1
|
Sommat K, Tong AKT, Ong ALK, Hu J, Sin SY, Lam WWC, Xie W, Khor YM, Lim C, Lim TW, Selvarajan S, Wang F, Tan TWK, Wee JTS, Soong YL, Fong KW, Hennedige T, Hua TC. 18F-FMISO PET-guided dose escalation with multifield optimization intensity-modulated proton therapy in nasopharyngeal carcinoma. Asia Pac J Clin Oncol 2024; 20:611-619. [PMID: 37157884 DOI: 10.1111/ajco.13953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the radiotherapy planning feasibility of dose escalation with intensity-modulated proton therapy (IMPT) to hypoxic tumor regions identified on 18F-Fluoromisonidazole (FMISO) positron emission tomography and computed tomography (PET-CT) in NPC. MATERIALS AND METHODS Nine patients with stages T3-4N0-3M0 NPC underwent 18F-FMISO PET-CT before and during week 3 of radiotherapy. The hypoxic volume (GTVhypo) is automatically generated by applying a subthresholding algorithm within the gross tumor volume (GTV) with a tumor to muscle standardized uptake value (SUV) ratio of 1.3 on the 18F-FMISO PET-CT scan. Two proton plans were generated for each patient, a standard plan to 70 Gy and dose escalation plan with upfront boost followed by standard 70GyE plan. The stereotactic boost was planned with single-field uniform dose optimization using two fields to deliver 10 GyE in two fractions to GTVhypo. The standard plan was generated with IMPT with robust optimization to deliver 70GyE, 60GyE in 33 fractions using simultaneous integrated boost technique. A plan sum was generated for assessment. RESULTS Eight of nine patients showed tumor hypoxia on the baseline 18F-FMISO PET-CT scan. The mean hypoxic tumor volume was 3.9 cm3 (range .9-11.9cm3). The average SUVmax of the hypoxic volume was 2.2 (range 1.44-2.98). All the dose-volume parameters met the planning objectives for target coverage. Dose escalation was not feasible in three of eight patients as the D0.03cc of temporal lobe was greater than 75GyE. CONCLUSIONS The utility of boost to the hypoxic volume before standard course of radiotherapy with IMPT is dosimetrically feasible in selected patients. Clinical trials are warranted to determine the clinical outcomes of this approach.
Collapse
Affiliation(s)
- Kiattisa Sommat
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Aaron Kian Ti Tong
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Ashley Li Kuan Ong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Hu
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Sze Yarn Sin
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Wanying Xie
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Yiu Ming Khor
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Cindy Lim
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Tze Wei Lim
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Sathiyamoorthy Selvarajan
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Fuqiang Wang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Terence Wee Kiat Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joseph Tien Seng Wee
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yoke Lim Soong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kam Weng Fong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Hennedige
- Division of Oncologic Imaging, National Cancer Centre Singapore, Singapore, Singapore
| | - Thng Choon Hua
- Division of Oncologic Imaging, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Dong J, Wang C, Zhang T, Yu X, Peng H, Xiao Z, Wang Z, Wen B. Establishment and Application of Novel Hypoxia-driven Dual-reporter Model to Investigate Hypoxic Impact on Radiation Sensitivity in Human Nasopharyngeal Carcinoma Xenografts. J Cancer 2024; 15:4345-4359. [PMID: 38947402 PMCID: PMC11212076 DOI: 10.7150/jca.96378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Tumor hypoxia has been frequently detected in nasopharyngeal carcinoma (NPC) and is intently associated with therapeutic resistance. The aim of the study is to establish a clonogenically stable hypoxia-inducible dual reporter model and apply it to investigate the effect of tumor hypoxia on DNA double strand break (DSB) and synergistic effect of irradiation in combination with chemotherapy or targeted therapy. Methods: The plasmid vector consisting of hypoxia response elements to regulate HSV1-TK and GFP genes, was constructed and stably transfected into human NPC cells. The expected clone was identified and validated by in vivo and in vitro assay. DSB repair was measured by γH2AX foci formation. Tumor growth delay assay and spatial biodistribution of various biomarkers was designed to investigate the anti-tumor effect. Results: The system has the propensity of high expression of reporter genes under hypoxia and low to no expression under normoxia. Intratumoral biodistributions of GFP and classic hypoxic biomarkers were identical in poor-perfused region. Upon equilibration with 10% O2, the xenografts showed higher expression of hypoxic biomarkers. Cisplatin radiosensitized SUNE-1/HRE cells under hypoxia by suppressing DSB repair while the addition of PI3K/mTOR inhibitor further enhanced the anti-tumoral therapeutic efficacy. Combination of IR, DDP and NVP-BEZ235 exhibited most effective anti-tumor response in vivo. These observations underline the importance of dual reporter model for imaging tumor hypoxia in therapeutic study. Conclusions: Our preclinical model enables the investigation of heterogeneous tumor hypoxic regions in xenograft tissues and explores the treatment efficacy of combinations of various therapeutic approaches to overcome hypoxia.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, 518048, China
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
- Department of Radiation Oncology, The Fifth Affiliated Hospital, Sun Yat-sen University. Zhuhai, Guangdong, 519000, China
| | - Xiaobi Yu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Haihua Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, 510075, China
| | - Zhenhua Xiao
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, NY, New York City, 10021, USA
| |
Collapse
|
3
|
Sviyazov SV, Burueva DB, Chukanov NV, Razumov IA, Chekmenev EY, Salnikov OG, Koptyug IV. 15N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen. J Phys Chem Lett 2024; 15:5382-5389. [PMID: 38738984 PMCID: PMC11151165 DOI: 10.1021/acs.jpclett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 μM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.
Collapse
Affiliation(s)
- Sergey V. Sviyazov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dudari B. Burueva
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Ivan A. Razumov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Sambasivan K, Barrington SF, Connor SE, Witney TH, Blower PJ, Urbano TG. Is there a role for [ 18F]-FMISO PET to guide dose adaptive radiotherapy in head and neck cancer? A review of the literature. Clin Transl Imaging 2024; 12:137-155. [PMID: 39286295 PMCID: PMC7616449 DOI: 10.1007/s40336-023-00607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 09/19/2024]
Abstract
Purpose Hypoxia is a major cause of radioresistance in head and neck cancer (HNC), resulting in treatment failure and disease recurrence. 18F-fluoromisonidazole [18F]FMISO PET has been proposed as a means of localising intratumoural hypoxia in HNC so that radiotherapy can be specifically escalated in hypoxic regions. This concept may not be deliverable in routine clinical practice, however, given that [18F]FMISO PET is costly, time consuming and difficult to access. The aim of this review was to summarise clinical studies involving [18F]FMISO PET to ascertain whether it can be used to guide radiotherapy treatment in HNC. Methods A comprehensive literature search was conducted on PubMed and Web of Science databases. Studies investigating [18F]FMISO PET in newly diagnosed HNC patients were considered eligible for review. Results We found the following important results from our literature review: 1)Studies have focussed on comparing [18F]FMISO PET to other hypoxia biomarkers, but currently there is no evidence of a strong correlation between [18F]FMISO and these biomarkers.2)The results of [18F]FMISO PET imaging are not necessarily repeatable, and the location of uptake may vary during treatment.3)Tumour recurrences do not always occur within the pretreatment hypoxic volume on [18F]FMISO PET.4)Dose modification studies using [18F]FMISO PET are in a pilot phase and so far, none have demonstrated the efficacy of radiotherapy dose painting according to [18F]FMISO uptake on PET. Conclusions Our results suggest it is unlikely [18F]FMISO PET will be suitable for radiotherapy dose adaptation in HNC in a routine clinical setting. Part of the problem is that hypoxia is a dynamic phenomenon, and thus difficult to delineate on a single scan. Currently, it is anticipated that [18F]FMISO PET will remain useful within the research setting only.
Collapse
Affiliation(s)
- Khrishanthne Sambasivan
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre; School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Steve Ej Connor
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - Timothy H Witney
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Teresa Guerrero Urbano
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; Faculty of Dentistry, Oral & Craniofacial Sciences and School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
6
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
8
|
Hou C, Yin H, Gong G, Wang L, Su Y, Lu J, Yin Y. A novel approach for dose painting radiotherapy of brain metastases guided by mr perfusion images. Front Oncol 2022; 12:828312. [DOI: 10.3389/fonc.2022.828312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
PurposeTo investigate the feasibility and dosimetric index features of dose painting guided by perfusion heterogeneity for brain metastasis (BMs) patients.MethodsA total of 50 patients with single BMs were selected for this study. CT and MR simulation images were obtained, including contrast-enhanced T1-weighted images (T1WI+C) and cerebral blood flow (CBF) maps from 3D-arterial spin labeling (ASL). The gross tumor volume (GTV) was determined by fusion of CT and T1WI+C images. Hypoperfused subvolumes (GTVH) with less than 25% of the maximum CBF value were defined as the dose escalation region. The planning target volume (PTV) and PTVH were calculated from GTV and GTVH respectively. The PTVN was obtained by subtracting PTVH from PTV, and conventional dose was given. Three kinds of radiotherapy plans were designed based on the CBF values. Plan 1 was defined as the conventional plan with an arbitrary prescription dose of 60 Gy for PTV. For dose painting, Plan 2 and Plan 3 escalated the prescription dose for PTVH to 72 Gy based on Plan 1, but Plan 3 removed the maximum dose constraint. Dosimetric indices were compared among the three plans.ResultsThe mean GTV volume was 34.5 (8.4-118.0) cm3, and mean GTVH volume was 17.0 (4.5-58.3) cm3, accounting for 49.3% of GTV. Both conventional plan and dose painting plans achieved 98% target coverage. The conformity index of PTVH were 0.44 (Plan1), 0.64 and 0.72 (Plan 2 and Plan 3, P<0.05). Compared to Plan 1, the D2%, D98% and Dmean values of the PTVH escalated by 20.50%, 19.32%, and 19.60% in Plan 2 and by 24.88%, 17.22% and 19.22% in Plan 3 respectively (P<0.05). In the three plans, the index of achievement value for PTVH was between 1.01 and 1.03 (P<0.05). The dose increment rates of Plan 2 and Plan 3 for each organs at risk (OARs) was controlled at 2.19% - 5.61% compared with Plan 1. The doses received by OARs did not significantly differ among the three plans (P >0.05).ConclusionsBMs are associated with significant heterogeneity, and effective escalation of the dose delivered to target subvolumes can be achieved with dose painting guided by 3D-ASL without extra doses to OARs.
Collapse
|
9
|
Gertsenshteyn I, Epel B, Ahluwalia A, Kim H, Fan X, Barth E, Zamora M, Markiewicz E, Tsai HM, Sundramoorthy S, Leoni L, Lukens J, Bhuiyan M, Freifelder R, Kucharski A, Giurcanu M, Roman BB, Karczmar G, Kao CM, Halpern H, Chen CT. The optimal 18F-fluoromisonidazole PET threshold to define tumor hypoxia in preclinical squamous cell carcinomas using pO 2 electron paramagnetic resonance imaging as reference truth. Eur J Nucl Med Mol Imaging 2022; 49:4014-4024. [PMID: 35792927 PMCID: PMC9529789 DOI: 10.1007/s00259-022-05889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To identify the optimal threshold in 18F-fluoromisonidazole (FMISO) PET images to accurately locate tumor hypoxia by using electron paramagnetic resonance imaging (pO2 EPRI) as ground truth for hypoxia, defined by pO2 [Formula: see text] 10 mmHg. METHODS Tumor hypoxia images in mouse models of SCCVII squamous cell carcinoma (n = 16) were acquired in a hybrid PET/EPRI imaging system 2 h post-injection of FMISO. T2-weighted MRI was used to delineate tumor and muscle tissue. Dynamic contrast enhanced (DCE) MRI parametric images of Ktrans and ve were generated to model tumor vascular properties. Images from PET/EPR/MRI were co-registered and resampled to isotropic 0.5 mm voxel resolution for analysis. PET images were converted to standardized uptake value (SUV) and tumor-to-muscle ratio (TMR) units. FMISO uptake thresholds were evaluated using receiver operating characteristic (ROC) curve analysis to find the optimal FMISO threshold and unit with maximum overall hypoxia similarity (OHS) with pO2 EPRI, where OHS = 1 shows perfect overlap and OHS = 0 shows no overlap. The means of dice similarity coefficient, normalized Hausdorff distance, and accuracy were used to define the OHS. Monotonic relationships between EPRI/PET/DCE-MRI were evaluated with the Spearman correlation coefficient ([Formula: see text]) to quantify association of vasculature on hypoxia imaged with both FMISO PET and pO2 EPRI. RESULTS FMISO PET thresholds to define hypoxia with maximum OHS (both OHS = 0.728 [Formula: see text] 0.2) were SUV [Formula: see text] 1.4 [Formula: see text] SUVmean and SUV [Formula: see text] 0.6 [Formula: see text] SUVmax. Weak-to-moderate correlations (|[Formula: see text]|< 0.70) were observed between PET/EPRI hypoxia images with vascular permeability (Ktrans) or fractional extracellular-extravascular space (ve) from DCE-MRI. CONCLUSION This is the first in vivo comparison of FMISO uptake with pO2 EPRI to identify the optimal FMISO threshold to define tumor hypoxia, which may successfully direct hypoxic tumor boosts in patients, thereby enhancing tumor control.
Collapse
Affiliation(s)
- Inna Gertsenshteyn
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | | | - Heejong Kim
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Eugene Barth
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Erica Markiewicz
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Subramanian Sundramoorthy
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - John Lukens
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Mohammed Bhuiyan
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | | | - Anna Kucharski
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Mihai Giurcanu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Brian B Roman
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Gregory Karczmar
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Chien-Min Kao
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Howard Halpern
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA.
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
11
|
Nario AP, Woodfield J, Dos Santos SN, Bergman C, Wuest M, Araújo YB, Lapolli AL, West FG, Wuest F, Bernardes ES. Synthesis of a 2-nitroimidazole derivative N-(4-[ 18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)-acetamide ([ 18 F]FBNA) as PET radiotracer for imaging tumor hypoxia. EJNMMI Radiopharm Chem 2022; 7:13. [PMID: 35697954 PMCID: PMC9192864 DOI: 10.1186/s41181-022-00165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. RESULTS We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP = - 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. CONCLUSIONS Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.
Collapse
Affiliation(s)
- Arian Pérez Nario
- Nuclear and Energy Research Institute (IPEN/CNEN - SP), São Paulo, SP, CEP 05508-000, Brazil
| | - Jenilee Woodfield
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | | | - Cody Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | - Yasniel Babí Araújo
- Nuclear and Energy Research Institute (IPEN/CNEN - SP), São Paulo, SP, CEP 05508-000, Brazil
| | - André Luis Lapolli
- Nuclear and Energy Research Institute (IPEN/CNEN - SP), São Paulo, SP, CEP 05508-000, Brazil
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | | |
Collapse
|
12
|
Chen CN, Wang JC, Chen YT, Yang TL. Exploration of the niche effect on tumor satellite budding of head and neck cancer with biomimicking modeling. Biomaterials 2022; 285:121471. [PMID: 35490561 DOI: 10.1016/j.biomaterials.2022.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/24/2022]
|
13
|
Kennedy WR, DeWees TA, Acharya S, Mahmood M, Knutson NC, Goddu SM, Kavanaugh JA, Mitchell TJ, Rich KM, Kim AH, Leuthardt EC, Dowling JL, Dunn GP, Chicoine MR, Perkins SM, Huang J, Tsien CI, Robinson CG, Abraham CD. Internal dose escalation associated with increased local control for melanoma brain metastases treated with stereotactic radiosurgery. J Neurosurg 2021; 135:855-861. [PMID: 33307528 DOI: 10.3171/2020.7.jns192210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non-small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31-86 years). The median follow-up was 7.6 months (range 0.5-81.6 months), and the median survival was 9.3 months (range 1.3-81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was ≥ and < 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 ≥ and < 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 ≥ and < 25%, respectively. Lesions > 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 ≥ and < 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 ≥ 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation.
Collapse
Affiliation(s)
| | - Todd A DeWees
- 2Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona; and
| | - Sahaja Acharya
- 3Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | | | - Keith M Rich
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Dowling
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- 4Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | |
Collapse
|
14
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
15
|
Corroyer-Dulmont A, Valable S, Fantin J, Chatre L, Toutain J, Teulier S, Bazille C, Letissier E, Levallet J, Divoux D, Ibazizène M, Guillouet S, Perrio C, Barré L, Serres S, Sibson NR, Chapon F, Levallet G, Bernaudin M. Multimodal evaluation of hypoxia in brain metastases of lung cancer and interest of hypoxia image-guided radiotherapy. Sci Rep 2021; 11:11239. [PMID: 34045576 PMCID: PMC8159969 DOI: 10.1038/s41598-021-90662-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non‑small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Medical Physics Department, CLCC François Baclesse, 14000, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Sylvain Teulier
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pulmonology and Thoracic Oncology, University Hospital of Caen, Caen, France
| | - Céline Bazille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Elise Letissier
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Didier Divoux
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Stéphane Guillouet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Louisa Barré
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Sébastien Serres
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nicola R Sibson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Françoise Chapon
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France.
| |
Collapse
|
16
|
Khan R, Seltzer M. PET Imaging of Tumor Hypoxia in Head and Neck Cancer: A Primer for Neuroradiologists. Neuroimaging Clin N Am 2021; 30:325-339. [PMID: 32600634 DOI: 10.1016/j.nic.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tumor hypoxia is a known independent prognostic factor for adverse patient outcomes in those with head and neck cancer. Areas of tumor hypoxia have been found to be more radiation resistant than areas of tumor with normal oxygenation levels. Hypoxia imaging may serve to help identify the best initial treatment option and to assess intratreatment monitoring of tumor response in case treatment changes can be made. PET imaging is the gold standard method for imaging tumor hypoxia, with 18F-fluoromisonidazole the most extensively studied hypoxic imaging tracer. Newer tracers also show promise.
Collapse
Affiliation(s)
- Rihan Khan
- Department of Radiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Marc Seltzer
- Department of Radiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
17
|
Nehmeh SA, Moussa MB, Lee N, Zanzonico P, Gönen M, Humm JL, Schöder H. Comparison of FDG and FMISO uptakes and distributions in head and neck squamous cell cancer tumors. EJNMMI Res 2021; 11:38. [PMID: 33855685 PMCID: PMC8046891 DOI: 10.1186/s13550-021-00767-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Glycolysis is increased by hypoxia, suggesting a possible correlation between the accumulation of 2-[18F]fluoro-2-deoxy-D-glucose (FDG) in malignant tumors and regional hypoxia defined by 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole (FMISO) PET. The aim of this study is to investigate the intra-tumoral spatial distribution and quantitative relationship between FDG and FMISO in a cohort of head and neck squamous cell cancer (HNSCC) patients. Methods Twenty HNSCC patients with 20 primary tumors and 19 metastatic lymph nodes (LNs) underwent FDG and FMISO PET within 1 week. The metabolic target volume (MTV) was defined on the FDG PET images using a region growing algorithm. The hypoxic volume (HV) was defined by the volume of voxels in an FMISO image within the MTV that satisfy a tumor-to-blood ratio (T/B) greater than 1.2. FDG and FMISO lesions were co-registered, and a voxel-by-voxel correlation between the two datasets was performed. FDG and FMISO TVs’ SUVs were also compared as well as the intra-tumoral homogeneity of the two radiotracers. Separate analysis was performed for the primary tumors and LNs. Results Twenty-six percent of the primary tumors and 15% of LNs showed a strong correlation (R > 0.7) between FDG and FMISO intra-tumor distributions when considering the MTV. For the HV, only 19% of primary tumors and 12% of LN were strongly correlated. A weak and moderate correlation existed between the two markers SUVavg, and SUVmax in the case of the primary tumors, respectively. However, this was not the case for the LNs. Good concordances were also observed between the primary tumor’s and LNs HV SUVavgs as well as between the corresponding hypoxic fractions (HF’s). Conclusions A moderate correlation between FDG and hypoxia radiotracer distribution, as measured by FMISO, seems to exist for primary tumors. However, discordant results were found in the case of LNs. Hypoxia appears to be the dominant driver of high FDG uptake in selected tumors only, and therefore FDG PET images cannot be used as a universal surrogate to identify or predict intra-tumor hypoxia.
Collapse
Affiliation(s)
- Sadek A Nehmeh
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, 10021, USA.
| | - Mohamed B Moussa
- Chemistry Department, Stony Brook University, Stony Brook, NY, USA
| | - Nancy Lee
- Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Pat Zanzonico
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15 N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2021; 60:2406-2413. [PMID: 33063407 PMCID: PMC7855180 DOI: 10.1002/anie.202011698] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 02/03/2023]
Abstract
Nimorazole belongs to the imidazole-based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15 N3 ]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next-generation MRI-LINAC systems. Herein, we report the first steps to create long-lasting (for tens of minutes) hyperpolarized state on three 15 N sites of [15 N3 ]nimorazole with T1 of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000-fold at 1.4 T (corresponding to P15N of 3.2 %) by 15 N-15 N spin-relayed SABRE-SHEATH hyperpolarization technique, relying on simultaneous exchange of [15 N3 ]nimorazole and parahydrogen on polarization transfer Ir-IMes catalyst. The presented results pave the way to efficient spin-relayed SABRE-SHEATH hyperpolarization of a wide range of imidazole-based antibiotics and chemotherapeutics.
Collapse
Affiliation(s)
- Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
19
|
Lopes S, Ferreira S, Caetano M. PET/CT in the Evaluation of Hypoxia for Radiotherapy Planning in Head and Neck Tumors: Systematic Literature Review. J Nucl Med Technol 2020; 49:107-113. [PMID: 33361182 DOI: 10.2967/jnmt.120.249540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
PET/CT combines imaging at the molecular level along with imaging at the anatomic level, which, with the administration of a hypoxia-sensitive radiopharmaceutical, allows evaluation of tissue oxygenation. Methods: This work consisted of a systematic literature review that included websites, books, and articles dated from July 1997 to December 2019. The aim was to identify the PET radiopharmaceuticals best suited to the detection of cell hypoxia and to recognize the benefits for planning intensity-modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT). Results: Hypoxia affects the likelihood of cure for head and neck tumors, reducing the success rate. Radiopharmaceuticals such as 18F-fluoromisonidazole, 18F-fluoroerythronitromidazole, and 18F-HX4 (18F-3-fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol) allow the delineation of hypoxic subvolumes within the target volume to optimize IMRT/VMAT. Conclusion: Identification of hypoxic areas with PET/CT imaging and use of subsequent IMRT/VMAT allows for possible escalation of radiation dose in radioresistant subvolumes, with a consequent decrease in relapses and an increased likelihood of disease-free survival.
Collapse
Affiliation(s)
- Susana Lopes
- Nottingham University Hospitals, Nottingham, United Kingdom
| | - Sara Ferreira
- Dr. Lopes Dias School of Health-Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal; and
| | - Marco Caetano
- Lisbon School of Health Technology-Polytechnic Institute of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15
N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Oleg G. Salnikov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Mohammad S. H. Kabir
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Juri G. Gelovani
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- College of Medicine and Health Sciences United Arab Emirates University Al Ain United Arab Emirates
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) 14 Leninskiy Prospekt 119991 Moscow Russia
| |
Collapse
|
21
|
Zschaeck S, Zöphel K, Seidlitz A, Zips D, Kotzerke J, Baumann M, Troost EGC, Löck S, Krause M. Generation of biological hypotheses by functional imaging links tumor hypoxia to radiation induced tissue inflammation/glucose uptake in head and neck cancer. Radiother Oncol 2020; 155:204-211. [PMID: 33252044 DOI: 10.1016/j.radonc.2020.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Positron emission tomography (PET) is a functional imaging modality which is able to deliver tracer specific biological information, e.g. about glucose uptake, inflammation or hypoxia of tumors. We performed a proof-of-principle study that used different tracers and expanded the analytical scope to non-tumor structures to evaluate tumor-host interactions. MATERIALS AND METHODS Based on a previously reported prospective imaging study on 50 patients treated with curative intent chemoradiation (CRT) for head and neck squamous cell carcinoma, PET-based hypoxia and normal tissue inflammation measured by repeat 18F-fluoromisonidazole (FMISO) PET and 18F-fluorodesoxyglucose (FDG) PET, respectively, were correlated using the Spearman correlation coefficient R. PET parameters determined before and during CRT (week 1, 2 and 5), were associated with local tumor control and overall survival. RESULTS Tumor hypoxia at all measured times showed an inverse correlation with mid-treatment FDG-uptake of non-tumor affected oral (sub-)mucosa with R values between -0.35 and -0.6 (all p < 0.05). Mucosal FDG-uptake and mucosal hypoxia correlated positively but weaker (R values between 0.2 and 0.45). More tumor hypoxia in FMISO-PET (week 2) and less FDG-uptake of (sub-)mucosa in FDG-PET (week 4) were significantly associated with worse LC (FMISO TBRpeak: HR = 1.72, p = 0.030; FDG SUVmean: HR = 0.23, p = 0.025) and OS (FMISO TBRpeak: HR = 1.71, p = 0.007; FDG SUVmean: HR = 0.30, p = 0.003). Multivariable models including both parameters showed improved performance, suggesting that these modalities still bear distinct biological information despite their strong inter-correlation. CONCLUSION We report first clinical evidence that tumor hypoxia is inversely correlated with increased FDG-uptake during radiation, potentially expressing inflammation. This observation merits further research and may have important implication for future research on tumor hypoxia and radio-immunology. Our study demonstrates that functional imaging can be utilized to assess complex tumor-host interactions and generate novel biological insights in vivo vero.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany; Charité Universitätsmedizin Berlin, Department of Radiation Oncology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Klaus Zöphel
- German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany; Department of Nuclear Medicine, Medical Faculty and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Annekatrin Seidlitz
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany
| | - Daniel Zips
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Tübingen, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Jörg Kotzerke
- German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany; Department of Nuclear Medicine, Medical Faculty and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Baumann
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Dresden, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology group, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ) Heidelberg, Germany; OncoRay, National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
22
|
Gray M, Meehan J, Turnbull AK, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front Vet Sci 2020; 7:598338. [PMID: 33282935 PMCID: PMC7688625 DOI: 10.3389/fvets.2020.598338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Lisa Y. Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
23
|
Cao X, Gunn JR, Allu SR, Bruza P, Jiang S, Vinogradov SA, Pogue BW. Implantable sensor for local Cherenkov-excited luminescence imaging of tumor pO2 during radiotherapy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200229SSR. [PMID: 33236619 PMCID: PMC7685386 DOI: 10.1117/1.jbo.25.11.112704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 05/16/2023]
Abstract
SIGNIFICANCE The necessity to use exogenous probes for optical oxygen measurements in radiotherapy poses challenges for clinical applications. Options for implantable probe biotechnology need to be improved to alleviate toxicity concerns in human use and facilitate translation to clinical trial use. AIM To develop an implantable oxygen sensor containing a phosphorescent oxygen probe such that the overall administered dose of the probe would be below the Federal Drug Administration (FDA)-prescribed microdose level, and the sensor would provide local high-intensity signal for longitudinal measurements of tissue pO2. APPROACH PtG4, an oxygen quenched dendritic molecule, was mixed into an agarose matrix at 100 μM concentration, allowing for local injection into tumors at the total dose of 10 nmol per animal, forming a gel at the site of injection. Cherenkov-excited luminescence imaging (CELI) was used to acquire the phosphorescence and provide intratumoral pO2. RESULTS Although PtG4 does not form covalent bonds with agarose and gradually leaches out into the surrounding tissue, its retention time within the gel was sufficiently long to demonstrate the capability to measure intratumoral pO2 with the implantable gel sensors. The sensor's performance was first evaluated in vitro in tissue simulation phantoms, and then the sensor was used to measure changes in oxygen in MDA-MB-231 tumors during hypofractionated radiotherapy. CONCLUSIONS Our study demonstrates that implantable oxygen sensors in combination with CELI present a promising approach for quantifying oxygen changes during the course of radiation therapy and thus for evaluating the tumor response to radiation. By improving the design of the gel-probe composition in order to prevent leaching of the probe into the tissue, biosensors can be created that should allow longitudinal oxygen measurements in tumors by means of CELI while using FDA-compliant microdose levels of the probe and thus lowering toxicity concerns.
Collapse
Affiliation(s)
- Xu Cao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Ministry of Education, Xidian University, Engineering Research Center of Molecular and Neuroimaging, School of Life Science and Technology, Xi’an, Shaanxi, China
- Address all correspondence to Xu Cao, ; Brian W. Pogue,
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School or Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School or Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
- Address all correspondence to Xu Cao, ; Brian W. Pogue,
| |
Collapse
|
24
|
Liu H, Wu J, Lu W, Onofrey JA, Liu YH, Liu C. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET. Phys Med Biol 2020; 65:185006. [PMID: 32924973 DOI: 10.1088/1361-6560/abae08] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have demonstrated the feasibility of reducing noise with deep learning-based methods for low-dose fluorodeoxyglucose (FDG) positron emission tomography (PET). This work aimed to investigate the feasibility of noise reduction for tracers without sufficient training datasets using a deep transfer learning approach, which can utilize existing networks trained by the widely available FDG datasets. In this study, the deep transfer learning strategy based on a fully 3D patch-based U-Net was investigated on a 18F-fluoromisonidazole (18F-FMISO) dataset using single-bed scanning and a 68Ga-DOTATATE dataset using whole-body scanning. The datasets of 18F-FDG by single-bed scanning and whole-body scanning were used to obtain pre-trained U-Nets separately for subsequent cross-tracer and cross-protocol transfer learning. The full-dose PET images were used as the labels while low-dose PET images from 10% counts were used as the inputs. Three types of U-Nets were obtained: a U-Net trained by FDG dataset, a pre-trained FDG U-Net fine-tuned by another less-available tracer (FMISO/DOATATE), and a U-Net completely trained by a large number of less-available tracer datasets (FMISO/DOATATE), used as the reference U-Net. The denoising performance of the three types of U-Nets was evaluated on single-bed 18F-FMISO and whole-body 68Ga-DOTATATE separately and compared using normalized root-mean-square error (NRMSE), signal-to-noise ratio (SNR), and relative bias of region of interest (ROI). For cross-tracer transfer learning, all the U-Nets provided denoised images with similar quality for both tracers. There was no significant difference in terms of NRMSE and SNR when comparing the former two U-Nets with the reference U-Net. The ROI biases for these U-Nets were similar. For cross-tracer and cross-protocol transfer learning, the pre-trained single-bed FDG U-Net fine-tuned by whole-body DOTATATE data provided the most consistent images with the reference U-Net. Fine-tuning significantly reduced the NRMSE and the ROI bias and improved the SNR when comparing the fine-tuned U-Net with the U-Net trained by single-bed FDG only (NRMSE: 96.3% ± 21.1% versus 120.6% ± 18.5%, ROI bias: -10.5% ± 13.0% versus -14.7% ± 6.4%, SNR: 4.2 ± 1.4 versus 3.9 ± 1.6, for fine-tuned U-Net and the U-Net trained by single-bed FDG, respectively, with p < 0.01 in all cases). This work demonstrated that it is feasible to utilize existing networks well-trained by FDG datasets to reduce the noise for other less-available tracers and other scanning protocols by using the fine-tuning strategy.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America. Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, United States of America
| | | | | | | | | | | |
Collapse
|
25
|
Keam S, Gill S, Ebert MA, Nowak AK, Cook AM. Enhancing the efficacy of immunotherapy using radiotherapy. Clin Transl Immunology 2020; 9:e1169. [PMID: 32994997 PMCID: PMC7507442 DOI: 10.1002/cti2.1169] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/04/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical breakthroughs in cancer immunotherapy, especially with immune checkpoint blockade, offer great hope for cancer sufferers - and have greatly changed the landscape of cancer treatment. However, whilst many patients achieve clinical responses, others experience minimal benefit or do not respond to immune checkpoint blockade at all. Researchers are therefore exploring multimodal approaches by combining immune checkpoint blockade with conventional cancer therapies to enhance the efficacy of treatment. A growing body of evidence from both preclinical studies and clinical observations indicates that radiotherapy could be a powerful driver to augment the efficacy of immune checkpoint blockade, because of its ability to activate the antitumor immune response and potentially overcome resistance. In this review, we describe how radiotherapy induces DNA damage and apoptosis, generates immunogenic cell death and alters the characteristics of key immune cells in the tumor microenvironment. We also discuss recent preclinical work and clinical trials combining radiotherapy and immune checkpoint blockade in thoracic and other cancers. Finally, we discuss the scheduling of immune checkpoint blockade and radiotherapy, biomarkers predicting responses to combination therapy, and how these novel data may be translated into the clinic.
Collapse
Affiliation(s)
- Synat Keam
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
| | - Suki Gill
- Department of Radiation OncologySir Charles Gairdner HospitalPerthWAAustralia
| | - Martin A Ebert
- Department of Radiation OncologySir Charles Gairdner HospitalPerthWAAustralia
- School of Physics, Mathematics and ComputingThe University of Western AustraliaPerthWAAustralia
| | - Anna K Nowak
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
- Department of Medical OncologySir Charles Gairdner HospitalNedlands, PerthWAAustralia
| | - Alistair M Cook
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
26
|
Birchall JR, Kabir MSH, Salnikov OG, Chukanov NV, Svyatova A, Kovtunov KV, Koptyug IV, Gelovani JG, Goodson BM, Pham W, Chekmenev EY. Quantifying the effects of quadrupolar sinks via 15N relaxation dynamics in metronidazoles hyperpolarized via SABRE-SHEATH. Chem Commun (Camb) 2020; 56:9098-9101. [PMID: 32661534 PMCID: PMC7441520 DOI: 10.1039/d0cc03994b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
15N spin-lattice relaxation dynamics in metronidazole-15N3 and metronidazole-15N2 isotopologues are studied for rational design of 15N-enriched biomolecules for signal amplification by reversible exchange in microtesla fields. 15N relaxation dynamics mapping reveals the deleterious effects of interactions with the polarization transfer catalyst and a quadrupolar 14N nucleus within the spin-relayed 15N-15N network.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Head and neck cancers are commonly encountered malignancies in the United States, of which the majority are attributed to squamous cell carcinoma. 18F-FDG-PET/CT has been well established in the evaluation, treatment planning, prognostic implications of these tumors and is routinely applied for the management of patients with these cancers. Many alternative investigational PET radiotracers have been extensively studied in the evaluation of these tumors. Although these radiotracers have not been able to replace 18F-FDG-PET/CT in routine clinical practice currently, they may provide important additional information about the biological mechanisms of these tumors, such as foci of tumor hypoxia as seen on hypoxia specific PET radiotracers such as 18F-Fluoromisonidazole (18F-FMISO), which could be useful in targeting radioresistant hypoxic tumor foci when treatment planning. There are multiple other hypoxia-specific PET radiotracers such as 18F-Fluoroazomycinarabinoside (FAZA), 18F-Flortanidazole (HX4), which have been evaluated similarly, of which 18F-Fluoromisonidazole (18F-FMISO) has been the most investigated. Other radiotracers frequently studied in the evaluation of these tumors include radiolabeled amino acid PET radiotracers, which show increased uptake in tumor cells with limited uptake in inflammatory tissue, which can be useful especially in differentiating postradiation inflammation from residual and/or recurrent disease. 18F-Fluorothymidine (FLT) is localized intracellularly by nucleoside transport and undergoes phosphorylation thereby being retained within tumor cells and can serve as an indicator of tumor proliferation. Decrease in radiotracer activity following treatment can be an early indicator of treatment response. This review aims at synthesizing the available literature on the most studied non-FDG-PET/CT in head and neck cancer.
Collapse
Affiliation(s)
- Charles Marcus
- Department of Radiology, West Virginia University, Morgantown, WV.
| | | |
Collapse
|
28
|
Bielak L, Wiedenmann N, Nicolay NH, Lottner T, Fischer J, Bunea H, Grosu AL, Bock M. Automatic Tumor Segmentation With a Convolutional Neural Network in Multiparametric MRI: Influence of Distortion Correction. ACTA ACUST UNITED AC 2020; 5:292-299. [PMID: 31572790 PMCID: PMC6752289 DOI: 10.18383/j.tom.2019.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise tumor segmentation is a crucial task in radiation therapy planning. Convolutional neural networks (CNNs) are among the highest scoring automatic approaches for tumor segmentation. We investigate the difference in segmentation performance of geometrically distorted and corrected diffusion-weighted data using data of patients with head and neck tumors; 18 patients with head and neck tumors underwent multiparametric magnetic resonance imaging, including T2w, T1w, T2*, perfusion (ktrans), and apparent diffusion coefficient (ADC) measurements. Owing to strong geometrical distortions in diffusion-weighted echo planar imaging in the head and neck region, ADC data were additionally distortion corrected. To investigate the influence of geometrical correction, first 14 CNNs were trained on data with geometrically corrected ADC and another 14 CNNs were trained using data without the correction on different samples of 13 patients for training and 4 patients for validation each. The different sets were each trained from scratch using randomly initialized weights, but the training data distributions were pairwise equal for corrected and uncorrected data. Segmentation performance was evaluated on the remaining 1 test-patient for each of the 14 sets. The CNN segmentation performance scored an average Dice coefficient of 0.40 ± 0.18 for data including distortion-corrected ADC and 0.37 ± 0.21 for uncorrected data. Paired t test revealed that the performance was not significantly different (P = .313). Thus, geometrical distortion on diffusion-weighted imaging data in patients with head and neck tumor does not significantly impair CNN segmentation performance in use.
Collapse
Affiliation(s)
- Lars Bielak
- Radiology, Medical Physics.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Nicole Wiedenmann
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Nils Henrik Nicolay
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | | | - Hatice Bunea
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Michael Bock
- Radiology, Medical Physics.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Fei Z, Chen T, Qiu X, Chen C. Effect of relevant factors on radiation-induced nasopharyngeal ulcer in patients with primary nasopharyngeal carcinoma treated with intensity-modulated radiation therapy. Laryngoscope Investig Otolaryngol 2020; 5:228-234. [PMID: 32337354 PMCID: PMC7178449 DOI: 10.1002/lio2.365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/09/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To analyze the correlation between relevant factors and radiation-induced nasopharyngeal ulcer (RINU) in primary nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). METHODS Clinical data were collected for 599 patients with newly diagnosed NPC who had completed IMRT. The entire cohort was randomly divided into two subgroups. The relationship between RINU and IMRT dose-volume were statistically analyzed with ROC curves and the Chi-square test. Nutritional status during and after treatment was compared between patients with vs without RINU. RESULTS The results obtained showed that dose-volume had no effect on the incidence of RINU (P > .05). Nutrition-related parameters differed significantly between patients with vs without RINU (P < .05). CONCLUSION The results obtained show that the incidence of RINU is not related to IMRT dose-volume in the treatment of primary NPC. The incidence of RINU was found to be related to nutritional status during and after radiation therapy. LEVEL OF EVIDENCE 2a.
Collapse
Affiliation(s)
- Zhaodong Fei
- Department of RadiotherapyFujian Cancer Hospital, Fujian Medical University Cancer HospitalFuzhouFujian ProvinceChina
| | - Taojun Chen
- Department of RadiotherapyFujian Cancer Hospital, Fujian Medical University Cancer HospitalFuzhouFujian ProvinceChina
| | - Xiufang Qiu
- Department of RadiotherapyFujian Cancer Hospital, Fujian Medical University Cancer HospitalFuzhouFujian ProvinceChina
| | - Chuanben Chen
- Department of RadiotherapyFujian Cancer Hospital, Fujian Medical University Cancer HospitalFuzhouFujian ProvinceChina
| |
Collapse
|
30
|
Cao X, Rao Allu S, Jiang S, Jia M, Gunn JR, Yao C, LaRochelle EP, Shell JR, Bruza P, Gladstone DJ, Jarvis LA, Tian J, Vinogradov SA, Pogue BW. Tissue pO 2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat Commun 2020; 11:573. [PMID: 31996677 PMCID: PMC6989492 DOI: 10.1038/s41467-020-14415-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxia in solid tumors is thought to be an important factor in resistance to therapy, but the extreme microscopic heterogeneity of the partial pressures of oxygen (pO2) between the capillaries makes it difficult to characterize the scope of this phenomenon without invasive sampling of oxygen distributions throughout the tissue. Here we develop a non-invasive method to track spatial oxygen distributions in tumors during fractionated radiotherapy, using oxygen-dependent quenching of phosphorescence, oxygen probe Oxyphor PtG4 and the radiotherapy-induced Cherenkov light to excite and image the phosphorescence lifetimes within the tissue. Mice bearing MDA-MB-231 breast cancer and FaDu head neck cancer xenografts show different pO2 responses during each of the 5 fractions (5 Gy per fraction), delivered from a clinical linear accelerator. This study demonstrates subsurface in vivo mapping of tumor pO2 distributions with submillimeter spatial resolution, thus providing a methodology to track response of tumors to fractionated radiotherapy.
Collapse
Affiliation(s)
- Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Mengyu Jia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Cuiping Yao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Lesley A Jarvis
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
31
|
Broglie MA, Dulguerov P, Henke G, Siano M, Putora PM, Simon C, Zwahlen D, Huber GF, Ballerini G, Beffa L, Giger R, Rothschild S, Negri SV, Elicin O. A Review of Controversial Issues in the Management of Head and Neck Cancer: A Swiss Multidisciplinary and Multi-Institutional Patterns of Care Study-Part 4 (Biomarkers). Front Oncol 2019; 9:1128. [PMID: 31709188 PMCID: PMC6822019 DOI: 10.3389/fonc.2019.01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background: The Head and Neck Cancer Working Group of Swiss Group for Clinical Cancer Research (SAKK) has investigated the level of consensus (LOC) and discrepancy in everyday practice of diagnosis and treatment in head and neck cancer. Materials and Methods: An online survey was iteratively generated with 10 Swiss university and teaching hospitals. LOC below 50% was defined as no agreement, while higher LOC were arbitrarily categorized as low (51-74%), moderate (75-84%), and high (≥85%). Results: Any LOC was achieved in 62% of topics (n = 60). High, moderate, and low LOC were found in 18, 20, and 23%, respectively. Regarding Head and Neck Surgery, Radiation Oncology, Medical Oncology, and biomarkers, LOC was achieved in 50, 57, 83, and 43%, respectively. Conclusions: Consensus on clinical topics is rather low for surgeons and radiation oncologists. The questions discussed might highlight discrepancies, stimulate standardization of practice, and prioritize topics for future clinical research.
Collapse
Affiliation(s)
- Martina A Broglie
- Department of Otorhinolaryngology, Head and Neck Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pavel Dulguerov
- Department of Otorhinolaryngology, Head and Neck Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Guido Henke
- Department of Radiation Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marco Siano
- Department of Medical Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Medical Oncology, Hôpital Riviera-Chablais, Vevey, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Simon
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel Zwahlen
- Department of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland.,Department of Radiation Oncology, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Gerhard F Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giorgio Ballerini
- Department of Radiation Oncology, Clinica Luganese SA, Lugano, Switzerland
| | - Lorenza Beffa
- Department of Radiation Oncology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Roland Giger
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sacha Rothschild
- Department of Medical Oncology, University Hospital of Basel, Basel, Switzerland
| | - Sandro V Negri
- Department of Otorhinolaryngology, Lindenhofspital, Bern, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Abstract
Modern radiation therapy treatment planning and delivery is a complex process that relies on advanced imaging and computing technology as well as expertise from the medical team. The process begins with simulation imaging, in which three-dimensional computed tomography images (or magnetic resonance images in some cases) are used to characterize the patient anatomy. From there, the radiation oncologist delineates the relevant target/tumor volumes and normal tissue and communicates the goals for treatment planning. The planning process attempts to generate a radiation therapy treatment plan that will deliver a therapeutic dose of radiation to the tumor while sparing nearby normal tissue.
Collapse
|
33
|
Cegla P, Kazmierska J, Gwozdz S, Czepczynski R, Malicki J, Cholewinski W. Assessment of biological parameters in head and neck cancer based on in vivo distribution of 18F-FDG-FLT-FMISO-PET/CT images. TUMORI JOURNAL 2019; 106:33-38. [PMID: 31446858 DOI: 10.1177/0300891619868012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Several genetic analyses have identified tumor diversity not only among tumors from different patients (intertumor heterogeneity) but also within individual tumors (intratumor heterogeneity). The aim of this study was to analyze the intratumor heterogeneity and other biological parameters based on in vivo distribution in triple-tracer positron emission tomography with computed tomography (PET/CT) study in patients with newly diagnosed head and neck (H&N) cancer. METHODS Thirty-six patients with newly diagnosed H&N cancer were included in the study. Institutional Bioethical Committee approved the study protocol and informed consent was received from every participant. All patients underwent series of 3 PET/CT scans with [18F]Fluorodeoxyglucose (18F-FDG-PET), [18F]Fluorothymidine (18F-FLT-PET), and [18F]Fluoromisonidazole (18F-FMISO-PET) before treatment. Scans were performed on separate days, within a timeframe of 2 weeks. Several PET/CT parameters grading tumor biology including maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), its equivalent (total hypoxic lesion [TLH] and total proliferative lesion [TLP]), and heterogeneity (area under the curve-cumulative SUV histogram) for the primary tumor were compared. RESULTS All patients showed increased uptake of 18F-FDG in primary tumor, ranging from 2.29 to 14.89 SUVmax. Respectively, SUVmax values for 18F-FLT ranged from 0.93 to 16.11 and for 18F-FMISO 0.36-4.07. Based on 3-year follow-up, we divided patients in terms of survival forecasts (first with good prognosis and second with worse). Higher values of TLG/TLP/TLH and SUVmax were observed in the second group in all 3 tracers (for 18F-FDG: 167.40 vs 100.32, 11.15 vs 8.95; for 18F-FLT: 116.61 vs 60.67, 7.09 vs 5.47; for 18F-FMISO: 37.34 vs 22.30, 1.70 vs 1.61 respectively). Statistically significant differences were shown in SUVmax in 18F-FDG and 18F-FLT (P<0.034, P<0.034, respectively; in TLG, P=0.05; TLP, P=0.04; and TLH, P=0.05). CONCLUSION Our preliminary results suggest worse prognosis in patients with higher heterogeneity values of primary tumor in proliferation and hypoxia images and combination of metabolic and volumetric parameters in TLG and its equivalent and heterogeneity of primary tumor seems to be a prognostic factor.
Collapse
Affiliation(s)
- Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan
| | - Joanna Kazmierska
- 2nd Radiotherapy Department, Greater Poland Cancer Centre, Poznan, Poland.,Chair and Department of Electroradiology, Medical University in Poznan, Poland
| | - Sebastian Gwozdz
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan
| | - Rafal Czepczynski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Julian Malicki
- Chair and Department of Electroradiology, Medical University in Poznan, Poland.,Medical Physics Department, Greater Poland Cancer Centre, Poznan
| | - Witold Cholewinski
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan.,Chair and Department of Electroradiology, Medical University in Poznan, Poland
| |
Collapse
|
34
|
Pacelli R, Caroprese M, Palma G, Oliviero C, Clemente S, Cella L, Conson M. Technological evolution of radiation treatment: Implications for clinical applications. Semin Oncol 2019; 46:193-201. [PMID: 31395286 DOI: 10.1053/j.seminoncol.2019.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The contemporary approach to the management of a cancer patient requires an "ab initio" involvement of different medical domains in order to correctly design an individual patient's pathway toward cure. With new therapeutic tools in every medical field developing faster than ever before the patient care outcomes can be achieved if all surgical, drug, and radiation options are considered in the design of the appropriate therapeutic strategy for a given patient. Radiation therapy (RT) is a clinical discipline in which experts from different fields continuously interact in order to manage the multistep process of the radiation treatment. RT is found to be an appropriate intervention for diverse indications in about 50% of cancer patients during the course of their disease. Technologies are essential in dealing with the complexity of RT treatments and for driving the increasingly sophisticated RT approaches becoming available for the treatment of Cancer. High conformal techniques, namely intensity modulated or volumetric modulated arc techniques, ablative techniques (Stereotactic Radiotherapy and Stereotactic Radiosurgery), particle therapy (proton or carbon ion therapy) allow for success in treating irregularly shaped or critically located targets and for the sharpness of the dose fall-off outside the target. The advanced on-board imaging, including real-time position management systems, makes possible image-guided radiation treatment that results in substantial margin reduction and, in select cases, implementation of an adaptive approach. The therapeutic gains of modern RT are also due in part to the enhanced anticancer activity obtained by coadministering RT with chemotherapy, targeted molecules, and currently immune checkpoints inhibitors. These main clinically relevant steps forward in Radiation Oncology represent a change of gear in the field that may have a profound impact on the management of cancer patients.
Collapse
Affiliation(s)
- Roberto Pacelli
- Department of Advanced Biomedical Sciences, University "Federico II", Napoli, Italy.
| | - Mara Caroprese
- Department of Advanced Biomedical Sciences, University "Federico II", Napoli, Italy
| | - Giuseppe Palma
- Institute of Biostructures and Bioimages, National Research Council, Napoli, Italy
| | | | | | - Laura Cella
- Institute of Biostructures and Bioimages, National Research Council, Napoli, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University "Federico II", Napoli, Italy
| |
Collapse
|
35
|
Shchepin RV, Birchall JR, Chukanov NV, Kovtunov KV, Koptyug IV, Theis T, Warren WS, Gelovani JG, Goodson BM, Shokouhi S, Rosen MS, Yen YF, Pham W, Chekmenev EY. Hyperpolarizing Concentrated Metronidazole 15 NO 2 Group over Six Chemical Bonds with More than 15 % Polarization and a 20 Minute Lifetime. Chemistry 2019; 25:8829-8836. [PMID: 30964568 PMCID: PMC6658333 DOI: 10.1002/chem.201901192] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/04/2019] [Indexed: 12/17/2022]
Abstract
The NMR hyperpolarization of uniformly 15 N-labeled [15 N3 ]metronidazole is demonstrated by using SABRE-SHEATH. In this antibiotic, the 15 NO2 group is hyperpolarized through spin relays created by 15 N spins in [15 N3 ]metronidazole, and the polarization is transferred from parahydrogen-derived hydrides over six chemical bonds. In less than a minute of parahydrogen bubbling at approximately 0.4 μT, a high level of nuclear spin polarization (P15N ) of around 16 % is achieved on all three 15 N sites. This product of 15 N polarization and concentration of 15 N spins is around six-fold better than any previous value determined for 15 N SABRE-derived hyperpolarization. At 1.4 T, the hyperpolarized state persists for tens of minutes (relaxation time, T1 ≈10 min). A novel synthesis of uniformly 15 N-enriched metronidazole is reported with a yield of 15 %. This approach can potentially be used for synthesis of a wide variety of in vivo metabolic probes with potential uses ranging from hypoxia sensing to theranostic imaging.
Collapse
Affiliation(s)
- Roman V Shchepin
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Nikita V Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Sepideh Shokouhi
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Matthew S Rosen
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, USA
| | - Yi-Fen Yen
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, USA
| | - Wellington Pham
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
36
|
Fei Z, Chen C, Huang Y, Qiu X, Li Y, Li L, Chen T. Metabolic tumor volume and conformal radiotherapy based on prognostic PET/CT for treatment of nasopharyngeal carcinoma. Medicine (Baltimore) 2019; 98:e16327. [PMID: 31305420 PMCID: PMC6641822 DOI: 10.1097/md.0000000000016327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023] Open
Abstract
For patients with nasopharyngeal carcinoma (NPC), prognostic indicators to customize subsequent biologically conformal radiation therapy may be obtained via 2-(fluorine-18)-fluoro-2-deoxy-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT). This retrospective study assessed the prognostic significance and feasibility of conformal radiotherapy for NPC, based on F-FDG PET/CT. Eighty-two patients with NPC underwent F-FDG PET/CT prior to intensity-modulated radiation therapy (IMRT). The maximum standardized uptake value (SUVmax) and metabolic tumor volume (MTV) of the primary tumor were measured, with MTVx based on absolute SUVx values ≥ specific threshold x on each axial image. The cut-off SUVmax and MTV values for predicting 3-year progression-free survival (PFS) were calculated according to a receiver operating characteristic curve. Assessed were correlations between SUVmax and MTV and between threshold x and MTVx, and the MTV percentage of the primary tumor volume at threshold x. The SUVmax and MTV were positively associated, as were MTV and primary tumor volume. Primary tumor volume, SUVmax, and MTV were significant predictors of survival. The 3-year PFS rates for SUVmax ≤8.20 and >8.20 were 91.1% and 73.0%, respectively (P = .027). With furthermore analysis, patients having tumor with smaller MTV had higher 3-year PFS than patients having tumor with larger MTV. The 3-year PFS rate was inversely related to MTV. SUVmax and MTV, derived by PET/CT, are important for assessing prognosis and planning radiotherapy for patients with NPC. Small MTV indicated better 3-year PFS compared with large MTV. For the best therapeutic effect, MTV4.0 was the best subvolume to determine radiotherapy boost.
Collapse
|
37
|
Gérard M, Corroyer-Dulmont A, Lesueur P, Collet S, Chérel M, Bourgeois M, Stefan D, Limkin EJ, Perrio C, Guillamo JS, Dubray B, Bernaudin M, Thariat J, Valable S. Hypoxia Imaging and Adaptive Radiotherapy: A State-of-the-Art Approach in the Management of Glioma. Front Med (Lausanne) 2019; 6:117. [PMID: 31249831 PMCID: PMC6582242 DOI: 10.3389/fmed.2019.00117] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023] Open
Abstract
Severe hypoxia [oxygen partial pressure (pO2) below 5–10 mmHg] is more frequent in glioblastoma multiforme (GBM) compared to lower-grade gliomas. Seminal studies in the 1950s demonstrated that hypoxia was associated with increased resistance to low–linear energy transfer (LET) ionizing radiation. In experimental conditions, the total radiation dose has to be multiplied by a factor of 3 to achieve the same cell lethality in anoxic situations. The presence of hypoxia in human tumors is assumed to contribute to treatment failures after radiotherapy (RT) in cancer patients. Therefore, a logical way to overcome hypoxia-induced radioresistance would be to deliver substantially higher doses of RT in hypoxic volumes delineated on pre-treatment imaging as biological target volumes (BTVs). Such an approach faces various fundamental, technical, and clinical challenges. The present review addresses several technical points related to the delineation of hypoxic zones, which include: spatial accuracy, quantitative vs. relative threshold, variations of hypoxia levels during RT, and availability of hypoxia tracers. The feasibility of hypoxia imaging as an assessment tool for early tumor response to RT and for predicting long-term outcomes is discussed. Hypoxia imaging for RT dose painting is likewise examined. As for the radiation oncologist's point of view, hypoxia maps should be converted into dose-distribution objectives for RT planning. Taking into account the physics and the radiobiology of various irradiation beams, preliminary in silico studies are required to investigate the feasibility of dose escalation in terms of normal tissue tolerance before clinical trials are undertaken.
Collapse
Affiliation(s)
- Michael Gérard
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | | | - Paul Lesueur
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Solène Collet
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Radiophysics, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Michel Chérel
- Team 13-Nuclear Oncology, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Mickael Bourgeois
- Team 13-Nuclear Oncology, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Dinu Stefan
- Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Elaine Johanna Limkin
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Cécile Perrio
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP Cyceron, Caen, France
| | - Jean-Sébastien Guillamo
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France.,Department of Neurology, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Bernard Dubray
- Département de Radiothérapie et de Physique Médicale, Laboratoire QuantIF-LITIS [EA 4108], Centre de Lutte Contre le Cancer Henri Becquerel, Université de Normandie, Rouen, France
| | - Myriam Bernaudin
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre Lutte Contre le Cancer François Baclesse, Caen, France
| | - Samuel Valable
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| |
Collapse
|
38
|
Zhang B, Xu C, Sun C, Yu C. Polyphosphoester-Based Nanocarrier for Combined Radio-Photothermal Therapy of Breast Cancer. ACS Biomater Sci Eng 2019; 5:1868-1877. [PMID: 33405560 DOI: 10.1021/acsbiomaterials.9b00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, clinical research on tumor therapy has gradually shifted from traditional monotherapy toward combination therapy as tumors are complex, diverse, and heterogeneous. Combination therapy may be essential for achieving the optimized treatment efficacy of tumors through distinct tumor-inhibiting mechanisms. At the same time, nanocarriers are emerging as an excellent strategy for delivering both drugs simultaneously. This work presents utilization of a polyphosphoester-based nanocarrier (NPIR/Cur) to achieve the codelivery of hydrophobic photothermal agent IR-780 and radiosensitizer curcumin (Cur). The IR-780 and curcumin coencapsulated NPIR/Cur exhibited adequate drug loading, a prolonged blood half-life, enhanced passive tumor homing, and improved curcumin bioavailability as well as combined therapeutic functions. Briefly, NPIR/Cur could not only achieve effective thermal ablation through the conversion of near-infrared light to heat, but also give rise to a significant boosted local radiation dose to trigger promoted radiation damages, thus resulting in enhanced tumor cell growth inhibition. In conclusion, the as-prepared NPIR/Cur manifested excellent performance in facilitating combined photothermal and radiation therapy, thus expanding the application range of PPE-based carriers in nanomedicine, and also prompting exploration of their potential for other effective combination therapies.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Congfei Xu
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guandong 510006, P. R. China
| | - Chunyang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
39
|
2-Nitroimidazole-Furanoside Derivatives for Hypoxia Imaging-Investigation of Nucleoside Transporter Interaction, 18F-Labeling and Preclinical PET Imaging. Pharmaceuticals (Basel) 2019; 12:ph12010031. [PMID: 30781409 PMCID: PMC6469291 DOI: 10.3390/ph12010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022] Open
Abstract
The benefits of PET imaging of tumor hypoxia in patient management has been demonstrated in many examples and with various tracers over the last years. Although, the optimal hypoxia imaging agent has yet to be found, 2-nitroimidazole (azomycin) sugar derivatives—mimicking nucleosides—have proven their potential with [18F]FAZA ([18F]fluoro-azomycin-α-arabinoside) as a prominent representative in clinical use. Still, for all of these tracers, cellular uptake by passive diffusion is postulated with the disadvantage of slow kinetics and low tumor-to-background ratios. We recently evaluated [18F]fluoro-azomycin-β-deoxyriboside (β-[18F]FAZDR), with a structure more similar to nucleosides than [18F]FAZA and possible interaction with nucleoside transporters. For a deeper insight, we comparatively studied the interaction of FAZA, β-FAZA, α-FAZDR and β-FAZDR with nucleoside transporters (SLC29A1/2 and SLC28A1/2/3) in vitro, showing variable interactions of the compounds. The highest interactions being for β-FAZDR (IC50 124 ± 33 µM for SLC28A3), but also for FAZA with the non-nucleosidic α-configuration, the interactions were remarkable (290 ± 44 µM {SLC28A1}; 640 ± 10 µM {SLC28A2}). An improved synthesis was developed for β-FAZA. For a PET study in tumor-bearing mice, α-[18F]FAZDR was synthesized (radiochemical yield: 15.9 ± 9.0% (n = 3), max. 10.3 GBq, molar activity > 50 GBq/µmol) and compared to β-[18F]FAZDR and [18F]FMISO, the hypoxia imaging gold standard. We observed highest tumor-to-muscle ratios (TMR) for β-[18F]FAZDR already at 1 h p.i. (2.52 ± 0.94, n = 4) in comparison to [18F]FMISO (1.37 ± 0.11, n = 5) and α-[18F]FAZDR (1.93 ± 0.39, n = 4), with possible mediation by the involvement of nucleoside transporters. After 3 h p.i., TMR were not significantly different for all 3 tracers (2.5–3.0). Highest clearance from tumor tissue was observed for β-[18F]FAZDR (56.6 ± 6.8%, 2 h p.i.), followed by α-[18F]FAZDR (34.2 ± 7.5%) and [18F]FMISO (11.8 ± 6.5%). In conclusion, both isomers of [18F]FAZDR showed their potential as PET hypoxia tracers. Differences in uptake behavior may be attributed to a potential variable involvement of transport mechanisms.
Collapse
|
40
|
Nakata N, Kiriu M, Okumura Y, Zhao S, Nishijima KI, Shiga T, Tamaki N, Kuge Y, Matsumoto H. Comparative evaluation of [ 18F]DiFA and its analogs as novel hypoxia positron emission tomography and [ 18F]FMISO as the standard. Nucl Med Biol 2019; 70:39-45. [PMID: 30836255 DOI: 10.1016/j.nucmedbio.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hypoxia, a common feature of most solid tumors, is an important predictor of tumor progression and resistance to radiotherapy. We developed a novel hypoxia imaging probe with optimal biological characteristics for use in clinical settings. METHODS We designed and synthesized several new hypoxia probes with additional hydrophilic characteristics compared to [18F]fluoromisonidazole ([18F]FMISO). These were 1-(2,2-Dihydroxy-methyl-3-[18F]-Fluoropropyl) azomycin ([18F]DiFA, formerly [18F]HIC101) and its analogs ([18F]F1 and [18F]F2). Biodistribution studies with EMT6 mammary carcinoma cell-bearing mice were performed 1 and 2 h after injection of each probe. Small-animal positron emission tomography (PET) imaging studies were conducted using [18F]DiFA and [18F]FMISO in the same mice. Tumoral hypoxia was confirmed via pimonidazole staining. Ex vivo digital autoradiographs were obtained for confirming the co-localization of [18F]DiFA and pimonidazole in the tumor tissues. RESULTS The EMT6 tumors used had pimonidazole-positive regions. In biodistribution studies, the tumor-to-blood ratio and tumor-to-muscle ratio of [18F]DiFA was significantly higher than the respective [18F]FMISO ratios 1 h after injection. Hence, we selected [18F]DiFA as the best hypoxia probe among those tested. Small-animal PET imaging studies showed time-dependent increases in the tumor-to-normal tissue ratio of [18F]DiFA uptake. Rapid clearance from the rest of the body was observed primarily via the renal system. Ex vivo autoradiography showed a positive correlation between [18F]DiFA uptake and the regions of pimonidazole distribution, indicating that [18F]DiFA selectively accumulated in the tumor tissue's hypoxic region. CONCLUSIONS A better contrast image and a shorter waiting time may be obtained with [18F]DiFA than with [18F]FMISO. ADVANCES IN KNOWLEDGE By optimizing LogP based on the [18F]FMISO structure, we demonstrated that [18F]DiFA could detect tumor hypoxia regions at an early time point. IMPLICATIONS FOR PATIENT CARE: [18F]DiFA imaging facilitates the evaluation of various cancer hypoxic states due to the lower uptake of normal tissues and could contribute to novel treatment development.
Collapse
Affiliation(s)
- Norihito Nakata
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
| | - Masato Kiriu
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
| | - Yuki Okumura
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
| | - Songji Zhao
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Ken-Ichi Nishijima
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, 060-0815 Sapporo, Japan
| | - Tohru Shiga
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Nagara Tamaki
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Yuji Kuge
- Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, 060-0815 Sapporo, Japan
| | - Hiroki Matsumoto
- Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan.
| |
Collapse
|
41
|
Zhang Z, Yang J, Min Q, Ling C, Maiti D, Xu J, Qin L, Yang K. Holo-Lactoferrin Modified Liposome for Relieving Tumor Hypoxia and Enhancing Radiochemotherapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803703. [PMID: 30645056 DOI: 10.1002/smll.201803703] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/05/2018] [Indexed: 05/23/2023]
Abstract
Hypoxic microenvironments in the solid tumor play a negative role in radiotherapy. Holo-lactoferrin (holo-Lf) is a natural protein, which acts as a potential ligand of transferrin receptor (TfR). In this work, an anticancer drug, doxorubicin (Dox)-loaded liposome-holo-Lf nanocomposites, is developed for tumor targeting and imaging guided combined radiochemotherapy. Dox-loaded liposome-holo-Lf (Lf-Liposome-Dox) nanocomposites exhibit significant cellular uptake likely owing to the TfR receptor-mediated targeting accumulation of Lf-Liposome-Dox nanocomposites. Additionally, the nanocomposites exhibit high accumulation in the tumor site after intravenous injection as evidenced from in vivo fluorescence imaging. More importantly, it is found that the holo-Lf has the ability to catalyze the conversion of hydrogen peroxide (H2 O2 ) to oxygen for relieving the tumor hypoxic microenvironment. Photoacoustic imaging further confirms the abundant generation of oxygen in the presence of Lf-Liposome-Dox nanocomposites. Based on these findings, in vivo combined radiochemotherapy is performed using Lf-Liposome-Dox as therapeutic agent, achieving excellent cancer treatment effect. The study further promotes the potential biomedical application of holo-Lf in cancer treatment.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jingrong Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qingqing Min
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chenjie Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
42
|
Clinical and Pre-clinical Methods for Quantifying Tumor Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:19-41. [PMID: 31201714 DOI: 10.1007/978-3-030-12734-3_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia, a prevalent characteristic of most solid malignant tumors, contributes to diminished therapeutic responses and more aggressive phenotypes. The term hypoxia has two definitions. One definition would be a physiologic state where the oxygen partial pressure is below the normal physiologic range. For most normal tissues, the normal physiologic range is between 10 and 20 mmHg. Hypoxic regions develop when there is an imbalance between oxygen supply and demand. The impact of hypoxia on cancer therapeutics is significant: hypoxic tissue is 3× less radiosensitive than normoxic tissue, the impaired blood flow found in hypoxic tumor regions influences chemotherapy delivery, and the immune system is dependent on oxygen for functionality. Despite the clinical implications of hypoxia, there is not a universal, ideal method for quantifying hypoxia, particularly cycling hypoxia because of its complexity and heterogeneity across tumor types and individuals. Most standard imaging techniques can be modified and applied to measuring hypoxia and quantifying its effects; however, the benefits and challenges of each imaging modality makes imaging hypoxia case-dependent. In this chapter, a comprehensive overview of the preclinical and clinical methods for quantifying hypoxia is presented along with the advantages and disadvantages of each.
Collapse
|
43
|
Changes in Tumor Biology During Chemoradiation of Cervix Cancer Assessed by Multiparametric MRI and Hypoxia PET. Mol Imaging Biol 2018; 20:160-169. [PMID: 28540524 PMCID: PMC5775363 DOI: 10.1007/s11307-017-1087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Imaging biomarkers assessed with magnetic resonance imaging (MRI) and/or positron emission tomography (PET) enable non-invasive tumor characterization in cervix cancer patients. We investigated the spatio-temporal stability of hypoxia, perfusion, and the cell density of tumors over time by repetitive imaging prior to, during, and after radio-chemotherapy. PROCEDURES Thirteen patients were included in this prospective study. The imaging protocol included the following: [18F]fluoromisonidazole ([18F]FMISO)-PET/x-ray computed tomography (CT) and multiparametric (mp)-MRI at four time-points (TP): baseline (BL); and weeks 2 (TP1), 5 (TP2), and 19 after treatment start (follow-up FU). Complete datasets for six patients could be assessed for tumor volume, enhancement kinetics, diffusivity, and [18F]FMISO-avidity (P1-P6). In addition, two patients completed all PET/CT examinations (P7-P8) but not all MR scans; however, one of them had no hypoxia (P8). Descriptive statistics, correlations, and voxel-by-voxel analysis were performed. For various, independent reasons, five patients could not complete the study according to the protocol with all imaging sequences. RESULTS Median tumor ADCs (in ×10-3 mm2/s) were 0.99 ± 0.10 at BL, 1.20 ± 0.12 at TP1, 1.33 ± 0.14 at TP2, and 1.38 ± 0.21 at FU. The median TBRpeak (tumor-to-background) was 2.7 ± 0.8 at BL, 1.6 ± 0.2 at TP1, 1.8 ± 0.3 at TP2, and 1.7 ± 0.3 at FU. The voxel-by-voxel analysis of the [18F]FMISO uptake at BL and TP1 showed no correlation. Between TP2 and TP1 and FU and TP2, weak correlations were found for two patients. CONCLUSIONS Longitudinal mp-MR and PET imaging enables the in vivo tumor characterization over time. While perfusion and cell density decreased, there was a non-uniform change of hypoxia observed during radiotherapy. To assess the potential impact with regard to more personalized treatment approaches, hypoxia imaging-based dose painting for cervix cancer requires further research.
Collapse
|
44
|
Tao R, Ager B, Lloyd S, Torgeson A, Denney M, Gaffney D, Kharofa J, Lin SH, Koong AC, Anzai Y, Hoffman JM. Hypoxia imaging in upper gastrointestinal tumors and application to radiation therapy. J Gastrointest Oncol 2018; 9:1044-1053. [PMID: 30603123 DOI: 10.21037/jgo.2018.09.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for upper gastrointestinal tumors remains poor, likely in part due to treatment resistance associated with intratumoral hypoxia. In this review, we highlight advances in nuclear medicine imaging that allow for characterization of in vivo tumor hypoxia in esophageal, pancreatic, and liver cancers. Strategies for adaptive radiotherapy in upper gastrointestinal tumors are proposed that would apply information gained through hypoxia imaging to the creation of personalized radiotherapy treatment plans able to overcome hypoxia-induced treatment resistance, minimize treatment-related toxicities, and improve patient outcomes.
Collapse
Affiliation(s)
- Randa Tao
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan Ager
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shane Lloyd
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna Torgeson
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michelle Denney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David Gaffney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshimi Anzai
- Department of Radiology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Atutornu J, Hayre CM. Personalised Medicine and Medical Imaging: Opportunities and Challenges for Contemporary Health Care. J Med Imaging Radiat Sci 2018; 49:352-359. [DOI: 10.1016/j.jmir.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023]
|
46
|
Zou W, Dong L, Kevin Teo BK. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Semin Radiat Oncol 2018; 28:238-247. [PMID: 29933883 DOI: 10.1016/j.semradonc.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Image guidance technology has evolved and seen widespread application in the past several decades. Advancements in the diagnostic imaging field have found new applications in radiation oncology and promoted the development of therapeutic devices with advanced imaging capabilities. A recent example is the development of linear accelerators that offer magnetic resonance imaging for real-time imaging and online adaptive planning. Volumetric imaging, in particular, offers more precise localization of soft tissue targets and critical organs which reduces setup uncertainty and permit the use of smaller setup margins. We present a review of the status of current imaging modalities available for radiation oncology and its impact on target margins and use for adaptive therapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Theis T, Ariyasingha NM, Shchepin RV, Lindale J, Warren WS, Chekmenev EY. Quasi-Resonance Signal Amplification by Reversible Exchange. J Phys Chem Lett 2018; 9:6136-6142. [PMID: 30284835 PMCID: PMC6247415 DOI: 10.1021/acs.jpclett.8b02669] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we present the feasibility of NMR signal amplification by reversible exchange (SABRE) using radio frequency irradiation at low magnetic field (0.05 T) in the regime where the chemical shifts of free and catalyst-bound species are similar. In SABRE, the 15N-containing substrate and parahydrogen perform simultaneous chemical exchange on an iridium hexacoordinate complex. A shaped spin-lock induced crossing (SLIC) radio frequency pulse sequence followed by a delay is applied at quasi-resonance (QUASR) conditions of 15N spins of a 15N-enriched substrate. As a result of this pulse sequence application, 15N z-magnetization is created from the spin order of parahydrogen-derived hyperpolarized hydrides. The repetition of the pulse sequence block consisting of a shaped radio frequency pulse and the delay leads to the buildup of 15N magnetization. The modulation of this effect by the irradiation frequency, pulse duration and amplitude, delay duration, and number of pumping cycles was demonstrated. Pyridine-15N, acetonitrile-15N, and metronidazole-15N2-13C2 substrates were studied representing three classes of compounds (five- and six-membered heterocycles and nitrile), showing the wide applicability of the technique. Metronidazole-15N2-13C2 is an FDA-approved antibiotic that can be injected in large quantities, promising noninvasive and accurate hypoxia sensing. The 15N hyperpolarization levels attained with QUASR-SABRE on metronidazole-15N2-13C2 were more than 2-fold greater than those with SABRE-SHEATH (SABRE in shield enables alignment transfer to heteronuclei), demonstrating that QUASR-SABRE can deliver significantly more efficient means of SABRE hyperpolarization.
Collapse
Affiliation(s)
- Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States
| | - Nuwandi M. Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Nashville, Tennessee, 37232-2310, United States
| | - Jacob Lindale
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
48
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
49
|
Stieb S, Eleftheriou A, Warnock G, Guckenberger M, Riesterer O. Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy. Eur J Nucl Med Mol Imaging 2018; 45:2201-2217. [PMID: 30128659 DOI: 10.1007/s00259-018-4116-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Hypoxia results from an imbalance between oxygen supply and consumption. It is a common phenomenon in solid malignant tumors such as head and neck cancer. As hypoxic cells are more resistant to therapy, tumor hypoxia is an indicator for poor prognosis. Several techniques have been developed to measure tissue oxygenation. These are the Eppendorf O2 polarographic needle electrode, immunohistochemical analysis of endogenous (e.g., hypoxia-inducible factor-1α (HIF-1a)) and exogenous markers (e.g., pimonidazole) as well as imaging methods such as functional magnetic resonance imaging (e.g., blood oxygen level dependent (BOLD) imaging, T1-weighted imaging) and hypoxia positron emission tomography (PET). Among the imaging modalities, only PET is sufficiently validated to detect hypoxia for clinical use. Hypoxia PET tracers include 18F-fluoromisonidazole (FMISO), the most commonly used hypoxic marker, 18F-flouroazomycin arabinoside (FAZA), 18Ffluoroerythronitroimidazole (FETNIM), 18F-2-nitroimidazolpentafluoropropylacetamide (EF5) and 18F-flortanidazole (HX4). As technical development provides the opportunity to increase the radiation dose to subregions of the tumor, such as hypoxic areas, it has to be ensured that these regions are stable not only from imaging to treatment but also through the course of radiotherapy. The aim of this review is therefore to characterize the behavior of tumor hypoxia during radiotherapy for the whole tumor and for subregions by using hypoxia PET tracers, with focus on head and neck cancer patients.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland. .,Institute of Diagnostic and Interventional Radiology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Afroditi Eleftheriou
- Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Geoffrey Warnock
- Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
50
|
Kelada OJ, Rockwell S, Zheng MQ, Huang Y, Liu Y, Booth CJ, Decker RH, Oelfke U, Carson RE, Carlson DJ. Quantification of Tumor Hypoxic Fractions Using Positron Emission Tomography with [ 18F]Fluoromisonidazole ([ 18F]FMISO) Kinetic Analysis and Invasive Oxygen Measurements. Mol Imaging Biol 2018; 19:893-902. [PMID: 28409339 DOI: 10.1007/s11307-017-1083-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of this study is to use dynamic [18F]fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) to compare estimates of tumor hypoxic fractions (HFs) derived by tracer kinetic modeling, tissue-to-blood ratios (TBR), and independent oxygen (pO2) measurements. PROCEDURES BALB/c mice with EMT6 subcutaneous tumors were selected for PET imaging and invasive pO2 measurements. Data from 120-min dynamic [18F]FMISO scans were fit to two-compartment irreversible three rate constant (K 1, k 2, k 3) and Patlak models (K i). Tumor HFs were calculated and compared using K i, k 3, TBR, and pO2 values. The clinical impact of each method was evaluated on [18F]FMISO scans for three non-small cell lung cancer (NSCLC) radiotherapy patients. RESULTS HFs defined by TBR (≥1.2, ≥1.3, and ≥1.4) ranged from 2 to 85 % of absolute tumor volume. HFs defined by K i (>0.004 ml min cm-3) and k 3 (>0.008 min-1) varied from 9 to 85 %. HF quantification was highly dependent on metric (TBR, k 3, or K i) and threshold. HFs quantified on human [18F]FMISO scans varied from 38 to 67, 0 to 14, and 0.1 to 27 %, for each patient, respectively, using TBR, k 3, and K i metrics. CONCLUSIONS [18F]FMISO PET imaging metric choice and threshold impacts hypoxia quantification reliability. Our results suggest that tracer kinetic modeling has the potential to improve hypoxia quantification clinically as it may provide a stronger correlation with direct pO2 measurements.
Collapse
Affiliation(s)
- Olivia J Kelada
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Sara Rockwell
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Uwe Oelfke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Richard E Carson
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA.
| |
Collapse
|