1
|
Vaassen F, Hofstede D, Zegers CM, Dijkstra JB, Hoeben A, Anten MH, Houben RM, Hoebers F, Compter I, van Elmpt W, Eekers DB. The effect of radiation dose to the brain on early self-reported cognitive function in brain and head-and-neck cancer patients. Clin Transl Radiat Oncol 2025; 52:100929. [PMID: 40028425 PMCID: PMC11869991 DOI: 10.1016/j.ctro.2025.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Assess cognitive changes after radiotherapy (RT) in brain and head-and-neck (HN) cancer patients using patient-reported outcome measures (PROMs) and evaluate a dose-effect relationship for brain structures. Materials and methods Primary brain and HN cancer patients treated with RT between 2012-2021 were included. Patient characteristics, clinical parameters, and PROMs at baseline and 1-year follow-up were collected. Cognitive functioning (CF) from the EORTC QLQ-C30, communication deficit (CD) from the QLQ-BN20, and one cognition-related questions from the EQ6D questionnaire were used, the latter two only for brain patients. Missing data were imputed and the four-point scale scores were transformed to a 100-point scale. Change in scores from baseline to 1-year were categorized into improvement/constant or deterioration. Organs-at-risk (OARs) were contoured either clinically or retrospectively using autocontouring and dose to the OARs were calculated. Results A total of 110 brain and 356 HN cancer patients were included. Median age was 56 (brain) and 67.5 (HN) years. Baseline and 1-year CF was significantly lower for brain patients (p < 0.001). Univariate analysis for ΔCF showed that age at start RT ≤ 65 years, receiving chemotherapy, higher CF Baseline score, brain mean dose > 3 Gy, and multiple dose levels to left and right hippocampus were statistically associated with cognitive deterioration. Multivariate analysis for ΔCF identified age at RT ≤ 65 years, higher CF Baseline score, and brain mean dose > 3 Gy as significant predictors. Conclusion This study identified risk factors for subjective cognitive decline and suggests that patients' self-perceived cognitive deterioration may be related to age, CF baseline score and brain radiation dose above 3 Gy.
Collapse
Affiliation(s)
- Femke Vaassen
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - David Hofstede
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Catharina M.L. Zegers
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Jeanette B. Dijkstra
- Department of Medical Psychology Maastricht University Medical Center+ Maastricht the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Monique H.M.E. Anten
- Department of Neurology Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Ruud M.A. Houben
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Daniëlle B.P. Eekers
- Department of Radiation Oncology (Maastro) GROW Research Institute for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht the Netherlands
| |
Collapse
|
2
|
Mandelli B, Caivano D, Fontana A, Cenfra N, Mecarocci S, Marrocco M, Fanciullo D, Mazzarella R, Lorenzon M, Pacitto G, Pulsoni A. Radiotherapy alone with curative intent in a case of limited-stage extranodal NK/T-cell lymphoma nasal type: a case report and review of the literature. Ann Hematol 2025:10.1007/s00277-025-06260-x. [PMID: 40178606 DOI: 10.1007/s00277-025-06260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTCL-NT), is an aggressive malignancy primarily affecting the sinonasal region, with a strong association with Epstein-Barr virus (EBV) infection. The disease is significantly more prevalent in Asian and Latin American populations. Diagnosis is particularly challenging in nonendemic regions. We present the case of a 78-year-old male with a one-year history of nasal lesions, later diagnosed with ENKTCL-NT. The patient was treated with curative-intent radiotherapy, achieving a complete clinical response. Radiation therapy, particularly utilizing advanced techniques such as Volumetric Modulated Arc Therapy (VMAT), resulted in favorable outcomes with minimal toxicity. This case emphasizes the importance of early diagnosis, accurate staging, and personalized radiotherapy in the management of ENKTCL-NT. Ongoing research into the molecular pathogenesis, treatment strategies, and prognostic factors is crucial for improving outcomes, particularly in advanced-stage disease.
Collapse
Affiliation(s)
- Biancamaria Mandelli
- Hematology Unit, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy.
| | - Donatella Caivano
- Department of Oncology Radiation Therapy, San Giovanni Addolorata Hospital, Rome, Italy
- PhD School in Traslational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, Rome, Italy
| | - Antonella Fontana
- Department of Oncology Radiation Therapy, S.M. Goretti Hospital, Latina, Italy
| | - Natalia Cenfra
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, Sapienza Univesity, Latina, Italy
| | - Sergio Mecarocci
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, Sapienza Univesity, Latina, Italy
| | | | - David Fanciullo
- Hematology Unit, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Roberta Mazzarella
- Hematology Unit, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Martina Lorenzon
- Hematology Unit, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Giada Pacitto
- Hematology Unit, Department of Translational and Precision Medicine, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Alessandro Pulsoni
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, Sapienza Univesity, Latina, Italy
| |
Collapse
|
3
|
Paulissen J, Zegers C, Houben R, Hofstede D, Kars M, van Santen H, Hoebers F, Ruysscher DD, Eekers D. Radiotherapy-induced Hypothalamic-Pituitary axis dysfunction in adult Brain, head and neck and skull base tumor patients - A systematic review and Meta-Analysis. Clin Transl Radiat Oncol 2025; 51:100900. [PMID: 39801827 PMCID: PMC11721507 DOI: 10.1016/j.ctro.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background and purpose Radiotherapy for brain, head & neck (HN), and skull base (SB) tumors may deliver significant radiation dose to the hypothalamic-pituitary axis (HPA), leading to impaired functioning of this region and hence, to endocrine disorders. The purpose of this systematic review and meta-analysis is to investigate literature on HP dysfunction after radiation for non-pituitary brain, HN, or SB tumors at adult age, aiming to give insight in the prevalence of HP dysfunction related to radiation dose. Materials and methods Literature search of the PubMed database was performed for HP dysfunction after radiotherapy in adult patients. A risk of bias assessment was performed to rate the quality of the included papers. Besides clinical and treatment variables, reported insufficiencies for adrenocorticotrophic hormone, thyroid stimulating hormone, growth hormone, prolactin and follicle stimulating hormone and luteinizing hormone and for insufficiency of any axis were extracted. The prevalence for hormonal insufficiency per axis and for multiple axes was calculated using a random effects meta-regression with a random effect at the study level. Results The literature selection process resulted in a total of 22 original papers, suitable for full assessment (n = 1,462 patients). Literature showed a wide variation in HP dysfunction, along with wide dose ranges given to the hypothalamus and pituitary, with varying follow-up times. The calculated prevalence for any pituitary insufficiency was on average 0.61 (95 % CI 0.44-0.75). For growth hormone the mean prevalence was 0.40 (95 % CI 0.22-0.61), for prolactin 0.22 (95 % CI 0.17-0.28), for gonadotropin 0.20 (95 % CI 0.14-0.28), for adrenocorticotropic hormone 0.16 (95 % CI 0.08-0.30) and for thyroid stimulating hormone 0.16 (95 % CI 0.11-0.23). The prevalence for any insufficiency of 1 axis was 0.19 (95 % CI 0.11-0.30), of 2 axes 0.22 (95 % CI 0.12-0.38), of 3 axes 0.05 (95 % CI 0.03-0.09) and of panhypopituitarism 0.17 (95 % CI 0.08-0.32). Patients irradiated for nasopharyngeal carcinoma (NPC) seemed to be at highest risk for developing any endocrine insufficiency with a mean prevalence of 0.68 (95 % CI 0.45-0.85). A significant correlation between any endocrine insufficiency and follow-up time was observed (p = 0.015). A correlation between dose to the pituitary and occurrence of insufficiency on the hormonal axes could not be observed. Conclusion Endocrine insufficiency is reported in over half of the patients irradiated for brain, HN and SB malignancies. The hypothalamus is likely to be more vulnerable to radiation dose compared to the pituitary gland. More research is needed to establish dose thresholds for the hypothalamus and the pituitary to minimize the risk for pituitary insufficiency. Based on this knowledge, radiotherapy and follow-up of these patient groups should be standardized to establish a normal tissue complication probability (NTCP) model for the HPA.
Collapse
Affiliation(s)
- J.M.J. Paulissen
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - C.M.L. Zegers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - R.M. Houben
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - D. Hofstede
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - M. Kars
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - H.M. van Santen
- Department of Paediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, the Netherlands
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - F.J.P. Hoebers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - D.K.M. De Ruysscher
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - D.B.P. Eekers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
4
|
Petitt JC, Murayi R, El-Abtah ME, Momin A, Halima A, Potter T, Ahorukomeye P, Jarmula J, Thapliyal M, Murphy ES, Chao ST, Suh JH, Recinos PF, Kshettry VR. Outcomes of adjuvant radiation treatment following subtotal resection of world health organization grade II meningiomas. J Neurooncol 2025; 171:609-617. [PMID: 39538039 DOI: 10.1007/s11060-024-04878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Existing literature on adjuvant radiation after subtotal resection (STR) of WHO II meningiomas is limited by heterogenous patient cohorts, combining adjuvant and salvage radiation, gross total resection (GTR) and STR, primary radiation treatment vs. re-treatment, or grade II and III meningiomas, all of which have different expected outcomes. Tumor control estimates in a large homogenous patient cohort are needed to accurately counsel patients. METHODS A retrospective review of patients that had immediate post-operative imaging-confirmed residual WHO grade II meningioma followed by either adjuvant intensity-modulated radiation therapy (IMRT) or stereotactic radiosurgery (SRS) between 1996 and 2020 was conducted. Kaplan-Meier survival analysis and log-rank test was used to assess progression-free survival (PFS). RESULTS Thirty-nine patients met inclusion criteria (IMRT = 32; SRS = 7). Overall, the 3-, 5-, and 10-year PFS was 81.1%, 61.2%, and 44.6%, respectively. Median follow-up time was 37 months. When comparing IMRT and SRS cohorts, baseline characteristics did not differ significantly between groups, but significantly larger residual tumor volumes were treated with IMRT (22.2 cm3 vs. 6.3 cm3, p = 0.004). PFS was not significantly different between IMRT and SRS at 3 years (81.1% vs. 80.0%) or 5 years (65.5% vs. 40%) (p = 0.19). There was no significant difference in radiation necrosis between groups (IMRT = 3/32 patients vs. SRS = 0/7 patients, p = 0.32). CONCLUSION Our homogenous patient cohort displayed acceptable control rates at 3 years using SRS or IMRT as adjuvant therapy. No significant difference in PFS or radiation necrosis was noted between patients treated with adjuvant IMRT versus SRS.
Collapse
Affiliation(s)
- Jordan C Petitt
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Roger Murayi
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | | | - Arbaz Momin
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamia Potter
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Peter Ahorukomeye
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jakub Jarmula
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Mihika Thapliyal
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Erin S Murphy
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samuel T Chao
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pablo F Recinos
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Varun R Kshettry
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
- Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Neurosurgery and Rosa Ella Burkhardt Tumor & Neuro-Oncology Center, Skull Base, Pituitary & Cerebrovascular Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, CA5-86, 44195, USA.
| |
Collapse
|
5
|
Heggebø LC, Borgen IMH, Blakstad H, Saxhaug C, Rønning PA, Niehusmann PF, Werlenius K, Blomstrand M, Brandal P. Case report: Pseudoprogression mimicking neoplastic recurrence three months after completion of proton beam therapy for an IDH-mutant astrocytoma CNS WHO grade 3. Front Oncol 2025; 15:1397912. [PMID: 39949738 PMCID: PMC11821596 DOI: 10.3389/fonc.2025.1397912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Background Radiation-induced changes following proton beam therapy in isocitrate dehydrogenase (IDH)-mutated diffuse central nervous system (CNS) World Health Organization (WHO) grade 2 and 3 gliomas are not well characterized. We present a patient with an IDH-mutant astrocytoma CNS WHO grade 3 treated with proton beam therapy and with postradiation MRI changes suggestive of neoplastic progression that surprisingly turned out to be reactive. Case presentation A man in his twenties underwent surgery with a near gross total resection for what turned out to be an IDH-mutant astrocytoma CNS WHO grade 3. He was included in the PRO-GLIO trial and randomized to receive proton beam therapy to a total dose of 59.4 Gray (Gy) relative biological effectiveness (RBE). Four weeks after completion of radiotherapy, adjuvant temozolomide was commenced. All treatment was well tolerated, and the patient was in excellent general condition. Surprisingly, magnetic resonance imaging (MRI) examination three months after completion of radiotherapy showed what was highly suggestive of a distant recurrence. The patient underwent resective surgery about seven months after his first surgery. Histological examination showed inflammatory changes without neoplastic tissue, albeit not very typical for postradiation changes. Adjuvant chemotherapy with temozolomide was continued. Conclusion The presented case clearly shows that caution must be taken when interpreting cerebral MRI changes postradiation, and in particular after proton therapy. Further understanding of this subject is crucial to distinguish between patients requiring intensified antineoplastic treatment and those for whom maintaining current therapy or ongoing watchful waiting is advisable.
Collapse
Affiliation(s)
- Liv Cathrine Heggebø
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida Maria Henriksen Borgen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Hanne Blakstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Blomstrand
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- The Skandion Clinic, Uppsala, Sweden
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Palkowitsch M, Kaufmann LM, Hennings F, Menkel S, Hahn C, Bensberg J, Lühr A, Seidlitz A, Troost EGC, Krause M, Löck S. Variable-RBE-induced NTCP predictions for various side-effects following proton therapy for brain tumors - Identification of high-risk patients and risk mitigation. Radiother Oncol 2025; 202:110590. [PMID: 39427934 DOI: 10.1016/j.radonc.2024.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND PURPOSE Disregarding the increase of relative biological effectiveness (RBE) may raise the risk of acute and late adverse events after proton beam therapy (PBT). This study aims to explore the relationship between variable RBE (above 1.1)-induced normal tissue complication probabilities (NTCP) and patient-specific factors, identify patients at high risk of RBE-induced NTCP increase, and assess risk mitigation by incorporating RBE variability into treatment planning. MATERIALS AND METHODS We retrospectively analyzed 105 primary brain tumor patients treated with PBT (RBE = 1.1). We calculated differences in estimated NTCP (ΔNTCP) using a variable RBE-weighted dose (DRBE, Wedenberg model) and a constant RBE-weighted dose (DRBE=1.1), across 16 NTCP models. These differences were correlated with patient-specific characteristics. Based on ΔNTCP, patients were classified as high risk (32 %) or low risk (68 %) for adverse events due to RBE-induced NTCP. This classification was compared with alternative classifications based on (a) relevant patient-specific characteristics, (b) DRBE=1.1, and (c) the difference between DRBE and DRBE=1.1 (ΔD), assessing the balanced accuracy. The potential to reduce RBE-induced NTCP through track-end and linear energy transfer (LET) optimization was evaluated in six example patients. RESULTS Using a variable RBE instead of a constant one resulted in NTCP increases (up to 32 percentage points). Variable-RBE-induced NTCP increases were strongly negatively correlated with the distance between the clinical target volume (CTV) and the organ at risk (OAR) for most side-effects, and positively correlated with CTV volume for certain side-effects. High increases were associated with (a) specific patient factors, particularly the proximity of the CTV to OARs, (b) DRBE=1.1, and (c) ΔD, with a balanced accuracy of 0.88, 0.94, and 0.86, respectively. Optimization of track-ends and LET considerably reduced NTCP values, achieving a mean reduction of 31 % for optimized OARs. CONCLUSION The risk of variable-RBE-induced NTCP strongly depends on patient-specific factors and the considered side-effect. A small distance between the tumor and OARs notably increases the risk. Integrating biologically-guided objectives into treatment planning can effectively mitigate the risk.
Collapse
Affiliation(s)
- Martina Palkowitsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
| | - Lisa-Marie Kaufmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Hennings
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Stefan Menkel
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Jona Bensberg
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Armin Lühr
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
7
|
Baumert BG, P M Jaspers J, Keil VC, Galldiks N, Izycka-Swieszewska E, Timmermann B, Grosu AL, Minniti G, Ricardi U, Dhermain F, Weber DC, van den Bent M, Rudà R, Niyazi M, Erridge S. ESTRO-EANO guideline on target delineation and radiotherapy for IDH-mutant WHO CNS grade 2 and 3 diffuse glioma. Radiother Oncol 2025; 202:110594. [PMID: 39454886 DOI: 10.1016/j.radonc.2024.110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE This guideline will discuss radiotherapeutic management of IDH-mutant grade 2 and grade 3 diffuse glioma, using the latest 2021 WHO (5th) classification of brain tumours focusing on: imaging modalities, tumour volume delineation, irradiation dose and fractionation. METHODS The ESTRO Guidelines Committee, CNS subgroup, nominated 15 European experts who identified questions for this guideline. Four working groups were established addressing specific questions concerning imaging, target volume delineation, radiation techniques and fractionation. A literature search was performed, and available literature was discussed. A modified two-step Delphi process was used with majority voting resulted in a decision or highlighting areas of uncertainty. RESULTS Key issues identified and discussed included imaging needed to define target definition, target delineation and the size of margins, and technical aspects of treatment including different planning techniques such as proton therapy. CONCLUSIONS The GTV should include any residual tumour volume after surgery, as well as the resection cavity. Enhancing lesions on T1 imaging should be included if they are indicative of residual tumour. In grade 2 tumours, T2/FLAIR abnormalities should be included in the GTV. In grade 3 tumours, T2/FLAIR abnormalities should also be included, except areas that are considered to be oedema which should be omitted from the GTV. A GTV to CTV expansion of 10 mm is recommended in grade 2 tumours and 15 mm in grade 3 tumours. A treatment dose of 50.4 Gy in 28 fractions is recommended in grade 2 tumours and 59.4 Gy in 33 fractions in grade 3 tumours. Radiation techniques with IMRT are the preferred approach.
Collapse
Affiliation(s)
- Brigitta G Baumert
- Institute of Radiation-Oncology, Cantonal Hospital Graubunden, Chur, Switzerland.
| | - Jaap P M Jaspers
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany; Department of Particle Therapy, University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Frédéric Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, Villejuif, France
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Villingen, Switzerland
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Maximilian Niyazi
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Wagenaar D, Habraken SJM, Rinaldi I, Eekers DBP, Kramer M, Jaspers JPM, van Gent D, Barazzuol L, Klaver YLB, Zindler J, Coremans I, Compter I, Scandurra D, van der Weide HL, Both S, Hoogeman M, Unipan M, Méndez Romero A. Evaluating and reporting LET and RBE-weighted dose in proton therapy for glioma - The Dutch approach. Radiother Oncol 2025; 202:110653. [PMID: 39603511 DOI: 10.1016/j.radonc.2024.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE With proton therapy, the relative biological effectiveness (RBE) accounts for increased DNA damage caused by higher linear energy transfer (LET) compared to photons. However, the LET and hence the RBE varies along the proton range, particularly at the Bragg peak, introducing challenges in proton treatment planning for brain tumors. The aim of this paper is to standardize evaluating and reporting LET and RBE in proton therapy for patients with grade 2 and 3 IDH mutant gliomas among the Dutch proton therapy centers. MATERIALS AND METHODS A working group, comprising experts from three Dutch proton therapy centers, conducted nine meetings between 2020 and 2023. A joint literature review supported the standardized evaluation and reporting of LET and RBE. Questionnaires sent out to the three Dutch proton centers in 2020 and 2023 provided input for discussions on clinical practices. Three clinical examples were chosen to illustrate the application of the recommended methodology in treatment planning. RESULTS Following the literature review, a guideline on evaluation and reporting using the dose averaged LET (LETd) of primary and secondary protons calculated in water normalized to unit density was established. The McNamara variable RBE model with an α/β value of 2 Gy was selected for reporting. CONCLUSION The study presents a harmonization of approaches to evaluating and reporting LET and variable RBE in a guideline for the three Dutch proton therapy centers, providing clarity for future clinical interpretation. Having chosen a single variable RBE model offers practicality, although its accuracy remains a topic of ongoing research.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Steven J M Habraken
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Miranda Kramer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Dik van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yvonne L B Klaver
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Zindler
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Haaglanden MC, The Hague, The Netherlands
| | - Ida Coremans
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mischa Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| |
Collapse
|
9
|
Li Z, Li Q, Tian H, Wang M, Lin R, Bai J, Wang D, Dong M. Proton beam therapy for craniopharyngioma: a systematic review and meta-analysis. Radiat Oncol 2024; 19:161. [PMID: 39543740 PMCID: PMC11566716 DOI: 10.1186/s13014-024-02556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Craniopharyngioma is a rare and slow-growing benign sellar or parasellar epithelial tumor. The number of patients receiving proton beam therapy (PBT) has increased. This study aimed to systematically evaluate and analyze the comprehensive evidence regarding the safety and efficacy of PBT for craniopharyngioma. METHODS We searched four databases: the Cochrane Library, PubMed, Embase, and Web of Science. The period was from their inception to February 16, 2024. Two researchers independently screened the literature and extracted data. RESULTS Among 486 candidate articles, eight studies were included in our study. Exactly 393 patients with craniopharyngioma underwent PBT in these studies. These studies reported data on survival and toxicity. The median sample size was 42.5 patients. The median age was 9.1-37 years; the female proportion was 48.9%, and the median follow-up time was 29-91.4 months. All patients were treated once daily, five times a week, with a fraction of 1.8 Gy (RBE) per session. The median total dose was 54.0 Gy (RBE). The local control rates at 3 and 5 years in these studies were 99% and 93%, respectively. The overall survival rates at 3 and 5 years in these studies were both 100%. The incidence of acute and late toxicities was mainly grade 1-2. The main late toxicities included vascular and visual toxicities, hypothalamic obesity, endocrinopathy, and panhypopituitarism. CONCLUSIONS PBT for craniopharyngioma, especially in children and adolescents, has shown impressive local control and acceptable acute and late toxicities.
Collapse
Affiliation(s)
- Zhi Li
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qingyong Li
- Dongying Hospital, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Dongying, China
| | - Haidong Tian
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Maoqing Wang
- 416 Hospital of Nuclear Industry, Chengdu, China
| | - Ru Lin
- Shengli Oil Field Central Hospital, Dongying, China
| | - Juan Bai
- Department of Oncology, Clinical Medical College &, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
| | - Meng Dong
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Chan MKH, Zhang Y. Robust optimization incorporating weekly predicted anatomical CTs in IMPT of nasopharyngeal cancer. Phys Med Biol 2024; 69:215032. [PMID: 39419103 DOI: 10.1088/1361-6560/ad8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.This study proposes a robust optimization (RO) strategy utilizing virtual CTs (vCTs) predicted by an anatomical model in intensity-modulated proton therapy (IMPT) for nasopharyngeal cancer (NPC).Methods and Materials.For ten NPC patients, vCTs capturing anatomical changes at different treatment weeks were generated using a population average anatomy model. Two RO strategies of a 6 beams IMPT with 3 mm setup uncertainty (SU) and 3% range uncertainty (RU) were compared: conventional robust optimization (cRO) based on a single planning CT (pCT), and anatomical RO incorporating 2 and 3 predicted anatomies (aRO2 and aRO3). The robustness of these plans was assessed by recalculating them on weekly CTs (week 2-7) and extracting the voxel wise-minimum and maximum doses with 1 mm SU and 3% RU (voxmin\voxmax1mm3%).Results.The aRO plans demonstrated improved robustness in high-risk CTV1 and low-risk CTV 2 coverage compared to cRO plans. The weekly evaluation showed a lower plan adaptation rate for aRO3 (40%) vs. cRO (70%). The weekly nominal and voxmax1mm3%doses to OARs, especially spinal cord, are better controlled relative to their baseline doses at week 1 with aRO plans. The accumulated dose analysis showed that CTV1&2 had adequate coverage and serial organs (spinal cord and brainstem) were within their dose tolerances in the voxmin\voxmax1mm3%, respectively.Conclusion.Incorporating predicted weekly CTs from a population based average anatomy model in RO improves week-to-week target dose coverage and reduces false plan adaptations without increasing normal tissue doses. This approach enhances IMPT plan robustness, potentially facilitating reduced SU and further lowering OAR doses.
Collapse
Affiliation(s)
- Mark Ka Heng Chan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Huijben EMC, Terpstra ML, Galapon AJ, Pai S, Thummerer A, Koopmans P, Afonso M, van Eijnatten M, Gurney-Champion O, Chen Z, Zhang Y, Zheng K, Li C, Pang H, Ye C, Wang R, Song T, Fan F, Qiu J, Huang Y, Ha J, Sung Park J, Alain-Beaudoin A, Bériault S, Yu P, Guo H, Huang Z, Li G, Zhang X, Fan Y, Liu H, Xin B, Nicolson A, Zhong L, Deng Z, Müller-Franzes G, Khader F, Li X, Zhang Y, Hémon C, Boussot V, Zhang Z, Wang L, Bai L, Wang S, Mus D, Kooiman B, Sargeant CAH, Henderson EGA, Kondo S, Kasai S, Karimzadeh R, Ibragimov B, Helfer T, Dafflon J, Chen Z, Wang E, Perko Z, Maspero M. Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report. Med Image Anal 2024; 97:103276. [PMID: 39068830 DOI: 10.1016/j.media.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (≥0.87/0.90) and gamma pass rates for photon (≥98.1%/99.0%) and proton (≥97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.
Collapse
Affiliation(s)
- Evi M C Huijben
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten L Terpstra
- Radiotherapy Department, University Medical Center Utrecht, Utrecht, The Netherlands; Computational Imaging Group for MR Diagnostics & Therapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arthur Jr Galapon
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suraj Pai
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Adrian Thummerer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Peter Koopmans
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manya Afonso
- Wageningen University & Research, Wageningen Plant Research, Wageningen, The Netherlands
| | - Maureen van Eijnatten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oliver Gurney-Champion
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Zeli Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yiwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Kaiyi Zheng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Chuanpu Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Haowen Pang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuyang Ye
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Runqi Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Tao Song
- Fudan University, Shanghai, China
| | - Fuxin Fan
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingna Qiu
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yixing Huang
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Pengxin Yu
- Infervision Medical Technology Co., Ltd. Beijing, China
| | - Hongbin Guo
- Department of Biomedical Engineering, Shantou University, China
| | - Zhanyao Huang
- Department of Biomedical Engineering, Shantou University, China
| | | | | | - Yubo Fan
- Department of Computer Science, Vanderbilt University, Nashville, USA
| | - Han Liu
- Department of Computer Science, Vanderbilt University, Nashville, USA
| | - Bowen Xin
- Australian e-Health Research Centre, CSIRO, Herston, Queensland, Australia
| | - Aaron Nicolson
- Australian e-Health Research Centre, CSIRO, Herston, Queensland, Australia
| | - Lujia Zhong
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Zhiwei Deng
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | | | | | - Xia Li
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Cédric Hémon
- University Rennes 1, CLCC Eugène Marquis, INSERM, LTSI, Rennes, France
| | - Valentin Boussot
- University Rennes 1, CLCC Eugène Marquis, INSERM, LTSI, Rennes, France
| | | | | | - Lu Bai
- MedMind Technology Co. Ltd., Beijing, China
| | | | - Derk Mus
- MRI Guidance BV, Utrecht, The Netherlands
| | | | | | | | | | - Satoshi Kasai
- Niigata University of Health and Welfare, Niigata, Japan
| | - Reza Karimzadeh
- Image Analysis, Computational Modelling and Geometry, University of Copenhagen, Denmark
| | - Bulat Ibragimov
- Image Analysis, Computational Modelling and Geometry, University of Copenhagen, Denmark
| | | | - Jessica Dafflon
- Data Science and Sharing Team, Functional Magnetic Resonance Imaging Facility, National Institute of Mental Health, Bethesda, USA; Machine Learning Team, Functional Magnetic Resonance Imaging Facility National Institute of Mental Health, Bethesda, USA
| | - Zijie Chen
- Shenying Medical Technology (Shenzhen) Co., Ltd., Shenzhen, Guangdong, China
| | - Enpei Wang
- Shenying Medical Technology (Shenzhen) Co., Ltd., Shenzhen, Guangdong, China
| | - Zoltan Perko
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Delft, The Netherlands
| | - Matteo Maspero
- Radiotherapy Department, University Medical Center Utrecht, Utrecht, The Netherlands; Computational Imaging Group for MR Diagnostics & Therapy, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Yu H, He S, He Y, Dai G, Fu Y, Zeng X, Liu M, Ai P. Dosimetric comparison of advanced radiation techniques for scalp-sparing in low-grade gliomas. Strahlenther Onkol 2024; 200:785-796. [PMID: 38649484 DOI: 10.1007/s00066-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Alopecia causes significant distress for patients and negatively impacts quality of life for low-grade glioma (LGG) patients. We aimed to compare and evaluate variations in dose distribution for scalp-sparing in LGG patients with proton therapy and photon therapy, namely intensity-modulated proton therapy (IMPT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT). METHODS This retrospective study utilized a dataset comprising imaging data from 22 patients with LGG who underwent postoperative radiotherapy. Treatment plans were generated for each patient with scalp-optimized (SO) approaches and scalp-non-optimized (SNO) approaches using proton techniques and photons techniques; all plans adhered to the same dose constraint of delivering a total radiation dose of 54.04 Gy to the target volume. All treatment plans were subsequently analyzed. RESULTS All the plans generated in this study met the dose constraints for the target volume and OARs. The SO plans resulted in reduced maximum scalp dose (Dmax), mean scalp dose (Dmean), and volume of the scalp receiving 30 Gy (V30) and 40 Gy (V40) compared with SNO plans in all radiation techniques. Among all radiation techniques, the IMPT plans exhibited superior performance compared to other plans for dose homogeneity as for SO plans. Also, IMPT showed lower values for Dmean and Dmax than all photon radiation techniques. CONCLUSION Our study provides evidence that the SO approach is a feasible technique for reducing scalp radiation dose. However, it is imperative to conduct prospective trials to assess the benefits associated with this approach.
Collapse
Affiliation(s)
- Hang Yu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Shuangshuang He
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yisong He
- Medical Physics Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Yuchuan Fu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Xianhu Zeng
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Mengyuan Liu
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Ping Ai
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China.
| |
Collapse
|
13
|
Hoeijmakers EJI, Hoenen K, Bauwens M, Eekers DBP, Jeukens CRLPN, Wierts R. Dose rate conversion coefficients for ocular contamination in nuclear medicine: A Monte Carlo simulation with experimental validation. Med Phys 2024; 51:5645-5653. [PMID: 38588509 DOI: 10.1002/mp.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Since 2011, the International Commission on Radiological Protection (ICRP) has recommended an annual eye lens dose limit of 20 mSv for radiation workers, averaged over 5 years, with no year exceeding 50 mSv. However, limited research has been conducted on dose rate conversion coefficients (DCCs) for direct contamination of the eye. PURPOSE This study aimed to accurately determine DCCs for the eye lens and cornea for ocular contamination with radionuclides used in nuclear medicine. METHODS DCCs for 37 radionuclides used in nuclear medicine were determined using two different methods. Method 1 involved conducting Monte Carlo (MC) simulations of an ICRU cylinder to determine the absorbed dose at a depth of 3 mm resulting from a point source. The accuracy of this simulation approach was validated by experimental thermoluminescent dosimeter (TLD) measurements for 18F, 68Ga, 99mTc, and 177Lu. In method 2, average DCCs were calculated for the eye lens (complete and radiosensitive parts) and the cornea for both a point source and thin surface contamination centered on the cornea using MC simulations on the adult mesh-type reference computational phantom of the eye from the ICRP (MRCP). RESULTS DCCs determined from TLD measurements showed excellent agreement (deviations: +1.4%, +4.7%, -3.1%, and -2.5% for 18F, 68Ga, 99mTc, and 177Lu, respectively) compared to MC simulations of the experimental set-up. For the 37 radionuclides, DCCs of the complete eye-lens for a point source ranged from 2.53 × 10-7 to 4.15 × 10-2 mGy MBq-1 s-1 for the adult MRCPs, being substantially smaller compared to DCCs determined via MC simulations of a ICRU cylinder. In general, point source and surface contamination showed comparable DCCs for the eye lens. Radionuclides emitting low-energy beta radiation or conversion electrons (e.g., 177Lu, 99mTc) showed low DCCs as the radiation does not penetrate to the depth of the eye lens, while radionuclides emitting high-energy beta radiation (e.g., 90Y) showed high DCCs. Overall, DCCs for the radiosensitive part of the eye lens were larger (up to a factor of 3) compared to the complete eye lens. DCCs for the cornea were larger than for the eye lens with a factor that strongly depended on the emitted radiation type. Especially alpha emitters (e.g., 211At, 223Ra) showed high DCCs for the cornea because of the short range of alpha radiation, leading to local maxima in the cornea and not reaching the eye lens. CONCLUSION DCCs at a depth of 3 mm in an ICRU cylinder and adult MRCP DCCs for both the complete and sensitive parts of the eye lens and cornea were determined for 37 radionuclides having applications in nuclear medicine. These DCCs are highly useful in radiation safety assessments and radiation dose calculations in ocular contamination incidents.
Collapse
Affiliation(s)
- Eva J I Hoeijmakers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kes Hoenen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cécile R L P N Jeukens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
14
|
Gomà C, Henkner K, Jäkel O, Lorentini S, Magro G, Mirandola A, Placidi L, Togno M, Vidal M, Vilches-Freixas G, Wulff J, Safai S. ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data. Phys Imaging Radiat Oncol 2024; 31:100621. [PMID: 39220113 PMCID: PMC11364130 DOI: 10.1016/j.phro.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam-energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data-integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.
Collapse
Affiliation(s)
- Carles Gomà
- Institute of Cancer and Blood Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Catalan Health Service, Barcelona, Spain
| | - Katrin Henkner
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Lorentini
- Medical Physics Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marie Vidal
- Institut Méditerranéen de Protonthérapie - Centre Antoine Lacassagne, Nice, France
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- University Hospital Essen, Essen, Germany
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
15
|
Maier SH, Schönecker S, Anagnostatou V, Garny S, Nitschmann A, Fleischmann DF, Büttner M, Kaul D, Imhoff D, Fokas E, Seidel C, Hau P, Kölbl O, Popp I, Grosu AL, Haussmann J, Budach W, Celik E, Kahl KH, Hoffmann E, Tabatabai G, Paulsen F, Holzgreve A, Albert NL, Mansmann U, Corradini S, Belka C, Niyazi M, Bodensohn R. Dummy run for planning of isotoxic dose-escalated radiation therapy for glioblastoma used in the PRIDE trial (NOA-28; ARO-2024-01; AG-NRO-06). Clin Transl Radiat Oncol 2024; 47:100790. [PMID: 38765202 PMCID: PMC11101689 DOI: 10.1016/j.ctro.2024.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Background The PRIDE trial (NOA-28; ARO-2024-01; AG-NRO-06; NCT05871021) is designed to determine whether a dose escalation with 75.0 Gy in 30 fractions can enhance the median overall survival (OS) in patients with methylguanine methyltransferase (MGMT) promotor unmethylated glioblastoma compared to historical median OS rates, while being isotoxic to historical cohorts through the addition of concurrent bevacizumab (BEV). To ensure protocol-compliant irradiation planning with all study centers, a dummy run was planned and the plan quality was evaluated. Methods A suitable patient case was selected and the computed tomography (CT), magnetic resonance imaging (MRI) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) contours were made available. Participants at the various intended study sites performed radiation planning according to the PRIDE clinical trial protocol. The treatment plans and dose grids were uploaded as Digital Imaging and Communications in Medicine (DICOM) files to a cloud-based platform. Plan quality and protocol adherence were analyzed using a standardized checklist, scorecards and indices such as Dice Score (DSC) and Hausdorff Distance (HD). Results Median DSC was 0.89, 0.90, 0.88 for PTV60, PTV60ex (planning target volume receiving 60.0 Gy for the standard and the experimental plan, respectively) and PTV75 (PTV receiving 75.0 Gy in the experimental plan), respectively. Median HD values were 17.0 mm, 13.9 mm and 12.1 mm, respectively. These differences were also evident in the volumes: The PTV60 had a volume range of 219.1-391.3 cc (median: 261.9 cc) for the standard plans, while the PTV75 volumes for the experimental plans ranged from 71.5-142.7 cc (median: 92.3 cc). The structures with the largest deviations in Dice score were the pituitary gland (median 0.37, range 0.00-0.69) and the right lacrimal gland (median 0.59, range 0.42-0.78). Conclusions The deviations revealed the necessity of systematic trainings with appropriate feedback before the start of clinical trials in radiation oncology and the constant monitoring of protocol compliance throw-out the study. Trial registration NCT05871021.
Collapse
Affiliation(s)
- Sebastian H. Maier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Vasiliki Anagnostatou
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nitschmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Daniel F. Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - David Kaul
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Detlef Imhoff
- Department of Radiotherapy of Oncology, University of Frankfurt, Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy of Oncology, University of Frankfurt, Frankfurt, Germany
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Oliver Kölbl
- Department of Radiotherapy, University Medical Center Regensburg, Regensburg, Germany
| | - Ilinca Popp
- Department of Radiation Oncology, University of Freiburg Faculty of Medicine, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg Faculty of Medicine, Freiburg, Germany
| | - Jan Haussmann
- Department of Radiation Oncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Wilfried Budach
- Department of Radiation Oncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eren Celik
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Dept. of Radiation Oncology, Faculty of Medicine and University Hospital Ruhr-University Bochum, Marien Hospital Herne, Herne, Germany
| | - Klaus-Henning Kahl
- Department of Radiooncology, University Hospital Augsburg, Augsburg, Germany
| | - Elgin Hoffmann
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Ahmanson Translational Theranostics Division, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital Tübingen, Tübingen, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Pepin A, Lee V, O'Brien S, Mulugeta P, Taunk NK. Management of Dry Eye Toxicity After Treatment With 177Lu-PSMA-617 Radioligand Therapy. Pract Radiat Oncol 2024; 14:301-304. [PMID: 38631608 DOI: 10.1016/j.prro.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Treatment options for patients with metastatic castration-resistant prostate cancer include use of radioligand therapy with 177Lu-PSMA-617. 177Lu-PSMA-617 is used to target prostate cancer cells selectively by targeting prostate specific membrane antigen (PSMA); however, PSMA is also expressed on lacrimal glands among other tissues. Herein, we report on a case of a Common Terminology Criteria for Adverse Events version 5 grade 3 dry eye event with concomitant blepharitis after administration of 177Lu-PSMA-617. The patient was managed with neomycin-polymyxin-dexamethasone 3.5-10000-0.1 ophthalmic suspension, artificial tears, lubricating ointments, lid scrubs, and oral antihistamines.
Collapse
Affiliation(s)
- Abigail Pepin
- Departments of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivian Lee
- Departments of Ophthalmology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophia O'Brien
- Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Philipose Mulugeta
- Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil K Taunk
- Departments of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Shierlaw E, Penfold M, Crain R, Santos AM, Penfold SN. Dosimetric comparison of gantry and horizontal fixed-beam proton therapy treatment plans for base of skull chordoma. J Med Radiat Sci 2024; 71 Suppl 2:19-26. [PMID: 38037893 PMCID: PMC11011589 DOI: 10.1002/jmrs.742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Australia's first proton beam therapy (PBT) centre will house a fixed-beam room and two gantry rooms. As the only PBT facility in Australia for at least the short term, there is a need to efficiently allocate treatment appointments between the gantry and fixed-beam rooms. This planning study assesses the dosimetric differences between fixed-beam and gantry-based treatment plans for base of skull chordoma, one of the core indications likely to be referred for PBT in Australia. METHODS Retrospective gantry-based and fixed-beam treatment plans were generated for five patients with base of skull chordoma. Fixed-beam plans were generated with a conventional horizontal patient positioning system. Robust intensity modulated proton therapy (IMPT) optimisation and evaluation techniques were used for both delivery systems. Plans were designed to maximise target coverage while adhering to maximum dose constraints to neighbouring critical organs at risk. RESULTS Robust target coverage and integral dose were found to be approximately equivalent for the gantry-based and fixed-beam plans. Doses to specific organs at risk could be reduced with the gantry-based geometry; however, the gantry-based plans did not exhibit a general decrease in doses to organs at risk. CONCLUSION A fixed-beam treatment plan was found to be non-inferior to a gantry-based treatment plan for all base of skull patients included in the current study.
Collapse
Affiliation(s)
- Emma Shierlaw
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Melanie Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
| | - Rosanna Crain
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Alexandre M.C. Santos
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Scott N. Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
18
|
Penfold SN, Santos AMC, Penfold M, Shierlaw E, Crain R. Single high-energy arc proton therapy with Bragg peak boost (SHARP). J Med Radiat Sci 2024; 71 Suppl 2:27-36. [PMID: 38400611 PMCID: PMC11011576 DOI: 10.1002/jmrs.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Because of the co-location of critical organs at risk, base of skull tumours require steep dose gradients to achieve the prescribed dosimetric criteria. When available, proton beam therapy (PBT) is often considered a desirable modality for these cases, but in many instances, compromises in target coverage are still required to achieve critical organ at risk (OAR) tolerance doses. A number of techniques have been proposed to further improve the penumbra of PBT. In the current study, we propose a novel, collimator-free treatment planning technique that combines high-energy shoot-through proton beams with conventional Bragg peak spot placement. The small spot size of the high-energy pencil beams provides a sharp penumbra at the target boundary, and the Bragg peak spots provide a higher linear energy transfer (LET) boost to the target centre. METHODS Three base of skull chordoma patients were retrospectively planned with three different PBT treatment planning techniques: (1) conventional intensity-modulated proton therapy (IMPT); (2) high-energy proton arc therapy (HE-PAT); and (3) the novel technique combining HE-PAT and IMPT, referred to as single high-energy arc with Bragg peak boost (SHARP). The Monaco 6 treatment planning system was used. RESULTS SHARP was found to improve the PBT penumbra in the plane perpendicular to the HE-PAT beams. Minimal penumbra differences were observed in the plane of the HE-PAT beams. SHARP reduced dose-averaged LET to surrounding organs at risk. CONCLUSION A novel PBT treatment planning technique was successfully implemented. Initial results indicate the potential for SHARP to improve the penumbra of PBT treatments for base of skull tumours.
Collapse
Affiliation(s)
- Scott N. Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexandre M. C. Santos
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Melanie Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
| | - Emma Shierlaw
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Rosanna Crain
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| |
Collapse
|
19
|
Trotier DC, Huang L, van Landingham SW, Burr AR, Ma VT. Review of recent advances in managing periocular skin malignancies. Front Oncol 2024; 14:1275930. [PMID: 38500654 PMCID: PMC10944901 DOI: 10.3389/fonc.2024.1275930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
Management of cutaneous malignancies can be particularly challenging when they are located in the periocular region. The standard of care for localized disease is complete surgical excision, but this may not be possible without significant disruption to visual structures and facial appearance. Definitive radiation may be an option for some patients who cannot or do not wish to undergo surgery. Advances in systemic treatment options for locally advanced and metastatic skin cancers in the past 10 years have prompted investigation into neoadjuvant treatment of periocular cancers. The use of chemotherapy, immune checkpoint inhibitors, and targeted therapies have all been reported with varying degrees of success. For many patients, targeted therapies or immune checkpoint inhibitors should be considered depending on the cancer type, symptoms, and goals with the input of a multidisciplinary cancer care team. In this article, we systematically review the latest updates in surgical, radiotherapeutic, and medical management of periocular malignancies.
Collapse
Affiliation(s)
- Daniel C Trotier
- University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin-Madison, Madison, WI, United States
| | - Leslie Huang
- University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Suzanne W van Landingham
- University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam R Burr
- University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Vincent T Ma
- University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin-Madison, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Niu S, Li Y, Shao H, Hu J, Wang J, Wang H, Zhang Y. Phase 2 Clinical Trial of Simultaneous Boost Intensity Modulated Radiation Therapy With 3 Dose Gradients in Patients With Stage I-II Nasal Type Natural Killer/T-Cell Lymphoma: Long-Term Outcomes of Survival and Quality of Life. Int J Radiat Oncol Biol Phys 2024; 118:770-780. [PMID: 37939733 DOI: 10.1016/j.ijrobp.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE The aim of this study was to investigate the treatment results and long-term quality of life in patients with early-stage extranodal natural killer/T-cell lymphoma who were prospectively treated with simultaneous boost intensity modulated radiation therapy (SIB-IMRT) with 3 dose gradients. METHODS AND MATERIALS Sixty patients with stage I-II nasal cavity natural killer/T-cell lymphoma (NKTCL) and Waldeyer's ring NKTCL were enrolled in a single-arm, prospective, phase 2 clinical trial from August 2011 to April 2015. All patients were treated with definitive radiation therapy combined with short-course induction chemotherapy. A newly designed SIB-IMRT scheme was uniformly adopted, with 54.6 Gy for the gross tumor volume (GTV) of the primary tumor and GTV of the positive lymph nodes, 50.7 Gy for the high-risk clinical target volume (CTV), and 45.5 Gy for the low-risk CTV, all delivered in 26 daily fractions. Before SIB-IMRT, L-asparaginase-based induction chemotherapy was used in 95.0% (57/60) of patients. RESULTS With a median follow-up time of 95.8 months, the 5-year locoregional recurrence-free survival, progression-free survival, and overall survival rates were 83.3%, 81.7%, and 88.3%, respectively. Dosimetric analysis in the first 21 patients showed satisfying conformality for planning target volume of GTV, high-risk CTV, and low-risk CTV, while the organs at risk were well protected. The results of long-term quality-of-life investigations in patients without progression were favorable, and nasal discomfort was the most common symptom. No grade 3 or 4 acute or late toxicities were observed. CONCLUSIONS The scheme of target volume delineation and dose setting that we designed has favorable clinical effects with mild side effects in treating patients with stage I-II nasal cavity NKTCL and Waldeyer's ring NKTCL.
Collapse
Affiliation(s)
- Shaoqing Niu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiyang Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang Hu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jijin Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hanyu Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujing Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
21
|
Journy N, Bolle S, Brualla L, Dumas A, Fresneau B, Haddy N, Haghdoost S, Haustermans K, Jackson A, Karabegovic S, Lassen-Ramshad Y, Thariat J, Wette MR, Botzenhardt S, De Wit I, Demoor-Goldschmidt C, Christiaens M, Høyer M, Isebaert S, Jacobs S, Henriksen LT, Maduro JH, Ronckers C, Steinmeier T, Uyttebroeck A, Van Beek K, Walsh L, Thierry-Chef I, Timmermann B. Assessing late outcomes of advances in radiotherapy for paediatric cancers: Study protocol of the "HARMONIC-RT" European registry (NCT 04746729). Radiother Oncol 2024; 190:109972. [PMID: 37922994 DOI: 10.1016/j.radonc.2023.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Neige Journy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphanie Bolle
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Agnès Dumas
- Inserm, Aix Marseille University, IRD, ISSPAM, SESSTIM (Economic and Social Sciences of Health and Medical Information Processing), Marseille, France
| | - Brice Fresneau
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Department of Paediatric Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nadia Haddy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| | - Karin Haustermans
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Angela Jackson
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Villejuif, France; National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sanja Karabegovic
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yasmin Lassen-Ramshad
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Juliette Thariat
- Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - Martina Roxanne Wette
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Suzan Botzenhardt
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany
| | - Inge De Wit
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Charlotte Demoor-Goldschmidt
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Centre Hospitalier Universitaire d'Angers, Rue Larrey 4, Angers 49 000, France
| | - Melissa Christiaens
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Sofie Isebaert
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Sandra Jacobs
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Tram Henriksen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - John H Maduro
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Cecile Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Theresa Steinmeier
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Anne Uyttebroeck
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium
| | - Karen Van Beek
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | - Beate Timmermann
- University Hospital Essen (UK Essen), Hufelandstrasse 55, Essen 45147, Germany; Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
22
|
Ryan J, Hardcastle N, Francis R, Ferjančič P, Ng SP, Koh ES, Geso M, Kelly J, Ebert MA. The impact of fluorine-18-fluoroethyltyrosine positron emission tomography scan timing on radiotherapy planning in newly diagnosed patients with glioblastoma. Phys Imaging Radiat Oncol 2024; 29:100536. [PMID: 38303922 PMCID: PMC10831153 DOI: 10.1016/j.phro.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Background and purpose Glioblastoma is one of the most common and aggressive primary brain tumours in adults. Though radiation therapy (RT) techniques have progressed significantly in recent decades, patient survival has seen little improvement. However, an area of promise is the use of fluorine-18-fluoroethyltyrosine positron-emission-tomography (18F-FET PET) imaging to assist in RT target delineation. This retrospective study aims to assess the impact of 18F-FET PET scan timing on the resultant RT target volumes and subsequent RT plans in post-operative glioblastoma patients. Materials and Methods The imaging and RT treatment data of eight patients diagnosed with glioblastoma and treated at a single institution were analysed. Before starting RT, each patient had two 18F-FET-PET scans acquired within seven days of each other. The information from these 18F-FET-PET scans aided in the creation of two novel target volume sets. The new volumes and plans were compared with each other and the originals. Results The median clinical target volume (CTV) 1 was statistically smaller than CTV 2. The median Dice score for the CTV1/CTV2 was 0.98 and, of the voxels that differ (median 6.5 cc), 99.7% were covered with a 5 mm expansion. Overall organs at risk (OAR) and target dosimetry were similar in the PTV1 and PTV2 plans. Conclusion Provided the 18F-FET PET scan is acquired within two weeks of the RT planning and a comprehensive approach is taken to CTV delineation, the timing of scan acquisition has minimal impact on the resulting RT plan.
Collapse
Affiliation(s)
- John Ryan
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Melbourne 3800, Victoria, Australia
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Grattan St, Melbourne 3000, Victoria, Australia
| | - Roslyn Francis
- Medical School, The University of Western Australia, 35 Stirling Highway, Perth 6009, Western Australia, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Peter Ferjančič
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison 53705, Wisconsin, United States
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Heidelberg, Melbourne 3084, Victoria, Australia
| | - Eng-Siew Koh
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, Sydney 2170, New South Wales, Australia
- South West Clinical School, UNSW Medicine, University of New South Wales, Liverpool, Sydney 2170, New South Wales, Australia
| | - Moshi Geso
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Jennifer Kelly
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Martin A Ebert
- Department of Medical Physics, Sir Charles Gairdner Hospital, Nedlands, Perth, 6009, Western Australia, Australia
- School of Physics, Mathematics and Computing, and Australian Centre for Quantitative Imaging, University of Western Australia, Crawley, Perth 6009, Western Australia, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison, Wisconsin 53705, Wisconsin, USA
| |
Collapse
|
23
|
Salans M, Karunamuni R, Unnikrishnan S, Qian A, Connor M, Gudipati S, Yip A, Huynh-Le MP, Tibbs M, Reyes A, Stasenko A, Schadler A, McDonald C, Hattangadi-Gluth JA. Microstructural Cerebellar Injury Independently Associated With Processing Speed in Adult Patients With Primary Brain Tumors: Implications for Cognitive Preservation. Int J Radiat Oncol Biol Phys 2023; 117:1107-1117. [PMID: 37414262 DOI: 10.1016/j.ijrobp.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE The cerebellum's role in posttreatment neurocognitive decline is unexplored. This study investigated associations between cerebellar microstructural integrity using quantitative neuroimaging biomarkers and neurocognition among patients with primary brain tumors receiving partial-brain radiation therapy (RT). METHODS AND MATERIALS In a prospective trial, 65 patients underwent volumetric brain magnetic resonance imaging, diffusion tensor imaging, and memory, executive function, language, attention, and processing speed (PS) assessment before RT and at 3, 6, and 12 months after RT. Delis-Kaplan Executive Function System-Trail Making (D-KEFS-TM) visual scanning and number and letter sequencing and Wechsler Adult Intelligence Scale, Fourth Edition, coding were used to evaluate PS. The cerebellar cortex and white matter (WM) and supratentorial structures subserving the previously mentioned cognitive domains were autosegmented. Volume was measured within each structure at each time point along with diffusion biomarkers (fractional anisotropy and mean diffusivity) in WM structures. Linear mixed-effects models assessed cerebellar biomarkers as predictors of neurocognitive scores. If associated, cerebellar biomarkers were evaluated as independent predictors of cognitive scores controlling for domain-specific supratentorial biomarkers. RESULTS Left (P = .04) and right (P < .001) cerebellar WM volume declined significantly over time. Cerebellar biomarkers were not associated with memory, executive function, or language. Smaller left cerebellar cortex volume was associated with worse D-KEFS-TM number (P = .01) and letter (P = .01) sequencing scores. A smaller right cerebellar cortex volume correlated with worse D-KEFS-TM visual scanning (P = .02) and number (P = .03) and letter (P = .02) sequencing scores. Greater right cerebellar WM mean diffusivity, indicating WM injury, was associated with worse D-KEFS-TM visual scanning performance (P = .03). Associations remained significant after controlling for corpus callosum and intrahemispheric WM injury biomarkers. CONCLUSIONS Injury to the cerebellum as measured with quantitative biomarkers correlates with worse post-RT PS, independent of corpus callosum and intrahemispheric WM damage. Efforts to preserve cerebellar integrity may preserve PS.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Alexander Qian
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Suma Gudipati
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anthony Yip
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, California
| | - Adam Schadler
- Department of Psychiatry, University of California, San Diego, California
| | - Carrie McDonald
- Department of Psychiatry, University of California, San Diego, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California.
| |
Collapse
|
24
|
Dell'Oro M, Wilson P, Short M, Peukert D, Bezak E. Modelling the influence of radiosensitivity on development of second primary cancer in out-of-field organs following proton therapy for paediatric cranial cancer. Br J Radiol 2023; 96:20230161. [PMID: 37660473 PMCID: PMC10546440 DOI: 10.1259/bjr.20230161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Radiobiological modelling the risks of second primary cancer (SPC) after proton therapy (PT) for childhood cranial cancer remains largely unknown. Organ-specific dose-response risk factors such as radiosensitivity require exploration. This study compared the influence of radiosensitivity data (slope of βEAR) on children's lifetime attributable risks (LAR) of SPC development in out-of-field organs following cranial scattering and scanning PT. METHODS Out-of-field radiosensitivity parameter estimates for organs (α/β and βEAR) were sourced from literature. Physical distances for 13 out-of-field organs were measured and input into Schneider's SPC model. Sensitivity analyses were performed as a function of radiosensitivity (α/β of 1-10 Gy) and initial slope (βEAR) from Japanese/UK data to estimate the influence on the risk of radiation-induced SPC following scattering and scanning PT. RESULTS Models showed similar LAR of SPC estimates for age and sex-matched paediatric phantoms, however, for breast there was a significant increase using Japanese βEAR data. For most organs, scattering PT demonstrated a larger risk of LAR for SPC which increased with α/β. CONCLUSION Breast tissue exhibited the highest susceptibility in calculated LAR risk, demonstrating the importance for accurate data input when estimating LAR of SPC. ADVANCES IN KNOWLEDGE The findings of this study demonstrated younger female patients undergoing cranial proton therapy have a higher risk of developing second primary cancer of the breast tissue. Long-term multicenter registries are important to improve predictive radiobiological modelling studies of side effects.
Collapse
Affiliation(s)
| | | | - Michala Short
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Dylan Peukert
- ARC Training Centre for Integrated Operations for Complex Resources, University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
25
|
Vaassen F, Zegers CML, Hofstede D, Wubbels M, Beurskens H, Verheesen L, Canters R, Looney P, Battye M, Gooding MJ, Compter I, Eekers DBP, van Elmpt W. Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology. Phys Med 2023; 114:103156. [PMID: 37813050 DOI: 10.1016/j.ejmp.2023.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Atlas-based and deep-learning contouring (DLC) are methods for automatic segmentation of organs-at-risk (OARs). The European Particle Therapy Network (EPTN) published a consensus-based atlas for delineation of OARs in neuro-oncology. In this study, geometric and dosimetric evaluation of automatically-segmented neuro-oncological OARs was performed using CT- and MR-models following the EPTN-contouring atlas. METHODS Image and contouring data from 76 neuro-oncological patients were included. Two atlas-based models (CT-atlas and MR-atlas) and one DLC-model (MR-DLC) were created. Manual contours on registered CT-MR-images were used as ground-truth. Results were analyzed in terms of geometrical (volumetric Dice similarity coefficient (vDSC), surface DSC (sDSC), added path length (APL), and mean slice-wise Hausdorff distance (MSHD)) and dosimetrical accuracy. Distance-to-tumor analysis was performed to analyze to which extent the location of the OAR relative to planning target volume (PTV) has dosimetric impact, using Wilcoxon rank-sum tests. RESULTS CT-atlas outperformed MR-atlas for 22/26 OARs. MR-DLC outperformed MR-atlas for all OARs. Highest median (95 %CI) vDSC and sDSC were found for the brainstem in MR-DLC: 0.92 (0.88-0.95) and 0.84 (0.77-0.89) respectively, as well as lowest MSHD: 0.27 (0.22-0.39)cm. Median dose differences (ΔD) were within ± 1 Gy for 24/26(92 %) OARs for all three models. Distance-to-tumor showed a significant correlation for ΔDmax,0.03cc-parameters when splitting the data in ≤ 4 cm and > 4 cm OAR-distance (p < 0.001). CONCLUSION MR-based DLC and CT-based atlas-contouring enable high-quality segmentation. It was shown that a combination of both CT- and MR-autocontouring models results in the best quality.
Collapse
Affiliation(s)
- Femke Vaassen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - David Hofstede
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Mart Wubbels
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Hilde Beurskens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Lindsey Verheesen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | | | | | | | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| |
Collapse
|
26
|
Abramian D, Blystad I, Eklund A. Evaluation of inverse treatment planning for gamma knife radiosurgery using fMRI brain activation maps as organs at risk. Med Phys 2023; 50:5297-5311. [PMID: 37531209 DOI: 10.1002/mp.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) can be an effective primary or adjuvant treatment option for intracranial tumors. However, it carries risks of various radiation toxicities, which can lead to functional deficits for the patients. Current inverse planning algorithms for SRS provide an efficient way for sparing organs at risk (OARs) by setting maximum radiation dose constraints in the treatment planning process. PURPOSE We propose using activation maps from functional MRI (fMRI) to map the eloquent regions of the brain and define functional OARs (fOARs) for Gamma Knife SRS treatment planning. METHODS We implemented a pipeline for analyzing patient fMRI data, generating fOARs from the resulting activation maps, and loading them onto the GammaPlan treatment planning software. We used the Lightning inverse planner to generate multiple treatment plans from open MRI data of five subjects, and evaluated the effects of incorporating the proposed fOARs. RESULTS The Lightning optimizer designs treatment plans with high conformity to the specified parameters. Setting maximum dose constraints on fOARs successfully limits the radiation dose incident on them, but can have a negative impact on treatment plan quality metrics. By masking out fOAR voxels surrounding the tumor target it is possible to achieve high quality treatment plans while controlling the radiation dose on fOARs. CONCLUSIONS The proposed method can effectively reduce the radiation dose incident on the eloquent brain areas during Gamma Knife SRS of brain tumors.
Collapse
Affiliation(s)
- David Abramian
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Ida Blystad
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders Eklund
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Statistics & Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Taasti VT, Decabooter E, Eekers D, Compter I, Rinaldi I, Bogowicz M, van der Maas T, Kneepkens E, Schiffelers J, Stultiens C, Hendrix N, Pijls M, Emmah R, Fonseca GP, Unipan M, van Elmpt W. Clinical benefit of range uncertainty reduction in proton treatment planning based on dual-energy CT for neuro-oncological patients. Br J Radiol 2023; 96:20230110. [PMID: 37493227 PMCID: PMC10461272 DOI: 10.1259/bjr.20230110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE Several studies have shown that dual-energy CT (DECT) can lead to improved accuracy for proton range estimation. This study investigated the clinical benefit of reduced range uncertainty, enabled by DECT, in robust optimisation for neuro-oncological patients. METHODS DECT scans for 27 neuro-oncological patients were included. Commercial software was applied to create stopping-power ratio (SPR) maps based on the DECT scan. Two plans were robustly optimised on the SPR map, keeping the beam and plan settings identical to the clinical plan. One plan was robustly optimised and evaluated with a range uncertainty of 3% (as used clinically; denoted 3%-plan); the second plan applied a range uncertainty of 2% (2%-plan). Both plans were clinical acceptable and optimal. The dose-volume histogram parameters were compared between the two plans. Two experienced neuro-radiation oncologists determined the relevant dose difference for each organ-at-risk (OAR). Moreover, the OAR toxicity levels were assessed. RESULTS For 24 patients, a dose reduction >0.5/1 Gy (relevant dose difference depending on the OAR) was seen in one or more OARs for the 2%-plan; e.g. for brainstem D0.03cc in 10 patients, and hippocampus D40% in 6 patients. Furthermore, 12 patients had a reduction in toxicity level for one or two OARs, showing a clear benefit for the patient. CONCLUSION Robust optimisation with reduced range uncertainty allows for reduction of OAR toxicity, providing a rationale for clinical implementation. Based on these results, we have clinically introduced DECT-based proton treatment planning for neuro-oncological patients, accompanied with a reduced range uncertainty of 2%. ADVANCES IN KNOWLEDGE This study shows the clinical benefit of range uncertainty reduction from 3% to 2% in robustly optimised proton plans. A dose reduction to one or more OARs was seen for 89% of the patients, and 44% of the patients had an expected toxicity level decrease.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Esther Decabooter
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim van der Maas
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Esther Kneepkens
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacqueline Schiffelers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cissy Stultiens
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nicole Hendrix
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mirthe Pijls
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Rik Emmah
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
28
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
29
|
Söderström H, Walfridsson A, Martinsson U, Isacsson U, Brocki K, Kleberg JL, Ljungman G. Neurocognition and mean radiotherapy dose to vulnerable brain structures: new organs at risk? Radiat Oncol 2023; 18:132. [PMID: 37568180 PMCID: PMC10416465 DOI: 10.1186/s13014-023-02324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Children with brain tumors are at high risk of neurocognitive decline after radiotherapy (RT). However, there is a lack of studies on how RT doses to organs at risk (OARs) impacts neurocognition. The aim of this study was to examine dose-risk relationships for mean RT dose to different brain structures important for neurocognitive networks. We explored previously established OARs and potentially new OARs. METHODS A sample of 44 pediatric brain tumor survivors who had received proton and/or photon RT were included. Correlations between mean RT doses to OARs and IQ were analyzed. Previously established OARs were cochleae, optic chiasm, optic nerve, pituitary gland, hypothalamus, hippocampus and pons. Potential new OARs for RT-induced neurocognitive decline were cerebellum, vermis and thalamus. RESULTS Mean RT dose to different OARs correlated with several IQ subtests. Higher mean RT dose to cochleae, optic nerve, cerebellum, vermis and pons was correlated with lower performance on particularly full-scale IQ (FIQ), Perceptual Reasoning (PRI), Working Memory (WMI) and Processing Speed Index (PSI). Higher mean RT dose to hippocampus correlated with lower performance on processing speed and working memory. For those receiving whole brain RT (WBRT), higher mean RT dose to the pituitary gland correlated with lower performance on working memory. CONCLUSION A high dose-risk correlation was found between IQ subtests and mean RT dose in established and potential new OARs. Thus, in the lack of validated dose constraints for vulnerable brain structures, a parsimonious approach in RT planning should be considered to preserve neurocognitive networks.
Collapse
Affiliation(s)
- Helena Söderström
- Present Address: Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Angelica Walfridsson
- Department of Hematology and Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Ulla Martinsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Isacsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Brocki
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Johan Lundin Kleberg
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Ljungman
- Present Address: Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Caccese M, Busato F, Guerriero A, Padovan M, Cerretti G, Gardiman MP, Zagonel V, Lombardi G. The role of radiation therapy and systemic treatments in meningioma: The present and the future. Cancer Med 2023; 12:16041-16053. [PMID: 37366279 PMCID: PMC10469847 DOI: 10.1002/cam4.6254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Meningiomas are the most prevalent tumors of the central nervous system. Their standard treatment is surgery, which can be curative. Adjuvant radiotherapy treatment is reserved for newly diagnosed cases of grade II and grade III meningiomas in cases of recurrent disease or when surgery is not radical or feasible. However, around 20% of these patients cannot undergo further surgical and/or radiotherapy treatment. Systemic oncological therapy can find its place in this setting. Several tyrosine kinase inhibitors have been tested (gefitinib, erlotinib, sunitinib) with unsatisfactory or negative results. Bevacizumab has shown encouraging results in these settings of patients. Immunotherapy with immune checkpoint inhibitors has reported interesting results with modest objective response rates. Several ongoing studies are assessing different target therapies and multimodal therapies; the results are to be disclosed. Not only a better understanding of the molecular characteristics in meningiomas has allowed the gathering of more information regarding pathogenesis and prognosis, but in addition, the availability of new target therapy, immunotherapy, and biological drugs has widened the scope of potentially effective treatments in this patient population. The aim of this review was to explore the radiotherapy and systemic treatments of meningioma with an analysis of ongoing trials and future therapeutic perspectives.
Collapse
Affiliation(s)
- Mario Caccese
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Fabio Busato
- Department of Radiation OncologyAbano Terme HospitalPaduaItaly
| | - Angela Guerriero
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Marta Padovan
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giulia Cerretti
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marina Paola Gardiman
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Vittorina Zagonel
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giuseppe Lombardi
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| |
Collapse
|
31
|
Bouter J, Reznik Y, Thariat J. Effects on the Hypothalamo-Pituitary Axis in Patients with CNS or Head and Neck Tumors following Radiotherapy. Cancers (Basel) 2023; 15:3820. [PMID: 37568636 PMCID: PMC10417001 DOI: 10.3390/cancers15153820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Knowledge about the precise effects of radiotherapy on hypothalamo-pituitary functions is limited. Reduction of side effects is a major goal of advanced radiotherapy modalities. We assessed strategies for monitoring and replacement of hormone deficiencies in irradiated patients. METHODS A search strategy was systematically conducted on PubMed®. Additional articles were retrieved to describe endocrine mechanisms. RESULTS 45 studies were evaluated from 2000 to 2022. They were predominantly retrospective and highly heterogeneous concerning patient numbers, tumor types, radiotherapy technique and follow-up. Endocrine deficiencies occurred in about 40% of patients within a median follow-up of 5.6 years without a clear difference between radiotherapy modalities. Somatotropic and thyrotropic axes were, respectively, the most and least radiosensitive. CONCLUSIONS Current pituitary gland dose constraints may underestimate radiation-induced endocrine deficiencies, thus impairing quality of life. Little difference might be expected between radiation techniques for PG tumors. For non-PG tumors, dose constraints should be applied more systematically.
Collapse
Affiliation(s)
- Jordan Bouter
- Radiotherapy Department, Centre François Baclesse, Avenue du Général Harris, 14000 Caen, France;
| | - Yves Reznik
- Department of Endocrinology, University Hospital of Caen, Avenue de la Côte de Nacre, 14033 Caen, France;
| | - Juliette Thariat
- Radiotherapy Department, Centre François Baclesse, Avenue du Général Harris, 14000 Caen, France;
- Corpuscular Physics Laboratory, ENSICAEN, Boulevard Maréchal Juin, 14050 Caen, France
- Unicaen—Normandie Université, 14050 Caen, France
| |
Collapse
|
32
|
Santacroce A, Trandafirescu MF, Levivier M, Peters D, Fürweger C, Toma-Dasu I, George M, Daniel RT, Maire R, Nakamura M, Faouzi M, Schiappacasse L, Dasu A, Tuleasca C. Proton beam radiation therapy for vestibular schwannomas-tumor control and hearing preservation rates: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:163. [PMID: 37402894 PMCID: PMC10319703 DOI: 10.1007/s10143-023-02060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Proton beam therapy is considered, by some authors, as having the advantage of delivering dose distributions more conformal to target compared with stereotactic radiosurgery (SRS). Here, we performed a systematic review and meta-analysis of proton beam for VSs, evaluating tumor control and cranial nerve preservation rates, particularly with regard to facial and hearing preservation. METHODS We reviewed, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) articles published between 1968 and September 30, 2022. We retained 8 studies reporting 587 patients. RESULTS Overall rate of tumor control (both stability and decrease in volume) was 95.4% (range 93.5-97.2%, p heterogeneity= 0.77, p<0.001). Overall rate of tumor progression was 4.6% (range 2.8-6.5%, p heterogeneity < 0.77, p<0.001). Overall rate of trigeminal nerve preservation (absence of numbness) was 95.6% (range 93.5-97.7%, I2 = 11.44%, p heterogeneity= 0.34, p<0.001). Overall rate of facial nerve preservation was 93.7% (range 89.6-97.7%, I2 = 76.27%, p heterogeneity<0.001, p<0.001). Overall rate of hearing preservation was 40.6% (range 29.4-51.8%, I2 = 43.36%, p heterogeneity= 0.1, p<0.001). CONCLUSION Proton beam therapy for VSs achieves high tumor control rates, as high as 95.4%. Facial rate preservation overall rates are 93%, which is lower compared to the most SRS series. Compared with most currently reported SRS techniques, proton beam radiation therapy for VSs does not offer an advantage for facial and hearing preservation compared to most of the currently reported SRS series.
Collapse
Affiliation(s)
- Antonio Santacroce
- European Radiosurgery Centre Munich, Munich, Germany
- Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Neurosurgery, St. Barbara-Klinik Hamm-Heessen, Hamm, 59073, Germany
| | | | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Rue du Bugnon 44-46, BH-08, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Peters
- Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Rue du Bugnon 44-46, BH-08, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Mercy George
- ENT Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roy Thomas Daniel
- Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Rue du Bugnon 44-46, BH-08, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Raphael Maire
- ENT Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Makoto Nakamura
- Department of Neurosurgery, Academic Hospital Köln-Merheim, Köln, 51058, Germany
- Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, 58455, Germany
| | - Mohamed Faouzi
- Division of Biostatistics, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Luis Schiappacasse
- Radiation Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandru Dasu
- The Skandion Clinic and Uppsala University, Uppsala, Sweden
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Constantin Tuleasca
- Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Rue du Bugnon 44-46, BH-08, CH-1011, Lausanne, Switzerland.
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Lausanne, Switzerland.
| |
Collapse
|
33
|
Turcas A, Leucuta D, Balan C, Clementel E, Gheara C, Kacso A, Kelly SM, Tanasa D, Cernea D, Achimas-Cadariu P. Deep-learning magnetic resonance imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Phys Imaging Radiat Oncol 2023; 27:100454. [PMID: 37333894 PMCID: PMC10276287 DOI: 10.1016/j.phro.2023.100454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Background and purpose Normal tissue sparing in radiotherapy relies on proper delineation. While manual contouring is time consuming and subject to inter-observer variability, auto-contouring could optimize workflows and harmonize practice. We assessed the accuracy of a commercial, deep-learning, MRI-based tool for brain organs-at-risk delineation. Materials and methods Thirty adult brain tumor patients were retrospectively manually recontoured. Two additional structure sets were obtained: AI (artificial intelligence) and AIedit (manually corrected auto-contours). For 15 selected cases, identical plans were optimized for each structure set. We used Dice Similarity Coefficient (DSC) and mean surface-distance (MSD) for geometric comparison and gamma analysis and dose-volume-histogram comparison for dose metrics evaluation. Wilcoxon signed-ranks test was used for paired data, Spearman coefficient(ρ) for correlations and Bland-Altman plots to assess level of agreement. Results Auto-contouring was significantly faster than manual (1.1/20 min, p < 0.01). Median DSC and MSD were 0.7/0.9 mm for AI and 0.8/0.5 mm for AIedit. DSC was significantly correlated with structure size (ρ = 0.76, p < 0.01), with higher DSC for large structures. Median gamma pass rate was 74% (71-81%) for Plan_AI and 82% (75-86%) for Plan_AIedit, with no correlation with DSC or MSD. Differences between Dmean_AI and Dmean_Ref were ≤ 0.2 Gy (p < 0.05). The dose difference was moderately correlated with DSC. Bland Altman plot showed minimal discrepancy (0.1/0) between AI and reference Dmean/Dmax. Conclusions The AI-model showed good accuracy for large structures, but developments are required for smaller ones. Auto-segmentation was significantly faster, with minor differences in dose distribution caused by geometric variations.
Collapse
Affiliation(s)
- Andrada Turcas
- The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, RTQA, Brussels, Belgium
- SIOP Europe, The European Society for Paediatric Oncology (SIOPE), QUARTET Project, Brussels, Belgium
- University of Medicine and Pharmacy and Medicine “Iuliu Hatieganu”, Oncology Department, Cluj-Napoca, Romania
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Radiotherapy Department, Cluj-Napoca, Romania
| | - Daniel Leucuta
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Department of Medical Informatics and Biostatistics, Cluj-Napoca, Romania
| | - Cristina Balan
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Radiotherapy Department, Cluj-Napoca, Romania
- “Babes-Bolyai” University, Faculty of Physics, Cluj-Napoca, Romania
| | - Enrico Clementel
- The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, RTQA, Brussels, Belgium
| | - Cristina Gheara
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Radiotherapy Department, Cluj-Napoca, Romania
- “Babes-Bolyai” University, Faculty of Physics, Cluj-Napoca, Romania
| | - Alex Kacso
- University of Medicine and Pharmacy and Medicine “Iuliu Hatieganu”, Oncology Department, Cluj-Napoca, Romania
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Radiotherapy Department, Cluj-Napoca, Romania
| | - Sarah M. Kelly
- The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, RTQA, Brussels, Belgium
- SIOP Europe, The European Society for Paediatric Oncology (SIOPE), QUARTET Project, Brussels, Belgium
| | - Delia Tanasa
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Radiotherapy Department, Cluj-Napoca, Romania
| | - Dana Cernea
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Radiotherapy Department, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- University of Medicine and Pharmacy and Medicine “Iuliu Hatieganu”, Oncology Department, Cluj-Napoca, Romania
- Oncology Institute “Prof. Dr. Ion Chiricuta”, Surgery Department, Cluj-Napoca, Romania
| |
Collapse
|
34
|
Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P, Munck Af Rosenschöld P, Ricardi U, van den Bent MJ, Weller M, Belka C, Minniti G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 2023; 184:109663. [PMID: 37059335 DOI: 10.1016/j.radonc.2023.109663] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sara C Erridge
- Edinburgh Centre for Neuro-Oncology, University of Edinburgh, Western General Hospital, Edinburgh EH4 1EU, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | | | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
35
|
Iannalfi A, Riva G, Ciccone L, Orlandi E. The role of particle radiotherapy in the treatment of skull base tumors. Front Oncol 2023; 13:1161752. [PMID: 37350949 PMCID: PMC10283010 DOI: 10.3389/fonc.2023.1161752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
The skull base is an anatomically and functionally critical area surrounded by vital structures such as the brainstem, the spinal cord, blood vessels, and cranial nerves. Due to this complexity, management of skull base tumors requires a multidisciplinary approach involving a team of specialists such as neurosurgeons, otorhinolaryngologists, radiation oncologists, endocrinologists, and medical oncologists. In the case of pediatric patients, cancer management should be performed by a team of pediatric-trained specialists. Radiation therapy may be used alone or in combination with surgery to treat skull base tumors. There are two main types of radiation therapy: photon therapy and particle therapy. Particle radiotherapy uses charged particles (protons or carbon ions) that, due to their peculiar physical properties, permit precise targeting of the tumor with minimal healthy tissue exposure. These characteristics allow for minimizing the potential long-term effects of radiation exposure in terms of neurocognitive impairments, preserving quality of life, and reducing the risk of radio-induced cancer. For these reasons, in children, adolescents, and young adults, proton therapy should be an elective option when available. In radioresistant tumors such as chordomas and sarcomas and previously irradiated recurrent tumors, particle therapy permits the delivery of high biologically effective doses with low, or however acceptable, toxicity. Carbon ion therapy has peculiar and favorable radiobiological characteristics to overcome radioresistance features. In low-grade tumors, proton therapy should be considered in challenging cases due to tumor volume and involvement of critical neural structures. However, particle radiotherapy is still relatively new, and more research is needed to fully understand its effects. Additionally, the availability of particle therapy is limited as it requires specialized equipment and expertise. The purpose of this manuscript is to review the available literature regarding the role of particle radiotherapy in the treatment of skull base tumors.
Collapse
|
36
|
Mavrikios A, Goudjil F, Beddok A, Zefkili S, Bolle S, Feuvret L, Le Tourneau C, Choussy O, Sauvaget E, Herman P, Dendale R, Calugaru V. Proton therapy and/or helical tomotherapy for locally advanced sinonasal skull base adenoid cystic carcinoma: Focus on experience of the Institut Curie and review of literature. Head Neck 2023. [PMID: 37097003 DOI: 10.1002/hed.27371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Sinonasal adenoid cystic carcinomas (SNACC) have high propensity for skull base (SB) infiltration. Unresectability or incomplete surgical resection in such cases make radiotherapy treatment paramount. Curative dose escalation is challenging because of adjacent organs at risk, especially in locally advanced cases. METHODS Eighteen patients that had locally advanced SB SNACC with unresectable or incomplete surgical resection treated by proton therapy and/or helical tomotherapy at Institut Curie between 3/2010 and 8/2020 were retrospectively included. RESULTS After median follow-up of 52 months, 5-year OS, LRRFS, DMFS, DFS rates were, respectively, 47% (95%CI: 26-83), 50% (95%CI: 36-88), 39% (95%CI: 26-81), 33% (95%CI: 22-73). One patient had grade 4 late optic nerve disorder. Eight patients had grade 3 late toxicity including mainly hearing impairments. CONCLUSION Proton therapy and helical tomotherapy are effective and safe methods for curative dose escalation of locally advanced SB SNACC, which are a poor prognosis subgroup. Available literature suggests carbon-ion therapy could be an efficient alternative.
Collapse
Affiliation(s)
| | - Farid Goudjil
- Proton Therapy Center, Institut Curie, Orsay, France
| | - Arnaud Beddok
- Proton Therapy Center, Institut Curie, Orsay, France
| | - Sofia Zefkili
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Stéphanie Bolle
- Proton Therapy Center, Institut Curie, Orsay, France
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Loic Feuvret
- Department of Radiation Oncology, East Group Hospital, Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Institut Curie, Saint-Cloud, France
- Paris-Saclay University, Paris, France
| | - Olivier Choussy
- Department of Head and Neck Surgery, Institut Curie, Paris, France
| | - Elisabeth Sauvaget
- Department of Head and Neck Surgery, Hôpital Saint-Joseph, Paris, France
| | - Philippe Herman
- Department of Head and Neck Surgery, Hôpital Lariboisière, Paris, France
| | - Rémi Dendale
- Proton Therapy Center, Institut Curie, Orsay, France
| | - Valentin Calugaru
- Department of Radiation Oncology, Institut Curie, Paris, France
- Proton Therapy Center, Institut Curie, Orsay, France
| |
Collapse
|
37
|
Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol 2023; 6:388. [PMID: 37031346 PMCID: PMC10082834 DOI: 10.1038/s42003-023-04770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Collapse
Affiliation(s)
- Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierangela Giustetto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | | | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Fabrizio Scopelliti
- Radiopharmacy Laboratory Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| |
Collapse
|
38
|
Beddok A, Scher N, Alapetite C, Baussart B, Bentahila G, Bielle F, Bolle S, Dendale R, Dureau S, Goudjl F, Helfre S, Mammar H, Nichelli L, Calugaru V, Feuvret L. Proton therapy for adult craniopharyngioma: Experience of a single institution in 91 consecutive patients. Neuro Oncol 2023; 25:710-719. [PMID: 36002321 PMCID: PMC10076942 DOI: 10.1093/neuonc/noac210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Craniopharyngioma (CP) in adults is a rare benign tumor associated with many morbidities, with limited contemporary studies to define treatment, and follow-up guidelines. METHODS A single-center retrospective study was conducted on patients aged ≥ 18 years from 2006-2018 with CP and who were treated with proton therapy (PT). Late toxicity was defined as a minimum of 18 months from diagnosis. Overall survival (OS), local recurrence-free survival (LRFS), and toxicity were characterized using Kaplan-Meier and Cox regression analyses. RESULTS Ninety-one patients met the criteria, with a median age of 37 years (range 18-82 years). PT was conducted after tumor resection in 88 patients (97%), in 64 patients (70.3%) as an adjuvant strategy and in 27 (29.7%) after recurrent disease. Three patients received exclusive PT. A median MRI follow-up of 39 months revealed 35.2% complete response, 49.5% partial response, and 9.9% stable disease. Five patients developed local recurrence (LR). The pattern of failure study showed that these five LR were within the GTV volume. The 5-year LRFS was 92.0% [CI 95% 84.90-99.60]. All the patients were alive at the end of the follow-up. Patients requiring treatment adaptation during PT tend to have a higher risk of LR (P = .084). Endocrinopathy was the most frequent grade ≥ 2 late toxicity. Among patients who were symptom-free before the start of treatment, none developed hearing toxicity but four (9.8%) developed visual disorders and 10 (11.3%) symptomatic memory impairment. Patients with large tumors had a higher risk of developing symptomatic memory impairment (P = .029). CONCLUSION Adults with CP treated with PT have favorable survival outcomes, with acceptable late toxicity. Prospective quality-of-life and neurocognitive studies are needed to define late adverse effects better.
Collapse
Affiliation(s)
- Arnaud Beddok
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
- Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO, 91898 Orsay, France
| | - Nathaniel Scher
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
- Hartmann Oncology Radiotherapy Group, 4 Rue Kleber, 92309 Levallois-Perret, France
| | - Claire Alapetite
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Bertrand Baussart
- Department of Neurosurgery, Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, Paris, France
| | - Ghita Bentahila
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Franck Bielle
- Department of Neuropathology, Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, Paris, France
| | - Stephanie Bolle
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Remi Dendale
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Sylvain Dureau
- Department of statistics, Institut Curie, Saint-Cloud, France
| | - Farid Goudjl
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Sylvie Helfre
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Hamid Mammar
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, Paris, France
| | - Valentin Calugaru
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898 Orsay, France
| | - Loïc Feuvret
- Department of Radiation Oncology, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, Sorbonne Université, Paris, France
- Department of Radiation Therapy, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
39
|
Vaniqui A, Vaassen F, Di Perri D, Eekers D, Compter I, Rinaldi I, van Elmpt W, Unipan M. Linear Energy Transfer and Relative Biological Effectiveness Investigation of Various Structures for a Cohort of Proton Patients With Brain Tumors. Adv Radiat Oncol 2023; 8:101128. [PMID: 36632089 PMCID: PMC9827037 DOI: 10.1016/j.adro.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The current knowledge on biological effects associated with proton therapy is limited. Therefore, we investigated the distributions of dose, dose-averaged linear energy transfer (LETd), and the product between dose and LETd (DLETd) for a patient cohort treated with proton therapy. Different treatment planning system features and visualization tools were explored. Methods and Materials For a cohort of 24 patients with brain tumors, the LETd, DLETd, and dose was calculated for a fixed relative biological effectiveness value and 2 variable models: plan-based and phenomenological. Dose threshold levels of 0, 5, and 20 Gy were imposed for LETd visualization. The relationship between physical dose and LETd and the frequency of LETd hotspots were investigated. Results The phenomenological relative biological effectiveness model presented consistently higher dose values. For lower dose thresholds, the LETd distribution was steered toward higher values related to low treatment doses. Differences up to 26.0% were found according to the threshold. Maximum LETd values were identified in the brain, periventricular space, and ventricles. An inverse relationship between LETd and dose was observed. Frequency information to the domain of dose and LETd allowed for the identification of clusters, which steer the mean LETd values, and the identification of higher, but sparse, LETd values. Conclusions Identifying, quantifying, and recording LET distributions in a standardized fashion is necessary, because concern exists over a link between toxicity and LET hotspots. Visualizing DLETd or dose × LETd during treatment planning could allow for clinicians to make informed decisions.
Collapse
Affiliation(s)
- Ana Vaniqui
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dario Di Perri
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
40
|
Gaito S, Hwang EJ, France A, Aznar MC, Burnet N, Crellin A, Holtzman AL, Indelicato DJ, Timmerman B, Whitfield GA, Smith E. Outcomes of Patients Treated in the UK Proton Overseas Programme: Central Nervous System Group. Clin Oncol (R Coll Radiol) 2023; 35:283-291. [PMID: 36804292 DOI: 10.1016/j.clon.2023.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
AIMS In 2008, the UK National Health Service started the Proton Overseas Programme (POP), to provide access for proton beam therapy (PBT) abroad for selected tumour diagnoses while two national centres were being planned. The clinical outcomes for the patient group treated for central nervous system (CNS), base of skull, spinal and paraspinal malignancies are reported here. MATERIALS AND METHODS Since the start of the POP, an agreement between the National Health Service and UK referring centres ensured outcomes data collection, including overall survival, local tumour control and late toxicity data. Clinical and treatment-related data were extracted from this national patient database. Grade ≥3 late toxicities were reported following Common Terminology Criteria for Adverse Events (CTCAE) v 4.0 definition, occurring later than 90 days since the completion of treatment. RESULTS Between 2008 and September 2020, 830 patients were treated within the POP for the above listed malignancies. Overall survival data were available for 815 patients and local control data for 726 patients. Toxicity analysis was carried out on 702 patients, with patients excluded due to short follow-up (<90 days) and/or inadequate toxicity data available. After a median follow-up of 3.34 years (0.06-11.58), the overall survival was 91.2%. The local control rate was 85.9% after a median follow-up of 2.81 years (range 0.04-11.58). The overall grade ≥3 late toxicity incidence was 11.97%, after a median follow-up of 1.72 years (0.04-8.45). The median radiotherapy prescription dose was 54 GyRBE (34.8-79.2). CONCLUSIONS The results of this study indicate the safety of PBT for CNS tumours. Preliminary clinical outcomes following PBT for paediatric/teen and young adult and adult CNS tumours treated within the POP are encouraging, which reflects accurate patient selection and treatment quality. The rate of late effects compares favourably with published cohorts. Clinical outcomes from this patient cohort will be compared with those of UK-treated patients since the start of the national PBT service in 2018.
Collapse
Affiliation(s)
- S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK.
| | - E J Hwang
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK; Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - A France
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK
| | - M C Aznar
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - N Burnet
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - A Crellin
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK; NHS England National Clinical Lead Proton Beam Therapy, UK
| | - A L Holtzman
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - D J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - B Timmerman
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - G A Whitfield
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK; Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - E Smith
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK; Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester, UK
| |
Collapse
|
41
|
Torizuka D, Uto M, Umeda K, Kamitori T, Iwai A, Saida S, Kato I, Mineharu Y, Arakawa Y, Takita J, Mizowaki T. A Scalp Dose Threshold for Preventing Permanent Alopecia in Scalp-Avoidance Whole-Brain Irradiation With Volumetric Modulated Arc Radiation Therapy for Pediatric Patients With Medulloblastomas. Int J Radiat Oncol Biol Phys 2023:S0360-3016(23)00069-X. [PMID: 36708786 DOI: 10.1016/j.ijrobp.2023.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Affiliation(s)
| | - Megumi Uto
- Departments of Radiation Oncology and Image-Applied Therapy
| | | | | | | | | | | | - Yohei Mineharu
- Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
42
|
Potential benefits of using radioactive ion beams for range margin reduction in carbon ion therapy. Sci Rep 2022; 12:21792. [PMID: 36526710 PMCID: PMC9758201 DOI: 10.1038/s41598-022-26290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Sharp dose gradients and high biological effectiveness make ions such as 12C an ideal tool to treat deep-seated tumors, however, at the same time, sensitive to errors in the range prediction. Tumor safety margins mitigate these uncertainties, but during the irradiation they lead to unavoidable damage to the surrounding healthy tissue. To fully exploit the Bragg peak benefits, a large effort is put into establishing precise range verification methods. Despite positron emission tomography being widely in use for this purpose in 12C therapy, the low count rates, biological washout, and broad activity distribution still limit its precision. Instead, radioactive beams used directly for treatment would yield an improved signal and a closer match with the dose fall-off, potentially enabling precise in vivo beam range monitoring. We have performed a treatment planning study to estimate the possible impact of the reduced range uncertainties, enabled by radioactive 11C ions treatments, on sparing critical organs in tumor proximity. Compared to 12C treatments, (i) annihilation maps for 11C ions can reflect sub- millimeter shifts in dose distributions in the patient, (ii) outcomes of treatment planning with 11C significantly improve and (iii) less severe toxicities for serial and parallel critical organs can be expected.
Collapse
|
43
|
Satragno C, Verrico A, Giannelli F, Ferrero A, Campora S, Turazzi M, Cavagnetto F, Schiavetti I, Garrè ML, Garibotto F, Milanaccio C, Piccolo G, Crocco M, Ramaglia A, Di Profio S, Barra S, Belgioia L. High dose craniospinal irradiation as independent risk factor of permanent alopecia in childhood medulloblastoma survivors: cohort study and literature review. J Neurooncol 2022; 160:659-668. [PMID: 36369416 PMCID: PMC9758075 DOI: 10.1007/s11060-022-04186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Our aim was to determine the main risk factors related to the occurrence of permanent alopecia in childhood medulloblastoma (MB) survivors. METHODS We retrospectively analyzed the clinical features of all consecutive MB survivors treated at our institute. We divided the patients into 3 groups depending on the craniospinal irradiation (CSI) dose received and defined permanent alopecia first in terms of the skin region affected (whole scalp and nape region), then on the basis of the toxicity degree (G). Any relationship between permanent alopecia and other characteristics was investigated by a univariate and multivariate analysis and Odds ratio (OR) with confidence interval (CI) was reported. RESULTS We included 41 patients with a mean10-year follow-up. High dose CSI resulted as an independent factor leading to permanent hair loss in both groups: alopecia of the whole scalp (G1 p-value 0.030, G2 p-value 0.003) and of the nape region (G1 p-value 0.038, G2 p-value 0.006). The posterior cranial fossa (PCF) boost volume and dose were not significant factors at multivariate analysis neither in permanent hair loss of the whole scalp nor only in the nuchal region. CONCLUSION In pediatric patients with MB, the development of permanent alopecia seems to depend only on the CSI dose ≥ 36 Gy. Acute damage to the hair follicle is dose dependent, but in terms of late side effects, constant and homogeneous daily irradiation of a large volume may have a stronger effect than a higher but focal dose of radiotherapy.
Collapse
Affiliation(s)
- C Satragno
- Dipartimento Di Medicina Sperimentale (DIMES), Università Degli Studi Di Genova, Via Leon Battista Alberti, 16132, Genova, GE, Italia.
| | - A Verrico
- Unità di Neuroncologia, IRCCS Istituto Giannina Gaslini, Genova, Italia
| | - F Giannelli
- UO Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genova, Italia
| | - A Ferrero
- Dipartimento Di Medicina Sperimentale (DIMES), Università Degli Studi Di Genova, Via Leon Battista Alberti, 16132, Genova, GE, Italia
| | - S Campora
- Dipartimento di Scienza Della Salute (DISSAL), Università Degli Studi di Genova, Genova, Italia
| | - M Turazzi
- Dipartimento di Scienza Della Salute (DISSAL), Università Degli Studi di Genova, Genova, Italia
| | - F Cavagnetto
- UO Fisica Sanitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italia
| | - I Schiavetti
- Dipartimento di Scienze Della Salute (DISSAL), Sezione di Biostatistica, Università Degli Studi di Genova, Genova, Italia
| | - M L Garrè
- Unità di Neuroncologia, IRCCS Istituto Giannina Gaslini, Genova, Italia
| | - F Garibotto
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica, Ginecologia e Pediatria (DINOGMI), Università Degli Studi di Genova, Genova, Italia
| | - C Milanaccio
- Unità di Neuroncologia, IRCCS Istituto Giannina Gaslini, Genova, Italia
| | - G Piccolo
- Unità di Neuroncologia, IRCCS Istituto Giannina Gaslini, Genova, Italia
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica, Ginecologia e Pediatria (DINOGMI), Università Degli Studi di Genova, Genova, Italia
| | - M Crocco
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica, Ginecologia e Pediatria (DINOGMI), Università Degli Studi di Genova, Genova, Italia
| | - A Ramaglia
- Unità di Neuroradiologia, IRCCS Istituto Giannina Gaslini, Genova, Italia
| | - S Di Profio
- Unità di Psicologia, IRCCS Istituto Giannina Gaslini, Genova, Italia
| | - S Barra
- UO Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genova, Italia
| | - L Belgioia
- Dipartimento di Scienza Della Salute (DISSAL), Università Degli Studi di Genova, Genova, Italia
- UO Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genova, Italia
| |
Collapse
|
44
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
45
|
Hahn C, Heuchel L, Ödén J, Traneus E, Wulff J, Plaude S, Timmermann B, Bäumer C, Lühr A. Comparing biological effectiveness guided plan optimization strategies for cranial proton therapy: potential and challenges. Radiat Oncol 2022; 17:169. [PMID: 36273132 DOI: 10.1186/s13014-022-02143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To introduce and compare multiple biological effectiveness guided (BG) proton plan optimization strategies minimizing variable relative biological effectiveness (RBE) induced dose burden in organs at risk (OAR) while maintaining plan quality with a constant RBE. METHODS Dose-optimized (DOSEopt) proton pencil beam scanning reference treatment plans were generated for ten cranial patients with prescription doses ≥ 54 Gy(RBE) and ≥ 1 OAR close to the clinical target volume (CTV). For each patient, four additional BG plans were created. BG objectives minimized either proton track-ends, dose-averaged linear energy transfer (LETd), energy depositions from high-LET protons or variable RBE-weighted dose (DRBE) in adjacent serially structured OARs. Plan quality (RBE = 1.1) was assessed by CTV dose coverage and robustness (2 mm setup, 3.5% density), dose homogeneity and conformity in the planning target volumes and adherence to OAR tolerance doses. LETd, DRBE (Wedenberg model, α/βCTV = 10 Gy, α/βOAR = 2 Gy) and resulting normal tissue complication probabilities (NTCPs) for blindness and brainstem necrosis were derived. Differences between DOSEopt and BG optimized plans were assessed and statistically tested (Wilcoxon signed rank, α = 0.05). RESULTS All plans were clinically acceptable. DOSEopt and BG optimized plans were comparable in target volume coverage, homogeneity and conformity. For recalculated DRBE in all patients, all BG plans significantly reduced near-maximum DRBE to critical OARs with differences up to 8.2 Gy(RBE) (p < 0.05). Direct DRBE optimization primarily reduced absorbed dose in OARs (average ΔDmean = 2.0 Gy; average ΔLETd,mean = 0.1 keV/µm), while the other strategies reduced LETd (average ΔDmean < 0.3 Gy; average ΔLETd,mean = 0.5 keV/µm). LET-optimizing strategies were more robust against range and setup uncertaintes for high-dose CTVs than DRBE optimization. All BG strategies reduced NTCP for brainstem necrosis and blindness on average by 47% with average and maximum reductions of 5.4 and 18.4 percentage points, respectively. CONCLUSIONS All BG strategies reduced variable RBE-induced NTCPs to OARs. Reducing LETd in high-dose voxels may be favourable due to its adherence to current dose reporting and maintenance of clinical plan quality and the availability of reported LETd and dose levels from clinical toxicity reports after cranial proton therapy. These optimization strategies beyond dose may be a first step towards safely translating variable RBE optimization in the clinics.
Collapse
Affiliation(s)
- Christian Hahn
- Department of Physics, TU Dortmund University, Dortmund, Germany. .,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Lena Heuchel
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Jörg Wulff
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Sandija Plaude
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Bäumer
- Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
46
|
Dose-Volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An "All-in-One" Multicenter-Multidisciplinary Practical Summary. Curr Oncol 2022; 29:7021-7050. [PMID: 36290829 PMCID: PMC9600677 DOI: 10.3390/curroncol29100552] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The safe use of radiotherapy (RT) requires compliance with dose/volume constraints (DVCs) for organs at risk (OaRs). However, the available recommendations are sometimes conflicting and scattered across a number of different documents. Therefore, the aim of this work is to provide, in a single document, practical indications on DVCs for OaRs in external beam RT available in the literature. MATERIAL AND METHODS A multidisciplinary team collected bibliographic information on the anatomical definition of OaRs, on the imaging methods needed for their definition, and on DVCs in general and in specific settings (curative RT of Hodgkin's lymphomas, postoperative RT of breast tumors, curative RT of pediatric cancers, stereotactic ablative RT of ventricular arrythmia). The information provided in terms of DVCs was graded based on levels of evidence. RESULTS Over 650 papers/documents/websites were examined. The search results, together with the levels of evidence, are presented in tabular form. CONCLUSIONS A working tool, based on collected guidelines on DVCs in different settings, is provided to help in daily clinical practice of RT departments. This could be a first step for further optimizations.
Collapse
|
47
|
Conti A. Editorial: Impact of radiotherapy and radiosurgery on neuro-oncology. Front Oncol 2022; 12:978709. [PMID: 35957873 PMCID: PMC9360765 DOI: 10.3389/fonc.2022.978709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
|
48
|
Tian L, Hahn C, Lühr A. An ion-independent phenomenological relative biological effectiveness (RBE) model for proton therapy. Radiother Oncol 2022; 174:69-76. [PMID: 35803365 DOI: 10.1016/j.radonc.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND A relative biological effectiveness (RBE) of 1.1 is used for proton therapy though clinical evidence of varying RBE was raised. Clinical studies on RBE variability have been conducted for decades for carbon radiation, which could advance the understanding of the clinical proton RBE given an ion-independent RBE model. In this work, such a model, linear and simple, using the beam quantity Q = Z2/E (Z = ion charge, E = kinetic energy per nucleon) was tested and compared to the commonly used, proton-specific and linear energy transfer (LET) based Wedenberg RBE model. MATERIAL AND METHODS The Wedenberg and Q models, both predicting RBEmax and RBEmin (i.e., RBE at vanishing and very high dose, respectively), are compared in terms of ion-dependence and prediction power. An experimental in-vitro data ensemble covering 115 publications for various ions was used as dataset. RESULTS The model parameter of the Q model was observed to be similar for different ions (in contrast to LET). The Q model was trained without any prior knowledge of proton data. For proton RBE, the differences between experimental data and corresponding predictions of the Wedenberg or the Q model were highly comparable. CONCLUSIONS A simple linear RBE model using Q instead of LET was proposed and tested to be able to predict proton RBE using model parameter trained based on only RBE data of other particles in a clinical proton energy range for a large in-vitro dataset. Adding (pre)clinical knowledge from carbon ion therapy may, therefore, reduce the dominating biological uncertainty in proton RBE modelling. This would translate in reduced RBE related uncertainty in proton therapy treatment planning.
Collapse
Affiliation(s)
- Liheng Tian
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| | - Christian Hahn
- TU Dortmund University, Department of Physics, Dortmund, Germany; OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| |
Collapse
|
49
|
Raschke F, Witzmann K, Seidlitz A, Wesemann T, Jentsch C, Platzek I, van den Hoff J, Kotzerke J, Beuthien-Baumann B, Baumann M, Linn J, Krause M, Troost E. Time- and dose-dependent volume decreases in subcortical grey matter structures of glioma patients after radio(chemo)therapy. Clin Transl Radiat Oncol 2022; 36:99-105. [PMID: 35965663 PMCID: PMC9363945 DOI: 10.1016/j.ctro.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Radiotherapy causes atrophy of the hippocampus, amygdala, putamen, thalamus and pallidum. Atrophy is dose dependant and progressive over time. The hippocampus shows the highest atrophy rates at a given mean dose and time. The caudate shows no significant atrophy.
Background and purpose Radiotherapy (RT) is an adjuvant treatment option for glioma patients. Side effects include tissue atrophy, which might be a contributing factor to neurocognitive decline after treatment. The goal of this study was to determine potential atrophy of the hippocampus, amygdala, thalamus, putamen, pallidum and caudate nucleus in glioma patients having undergone magnetic resonance imaging (MRI) before and after RT. Materials and methods Subcortical volumes were measured using T1-weighted MRI from patients before RT (N = 91) and from longitudinal follow-ups acquired in three-monthly intervals (N = 349). The volumes were normalized to the baseline values, while excluding structures touching the clinical target volume (CTV) or abnormal tissue seen on FLAIR imaging. A multivariate linear effects model was used to determine if time after RT and mean RT dose delivered to the corresponding structures were significant predictors of tissue atrophy. Results The hippocampus, amygdala, thalamus, putamen, and pallidum showed significant atrophy after RT as function of both time after RT and mean RT dose delivered to the corresponding structure. Only the caudate showed no dose or time dependant atrophy. Conversely, the hippocampus was the structure with the highest atrophy rate of 5.2 % after one year and assuming a mean dose of 30 Gy. Conclusion The hippocampus showed the highest atrophy rates followed by the thalamus and the amygdala. The subcortical structures here found to decrease in volume indicative of radiosensitivity should be the focus of future studies investigating the relationship between neurocognitive decline and RT.
Collapse
|
50
|
Konopka-Filippow M, Hempel D, Sierko E. Actual, Personalized Approaches to Preserve Cognitive Functions in Brain Metastases Breast Cancer Patients. Cancers (Basel) 2022; 14:3119. [PMID: 35804894 PMCID: PMC9265102 DOI: 10.3390/cancers14133119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer (BC) is the most often diagnosed cancer among women worldwide and second most common cause of brain metastases (BMs) among solid malignancies being responsible for 10-16% of all BMs in oncological patients. Moreover, BMs are associated with worse prognosis than systemic metastases. The quality of life (QoL) among brain metastases breast cancer (BMBC) patients is significantly influenced by cognitive functions. Cancer-related cognitive deficits and the underlying neural deficits in BMBC patients can be caused via BMs per se, chemotherapy administration, brain irradiation, postmenopausal status, or comorbidities. Brain RT often leads to cognitive function impairment by damage of neural progenitor cells of the hippocampus and hence decreased QoL. Sparing the hippocampal region of the brain during RT provides protective covering of the centrally located hippocampi according to the patient's clinical requirements. This article discusses the personalized strategies for treatment options to protect cognitive functions in BMBC patients, with special emphasis on the innovative techniques of radiation therapy.
Collapse
Affiliation(s)
- Monika Konopka-Filippow
- Department of Oncology, Medical University of Bialystok, 15-274 Bialystok, Poland; (M.K.-F.); (D.H.)
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| | - Dominika Hempel
- Department of Oncology, Medical University of Bialystok, 15-274 Bialystok, Poland; (M.K.-F.); (D.H.)
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 15-274 Bialystok, Poland; (M.K.-F.); (D.H.)
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| |
Collapse
|