine, Japan
| | - Naoki Hirokawa
- Department of Radiology, Sapporo Medical University School of Medicine, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Japan
| | - Koh-Ichi Sakata
- Department of Radiology, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
21
|
Haddy N, Tartier L, Koscielny S, Adjadj E, Rubino C, Brugières L, Pacquement H, Diallo I, de Vathaire F, Averbeck D, Hall J, Benhamou S. Repair of ionizing radiation-induced DNA damage and risk of second cancer in childhood cancer survivors. Carcinogenesis 2014; 35:1745-9. [PMID: 24670918 DOI: 10.1093/carcin/bgu077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study's purpose was to assess whether individuals who developed a second malignant neoplasm (SMN) after treatment for a first malignant neoplasm (FMN) had a lower ability to repair DNA double-strand breaks (DSBs) using a bioassay with γH2AX intensity as a surrogate endpoint. In a case-control study nested in a cohort of childhood cancer survivors, lymphoblastoid cell lines (LCLs) were established from blood samples collected from 94 cases (SMN) and 94 matched controls (FMN). LCLs were irradiated with ionizing radiation (2 and 5 Gy) and γH2AX intensities measured 1, 3, 5 and 24h post-irradiation. Differences in mean γH2AX intensity between cases and controls were compared using Kruskal-Wallis tests. Generalized linear models for repeated measures and conditional logistic regressions for SMN risk estimates were performed. The mean baseline γH2AX intensity measured without irradiation was 9.1 [95% confidence interval (95% CI): 8.5-9.7] in the LCLs from cases and 6.4 (95% CI: 6.0-6.8) from controls (P < 0.001). Markedly higher γH2AX intensity, particularly at 1 h post-irradiation, was also found in the LCLs from the cases compared with the controls for all FMNs and for different types of FMN. Chemotherapy and radiation doses received by bone marrow and thymus for FMN treatment showed a non-significant effect on γH2AX intensity. This case-control study shows that higher baseline and post-irradiation levels of DNA DSBs, as measured by γH2AX intensity, are associated with the risk of SMN in childhood cancer survivors. Further investigations in a prospective setting are warranted to confirm this association.
Collapse
Affiliation(s)
| | - Laurence Tartier
- Institut Curie-Recherche, Bats 110-112, 91405 Orsay, France, INSERM U612, Institut Curie, Bats 110-112, 91405 Orsay, France
| | | | | | | | | | | | | | | | | | - Janet Hall
- Institut Curie-Recherche, Bats 110-112, 91405 Orsay, France, INSERM U612, Institut Curie, Bats 110-112, 91405 Orsay, France
| | - Simone Benhamou
- INSERM U946, Fondation Jean Dausset, 75010 Paris, France and CNRS UMR8200, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
22
|
Pouliliou S, Koukourakis MI. Gamma histone 2AX (γ-H2AX)as a predictive tool in radiation oncology. Biomarkers 2014; 19:167-80. [DOI: 10.3109/1354750x.2014.898099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stamatia Pouliliou
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, Democritus University of Thrace
AlexandroupolisGreece
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, Democritus University of Thrace
AlexandroupolisGreece
| |
Collapse
|
23
|
Chua M, Rothkamm K. Biomarkers of Radiation Exposure: Can They Predict Normal Tissue Radiosensitivity? Clin Oncol (R Coll Radiol) 2013; 25:610-6. [DOI: 10.1016/j.clon.2013.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 11/29/2022]
|
24
|
Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S. γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res 2013; 753:24-40. [PMID: 23416207 DOI: 10.1016/j.mrrev.2013.02.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
DNA double strand breaks (DSB) are the gravest form of DNA damage in eukaryotic cells. Failure to detect DSB and activate appropriate DNA damage responses can cause genomic instability, leading to tumorigenesis and possibly accelerated aging. Phosphorylated histone H2AX (γH2AX) is used as a biomarker of cellular response to DSB and its potential for monitoring DNA damage and repair in human populations has been explored in this review. A systematic search was conducted in PubMed for articles, in English, on human studies reporting γH2AX as a biomarker of either DNA repair or DNA damage. A total of 68 publications were identified. Thirty-four studies (50.0%) evaluated the effect of medical procedures or treatments on γH2AX levels; 20 (29.4%) monitored γH2AX in specific pathological conditions with a case/control or case/case design; 5 studies (7.4%) evaluated the effect of environmental genotoxic exposures, and 9 (13.2%) were descriptive studies on cancer and aging. Peripheral blood lymphocytes (44.6%) or biopsies/tissue specimens (24.3%) were the most commonly used samples. γH2AX was scored by optical microscopy as immunostained foci (78%), or by flow cytometry (16%). Critical features affecting the reliability of the assay, including protocols heterogeneity, specimen, cell cycle, kinetics, study design, and statistical analysis, are hereby discussed. Because of its sensitivity, efficiency and mechanistic relevance, the γH2AX assay has great potential as a DNA damage biomarker; however, the technical and epidemiological heterogeneity highlighted in this review infer a necessity for experimental standardization of the assay.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Simona Giunta
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Michael Fenech
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Monica Neri
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy.
| |
Collapse
|
25
|
Finnon P, Kabacik S, MacKay A, Raffy C, A'Hern R, Owen R, Badie C, Yarnold J, Bouffler S. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer. Radiother Oncol 2012; 105:329-36. [PMID: 23157981 DOI: 10.1016/j.radonc.2012.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. MATERIALS AND METHODS Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. RESULTS Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0Gy), irradiated (4Gy) or radiation response (4-0Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. CONCLUSIONS Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.
Collapse
|
26
|
Greve B, Bölling T, Amler S, Rössler U, Gomolka M, Mayer C, Popanda O, Dreffke K, Rickinger A, Fritz E, Eckardt-Schupp F, Sauerland C, Braselmann H, Sauter W, Illig T, Riesenbeck D, Könemann S, Willich N, Mörtl S, Eich HT, Schmezer P. Evaluation of different biomarkers to predict individual radiosensitivity in an inter-laboratory comparison--lessons for future studies. PLoS One 2012; 7:e47185. [PMID: 23110060 PMCID: PMC3479094 DOI: 10.1371/journal.pone.0047185] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/12/2012] [Indexed: 12/01/2022] Open
Abstract
Radiotherapy is a powerful cure for several types of solid tumours, but its application is often limited because of severe side effects in individual patients. With the aim to find biomarkers capable of predicting normal tissue side reactions we analysed the radiation responses of cells from individual head and neck tumour and breast cancer patients of different clinical radiosensitivity in a multicentric study. Multiple parameters of cellular radiosensitivity were analysed in coded samples of peripheral blood lymphocytes (PBLs) and derived lymphoblastoid cell lines (LCLs) from 15 clinical radio-hypersensitive tumour patients and compared to age- and sex-matched non-radiosensitive patient controls and 15 lymphoblastoid cell lines from age- and sex- matched healthy controls of the KORA study. Experimental parameters included ionizing radiation (IR)-induced cell death (AnnexinV), induction and repair of DNA strand breaks (Comet assay), induction of yH2AX foci (as a result of DNA double strand breaks), and whole genome expression analyses. Considerable inter-individual differences in IR-induced DNA strand breaks and their repair and/or cell death could be detected in primary and immortalised cells with the applied assays. The group of clinically radiosensitive patients was not unequivocally distinguishable from normal responding patients nor were individual overreacting patients in the test system unambiguously identified by two different laboratories. Thus, the in vitro test systems investigated here seem not to be appropriate for a general prediction of clinical reactions during or after radiotherapy due to the experimental variability compared to the small effect of radiation sensitivity. Genome-wide expression analysis however revealed a set of 67 marker genes which were differentially induced 6 h after in vitro-irradiation in lymphocytes from radio-hypersensitive and non-radiosensitive patients. These results warrant future validation in larger cohorts in order to determine parameters potentially predictive for clinical radiosensitivity.
Collapse
Affiliation(s)
- Burkhard Greve
- Department of Radiotherapy, University Hospital of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martin NT, Nahas SA, Tunuguntla R, Fike F, Gatti RA. Assessing 'radiosensitivity' with kinetic profiles of γ-H2AX, 53BP1 and BRCA1 foci. Radiother Oncol 2011; 101:35-8. [PMID: 21722985 PMCID: PMC3202034 DOI: 10.1016/j.radonc.2011.05.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE DNA repair assays to identify radiosensitive patients have had limited clinical implementation due to long turn-around times or limited specificity. This study evaluates γ-H2AX-Irradiation Induced Foci (IRIF) kinetics as a more rapid surrogate for the 'gold standard' colony survival assay (CSA) using several known DNA repair disorders as reference models. MATERIALS AND METHODS Radiosensitive cells of known and unknown etiology were studied. γ-H2AX-IRIFs were quantified over 24 h, and the curves were fitted by combining logarithmic growth and exponential decay functions. Fitted values that differed from radionormal controls were considered aberrant and compared to CSA results. RESULTS We observed 87% agreement of IRIF data with the CSA for the 14 samples tested. Analysis of γ-H2AX-IRIF kinetics for known repair disorders indicated similarities between an RNF168(-/-) cell line and an RS cell of unknown etiology. These cell lines were further characterized by a reduction in BRCA1-IRIF formation and G2/M checkpoint activation. CONCLUSIONS γ-H2AX-IRIF kinetics showed high concordance with the CSA in RS populations demonstrating its potential as a more rapid surrogate assay. This method provides a means to globally identify defective DNA repair pathways in RS cells of unknown etiology through comparison with known DNA repair defects.
Collapse
Affiliation(s)
- Nathan T Martin
- UCLA School of Medicine, Department of Pathology and Laboratory Medicine, Los Angeles, CA 90095-1732, USA.
| | | | | | | | | |
Collapse
|
28
|
Keyes M, Spadinger I, Liu M, Pickles T, Pai H, Hayden A, Moravan V, Halperin R, McKenzie M, Kwan W, Agranovic A, Lapointe V, Morris WJ. Rectal toxicity and rectal dosimetry in low-dose-rate (125)I permanent prostate implants: a long-term study in 1006 patients. Brachytherapy 2011; 11:199-208. [PMID: 21763213 DOI: 10.1016/j.brachy.2011.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/10/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To describe the acute and late rectal toxicity in 1006 prostate brachytherapy patients implanted 1998-2003. To determine whether rectal dose-volume histogram as well as patient and treatment factors were associated with rectal toxicity. METHODS AND MATERIALS Median followup was 60.7 months. Rectal dosimetry was calculated as dose-volume histogram of the rectum using Day 28 CT-based dosimetry and expressed as volume of the rectum in cc receiving 50%, 100%, and 150% of the prescription dose (VR(50cc), VR(100cc), and VR(150cc), respectively). Univariate and multivariate analyses were performed to examine the influence of patient, implant, dosimetry, and learning curve factors on the development of acute and late toxicities using a modified Radiation Therapy Oncology Group (RTOG) scale. Acute toxicity was analyzed using logistic regression and late toxicity using Cox proportional hazards regression. Analysis of variance was used to examine the association between rectal toxicity and rectal dose. RESULTS Rectal dosimetry in 93.5% and rectal toxicity in 96.2% have been recorded. Median VR(100)=1.05cc. Late RTOG Grades 0, 1, 2, 3, and 4 were recorded in 68%, 23%, 7.3%, 0.9%, and 0.2% patients, respectively. On multivariate analysis, acute RTOG ≥2 rectal toxicity was associated with urinary retention (p=0.036) and learning curve (p=0.015); late RTOG ≥2 was associated with the presence of acute toxicity (p=0.0074), higher VR(100) (p=0.030) and learning curve (p=0.027). CONCLUSIONS Late rectal RTOG ≥2 rectal toxicity in this cohort was 8%. Increased VR(100), presence of acute rectal toxicity, and learning curve were associated with higher rate of late RTOG ≥2 toxicity. Severe late rectal toxicity after prostate brachytherapy was rare.
Collapse
Affiliation(s)
- Mira Keyes
- Provincial Prostate Brachytherapy Program, British Columbia Cancer Agency, Vancouver Cancer Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Goutham VH, Kamalesh MD, Guruprasad PK, Vadhiraja MB, Satyamoorthy K, Rao Bola Satish S. A modified fluorimetric neutral filter elution method for analyzing radiation-induced double strand break and repair. Anal Biochem 2011; 414:287-93. [DOI: 10.1016/j.ab.2011.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
30
|
Marková E, Torudd J, Belyaev I. Long time persistence of residual 53BP1/γ-H2AX foci in human lymphocytes in relationship to apoptosis, chromatin condensation and biological dosimetry. Int J Radiat Biol 2011; 87:736-45. [DOI: 10.3109/09553002.2011.577504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Retention of γH2AX foci as an indication of lethal DNA damage. Radiother Oncol 2011; 101:18-23. [PMID: 21704409 DOI: 10.1016/j.radonc.2011.05.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 01/09/2023]
Abstract
The application of biological responses of tumours to predict clinical responses to treatment represents a challenging goal with the potential to inform treatment decisions and improve outcome. If tumour cell death is the result of the inability of a cell to repair complex DNA damage, and if γH2AX foci mark sites of unrepaired double-strand breaks, then it may be possible to use residual γH2AX foci to identify treatment-resistant tumour cells early in the course of therapy. This review will highlight some of the evidence that supports the idea that residual γH2AX foci, within certain limitations, may be useful as an early indicator of tumour response to radiotherapy in situ, either alone or in combination with chemotherapy.
Collapse
|
32
|
Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res 2011; 711:49-60. [PMID: 21216255 PMCID: PMC3101310 DOI: 10.1016/j.mrfmmm.2010.12.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/31/2010] [Indexed: 11/26/2022]
Abstract
The γH2AX focus assay represents a fast and sensitive approach for the detection of one of the critical types of DNA damage - double-strand breaks (DSB) induced by various cytotoxic agents including ionising radiation. Apart from research applications, the assay has a potential in clinical medicine/pathology, such as assessment of individual radiosensitivity, response to cancer therapies, as well as in biodosimetry. Given that generally there is a direct relationship between numbers of microscopically visualised γH2AX foci and DNA DSB in a cell, the number of foci per nucleus represents the most efficient and informative parameter of the assay. Although computational approaches have been developed for automatic focus counting, the tedious and time consuming manual focus counting still remains the most reliable way due to limitations of computational approaches. We suggest a computational approach and associated software for automatic focus counting that minimises these limitations. Our approach, while using standard image processing algorithms, maximises the automation of identification of nuclei/cells in complex images, offers an efficient way to optimise parameters used in the image analysis and counting procedures, optionally invokes additional procedures to deal with variations in intensity of the signal and background in individual images, and provides automatic batch processing of a series of images. We report results of validation studies that demonstrated correlation of manual focus counting with results obtained using our computational algorithm for mouse jejunum touch prints, mouse tongue sections and human blood lymphocytes as well as radiation dose response of γH2AX focus induction for these biological specimens.
Collapse
Affiliation(s)
- Alesia N. Ivashkevich
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Olga A. Martin
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892, USA
| | - Andrea J. Smith
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892, USA
| | - William M. Bonner
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892, USA
| | - Roger F. Martin
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Pavel N. Lobachevsky
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| |
Collapse
|
33
|
Werbrouck J, Duprez F, De Neve W, Thierens H. Lack of a correlation between γH2AX foci kinetics in lymphocytes and the severity of acute normal tissue reactions during IMRT treatment for head and neck cancer. Int J Radiat Biol 2011; 87:46-56. [PMID: 21142613 DOI: 10.3109/09553002.2010.518213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the phosphorylated histone H2A isoform X (γH2AX) foci kinetics as an indicator for the development of acute normal tissue complications during Intensity-Modulated Radiotherapy (IMRT) for head and neck cancer (HNC) patients. MATERIALS AND METHODS Microscopic scoring of the γH2AX foci was used to evaluate the DNA-double-strand-break repair capacity in from Ataxia-Telangiectasia (A-T) patients derived lymphoblastoid cell lines (LCL) and T-lymphocytes isolated from 31 IMRT treated HNC patients. Cells were irradiated in vitro with 0.5 Gy given at high-dose-rate (HDR) and examined at several times up to 24 h after irradiation. The patients were subdivided in three groups showing mild, moderate and severe acute normal tissue complications based on their Common Toxicity Criteria grades for dysphagia, mucositis and dermatitis during the radiotherapy course. RESULTS For the ATM (Ataxia-Telangiectasia-Mutated) defective LCL, a lower number of radiation-induced foci and a somewhat less efficient repair capacity was observed. No correlation was found between the γH2AX foci kinetics pattern and the risk for acute normal tissue complications among the three patient subgroups. CONCLUSIONS Scoring of γH2AX foci after in vitro irradiation of isolated T-lymphocytes of HNC patients cannot be applied to predict for the development of acute normal tissue complications.
Collapse
Affiliation(s)
- Joke Werbrouck
- Department of Basic Medical Sciences, Ghent University, Gent, Belgium.
| | | | | | | |
Collapse
|
34
|
γ-H2AX detection in peripheral blood lymphocytes, splenocytes, bone marrow, xenografts, and skin. Methods Mol Biol 2011; 682:249-70. [PMID: 21057933 DOI: 10.1007/978-1-60327-409-8_18] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Measurement of DNA double-strand break (DSB) levels in cells is useful in many research areas, including those related to DNA damage and repair, tumorigenesis, anti-cancer drug development, apoptosis, radiobiology, environmental effects, and aging, as well as in the clinic. DSBs can be detected in the nuclei of cultured cells and tissues with an antibody to H2AX phosphorylated on serine residue 139 (γ-H2AX). DSB levels can be obtained either by measuring overall γ-H2AX protein levels in a cell population or by counting γ-H2AX foci in individual nuclei. Total levels can be obtained in extracts of cell populations by immunoblot analysis, and in cell populations by flow cytometry. Furthermore, with flow cytometry, the cell cycle distribution of a population can be obtained in addition to DSB levels, which is an advantage when studying anti-cancer drugs targeting replicating tumor cells. These described methods are used in genotoxicity assays of compounds of interest or in analyzing DSB repair after exposure to drugs or radiation. Immunocyto/immunohistochemical analysis can detect γ-H2AX foci in individual cells and is very sensitive (a single DSB can be visualized), permitting the use of extremely small samples. Measurements of γ-H2AX focal numbers can reveal subtle changes found in the radiation-induced tissue bystander response, low dose radiation exposure, and in cells with mutations in genomic stability maintenance pathways. In addition, marking DNA DSBs in a nucleus with γ-H2AX is a powerful tool to identify novel DNA repair proteins by their abilities to co-localize with γ-H2AX foci at the DSB site. This chapter presents techniques for γ-H2AX detection in a variety of human and mouse samples.
Collapse
|
35
|
Double-strand breaks and the concept of short- and long-term epigenetic memory. Chromosoma 2010; 120:129-49. [PMID: 21174214 DOI: 10.1007/s00412-010-0305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022]
Abstract
Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcinogenesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions.
Collapse
|
36
|
Gerelchuluun A, Hong Z, Sun L, Suzuki K, Terunuma T, Yasuoka K, Sakae T, Moritake T, Tsuboi K. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines. Int J Radiat Biol 2010; 87:57-70. [PMID: 20954835 DOI: 10.3109/09553002.2010.518201] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To clarify the properties of clinical high-energy protons by comparing with clinical high-energy X-rays. MATERIALS AND METHODS Human tumor cell lines, ONS76 and MOLT4, were irradiated with 200 MeV protons or 10 MV X-rays. In situ DNA double-strand breaks (DDSB) induction was evaluated by immunocytochemical staining of phosphorylated histone H2AX (γ-H2AX). Apoptosis was measured by flow-cytometry after staining with Annexin V. The relative biological effectiveness (RBE) was obtained by clonogenic survival assay. RESULTS DDSB induction was significantly higher for protons than X-rays with average ratios of 1.28 (ONS76) and 1.59 (MOLT4) at 30 min after irradiation. However the differences became insignificant at 6 h. Also, apoptosis induction in MOLT4 cells was significantly higher for protons than X-rays with an average ratio of 2.13 at 12 h. However, the difference became insignificant at 20 h. RBE values of protons to X-rays at 10% survival were 1.06 ± 0.04 and 1.02 ± 0.15 for ONS76 and MOLT4, respectively. CONCLUSIONS Cell inactivation may differ according to different timings and/or endpoints. Proton beams demonstrated higher cell inactivation than X-rays in the early phases. These data may facilitate the understanding of the biological properties of clinical proton beams.
Collapse
Affiliation(s)
- Ariungerel Gerelchuluun
- Proton Medical Research Center, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vasireddy RS, Sprung CN, Cempaka NL, Chao M, McKay MJ. H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype. Br J Cancer 2010; 102:1511-8. [PMID: 20461094 PMCID: PMC2869166 DOI: 10.1038/sj.bjc.6605666] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background: About 1–5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients’ normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as γH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS). Methods: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by γH2AX foci assays, as potential predictive markers of clinical radiation response. Results: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using γH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay. Conclusion: γH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS.
Collapse
Affiliation(s)
- R S Vasireddy
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | | | | | | | | |
Collapse
|
38
|
Belyaev IY. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res 2010; 704:132-41. [PMID: 20096808 DOI: 10.1016/j.mrrev.2010.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/26/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci (IRIF) or DNA repair foci. Recent studies have revealed that some residual IRIF remain in cells for a relatively long time after irradiation, and have indicated a possible correlation between radiosensitivity of cells and residual IRIF. Remarkably, residual foci are significantly larger in size than the initial foci. Increase in the size of IRIF with time upon irradiation has been found in various cell types and has partially been correlated with dynamics and fusion of initial foci. Although it is admitted that the number of IRIF reflect that of DSB, several studies report a lack of correlation between kinetics for IRIF and DSB and a lack of co-localization between DSB repair proteins. These studies suggest that some proportion of residual IRIF that depend on cell type, dose, and post-irradiation time may represent alternations in chromatin structure after DSB have been repaired or misrepaired. While precise functions of residual foci are presently unknown, their possible link to remaining chromatin alternations, nuclear matrix, apoptosis, delayed repair and misrejoining of DSB, activity of several kinases, phosphatases, and checkpoint signaling has been suggested. Another intriguing possibility is that some of DNA repair foci may mark break-points at chromosomal aberrations (CA). While this possibility has not been confirmed substantially, the residual foci seem to be useful for biological dosimetry and estimation of individual radiosensitivity in radiotherapy of cancer.
Collapse
Affiliation(s)
- I Y Belyaev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic.
| |
Collapse
|
39
|
Rodemann HP. Molecular radiation biology: Perspectives for radiation oncology. Radiother Oncol 2009; 92:293-8. [PMID: 19726094 DOI: 10.1016/j.radonc.2009.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 12/27/2022]
|
40
|
Pugh TJ, Keyes M, Barclay L, Delaney A, Krzywinski M, Thomas D, Novik K, Yang C, Agranovich A, McKenzie M, Morris WJ, Olive PL, Marra MA, Moore RA. Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res 2009; 15:5008-16. [PMID: 19638463 DOI: 10.1158/1078-0432.ccr-08-3357] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The presence of intrinsic radiosensitivity within prostate cancer patients may be an important factor contributing to development of radiation toxicity. We investigated whether variants in genes responsible for detecting and repairing DNA damage independently contribute to toxicity following prostate brachytherapy. EXPERIMENTAL DESIGN Genomic DNA was extracted from blood samples of 41 prostate brachytherapy patients, 21 with high and 20 with low late toxicity scores. For each patient, 242 PCR amplicons were generated containing 173 exons of eight candidate genes: ATM, BRCA1, ERCC2, H2AFX, LIG4, MDC1, MRE11A, and RAD50. These amplicons were sequenced and all sequence variants were subjected to statistical analysis to identify those associated with late radiation toxicity. RESULTS Across 41 patients, 239 sites differed from the human genome reference sequence; 170 of these corresponded to known polymorphisms. Sixty variants, 14 of them novel, affected protein coding regions and 43 of these were missense mutations. In our patient population, the high toxicity group was enriched for individuals with at least one LIG4 coding variant (P = 0.028). One synonymous variant in MDC1, rs28986317, was associated with increased radiosensitivity (P = 0.048). A missense variant in ATM, rs1800057, associated with increased prostate cancer risk, was found exclusively in two high toxicity patients but did not reach statistical significance for association with radiosensitivity (P = 0.488). CONCLUSIONS Our data revealed new germ-line sequence variants, indicating that existing sequence databases do not fully represent the full extent of sequence variation. Variants in three DNA repair genes were linked to increased radiosensitivity but require validation in larger populations.
Collapse
Affiliation(s)
- Trevor J Pugh
- Genome Sciences Centre, Provincial Prostate Brachytherapy Program, and Medical Biophysics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Olive PL, Banáth JP. Kinetics of H2AX phosphorylation after exposure to cisplatin. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 76:79-90. [PMID: 18727058 DOI: 10.1002/cyto.b.20450] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cisplatin is a widely used cancer chemotherapeutic drug that causes DNA crosslinking and stimulates H2AX phosphorylation. Our goal was to assess the potential of gammaH2AX to help predict tumor response to cisplatin treatment. METHODS The kinetics of cisplatin-induced DNA interstrand crosslinks was measured using the alkaline comet assay and compared with gammaH2AX formation and clonogenic cell survival in several DNA repair proficient or deficient human and rodent cell lines. RESULTS The comet assay was effective in ranking cell lines according to their relative sensitivity to cisplatin based on reduced crosslink formation measured 6 h after drug exposure or by the failure of irs3 and UV41 cell lines to subsequently remove crosslinks. In comparison, the initial rate of phosphorylation of H2AX measured over the first 6 h after cisplatin treatment was unrelated to drug sensitivity or crosslinking proficiency. However, for proliferating cell cultures, the fraction of cells that retained gammaH2AX foci 24 h after cisplatin treatment was correlated with the fraction of cells that lost clonogenic potential (slope = 1.1, r(2) = 0.85). CONCLUSIONS H2AX phosphorylation occurs in response to replication fork damage caused by cisplatin induced DNA lesions, probably interstrand crosslinks. Although early kinetics of gammaH2AX formation was uninformative, retention of gammaH2AX foci 24 h after treatment was shown to be a useful indicator of cell response to killing by cisplatin. However, for gammaH2AX to serve as an indicator of cell viability after cisplatin treatment, cells must have the opportunity to transit S phase during the recovery period.
Collapse
Affiliation(s)
- Peggy L Olive
- Medical Biophysics Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | |
Collapse
|
42
|
Borgmann K, Dikomey E, Petersen C, Feyer P, Hoeller U. Sex-specific aspects of tumor therapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:115-124. [PMID: 19242712 DOI: 10.1007/s00411-009-0216-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/07/2009] [Indexed: 05/27/2023]
Abstract
There is increasing evidence that sex-specific differences in toxicity profiles and outcome after radiotherapy are accumulating in medical oncology, and that treatment strategies may require some modification. Furthermore, sex-specific differences in the sensitivity to genotoxic and therapeutical agents are also of general concern for risk estimation. This review is focussed on the specific influence of sex on these endpoints covering both a clinical and a biological point of view. In this paper, the literature was systematically reviewed with respect to sex-specific differences in tumor and normal tissue sensitivity after exposure to ionizing radiation, as well as to the relevant underlying molecular and cellular mechanisms. Although a number of data on sex-specific differences are available and remarkable differences on clinical, molecular, and cellular levels have been reported, a firm conclusion on any existing sex-specific differences is not yet possible. Future studies are required and should be focussed on this aspect of individual radiosensitivity.
Collapse
Affiliation(s)
- Kerstin Borgmann
- Laboratory of Radiobiology Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
43
|
Keyes M, Miller S, Moravan V, Pickles T, Liu M, Spadinger I, Lapointe V, Morris WJ. Urinary symptom flare in 712 125I prostate brachytherapy patients: long-term follow-up. Int J Radiat Oncol Biol Phys 2009; 75:649-55. [PMID: 19211199 DOI: 10.1016/j.ijrobp.2008.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To describe the late transient worsening of urinary symptoms ("urinary symptom flare") in 712 consecutive prostate brachytherapy patients, associated predictive factors, association with rectal and urinary toxicity, and the development of erectile dysfunction. METHODS AND MATERIALS Patients underwent implantation between 1998 and 2003 (median follow-up, 57 months). International Prostate Symptom Score (IPSS), Radiation Therapy Oncology Group (RTOG) toxicity, and erectile function data were prospectively collected. Flare was defined as an increase in IPSS of > or =5 and of > or =8 points greater than the post-treatment nadir. The relationships between the occurrence of flare and the patient, tumor, and treatment characteristics were examined. The Cox proportional hazards method was used to test individual variables and the multivariate models. RESULTS The incidence of flare was 52% and 30% using the flare definition of an IPSS of > or =5 and > or =8 points greater than the postimplant nadir, respectively. Of the patients with symptoms, 65% had resolution of their symptoms within 6 months and 91% within 1 year. Flares most commonly occurred 16-24 months after implantation. On multivariate analysis, a greater baseline IPSS and greater maximal postimplant IPSS were the predictors of flare, regardless of the flare definition used. Androgen suppression was a predictor for fewer flares (IPSS > or =5). Diabetes and prostate edema predicted for more frequent flares (IPSS >/=8). Patients with flare had a greater incidence of RTOG Grade 3 urinary toxicity and RTOG Grade 2 or greater rectal toxicity. No association was found between erectile dysfunction and the occurrence of flare. CONCLUSION Urinary symptom flare is a common, transient phenomenon after prostate brachytherapy. A greater baseline IPSS and maximal postimplant IPSS were the strongest predictive factors. Flare was associated with a greater incidence of late RTOG Grade 3 urinary toxicity and greater rate of late RTOG Grade 2 or greater rectal toxicity.
Collapse
Affiliation(s)
- Mira Keyes
- Department of Surgery, University of British Columbia, Provincial Prostate Brachytherapy Program, British Columbia Cancer Agency, 600 W. 10th Avenue, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing gammaH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using gammaH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.
Collapse
Affiliation(s)
- William M Bonner
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Moiseenko V, Banáth JP, Duzenli C, Olive PL. Effect of prolonging radiation delivery time on retention of gammaH2AX. Radiat Oncol 2008; 3:18. [PMID: 18588688 PMCID: PMC2459198 DOI: 10.1186/1748-717x-3-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/27/2008] [Indexed: 11/29/2022] Open
Abstract
Background and purpose Compared to conventional external beam radiotherapy, IMRT requires significantly more time to deliver the dose. Prolonging dose delivery potentially increases DNA repair which would reduce the biological effect. We questioned whether retention of γH2AX, a measure of lack of repair of DNA damage, would decrease when dose delivery was protracted. Materials and methods Exponentially growing SiHa cervical carinoma cells were irradiated with 6 MV photons in a water tank using a VarianEX linear accelerator. Cells held at 37°C received 2 Gy in 0.5 min and 4 Gy in 1 min. To evaluate effect of dose delivery prolongation, 2 and 4 Gy were delivered in 30 and 60 min. After 24 h recovery, cells were analyzed for clonogenic survival and for residual γH2AX as measured using flow cytometry. Results Increasing the dose delivery time from 0.5 or 1 min to 30 or 60 min produced a signficant increase in cell survival from 0.45 to 0.48 after 2 Gy, and from 0.17 to 0.20 after 4 Gy. Expression of residual γH2AX decreased from 1.27 to 1.22 relative to background after 2 Gy and 1.46 to 1.39 relative to background after 4 Gy, but differences were not statistically significant. The relative differences in the slopes of residual γH2AX versus dose for acute versus prolonged irradiation bordered on significant (p = 0.055), and the magnitude of the change was consistent with the observed increase in surviving fraction. Conclusion These results support the concept that DNA repair underlies the increase in survival observed when dose delivery is prolonged. They also help to establish the limits of sensitivity of residual γH2AX, as measured using flow cytometry, for detecting differences in response to irradiation.
Collapse
Affiliation(s)
- Vitali Moiseenko
- Medical Biophysics Department, British Columbia Cancer Research Centre, Vancouver, Canada.
| | | | | | | |
Collapse
|
46
|
|
47
|
Begg A, van der Kogel A. Clinical radiobiology in 2008. Radiother Oncol 2008; 86:295-9. [PMID: 18313778 DOI: 10.1016/j.radonc.2008.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 11/18/2022]
|