1
|
Gerrand C, Amary F, Anwar HA, Brennan B, Dileo P, Kalkat MS, McCabe MG, McCullough AL, Parry MC, Patel A, Seddon BM, Sherriff JM, Tirabosco R, Strauss SJ. UK guidelines for the management of bone sarcomas. Br J Cancer 2025; 132:32-48. [PMID: 39550489 PMCID: PMC11723950 DOI: 10.1038/s41416-024-02868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 11/18/2024] Open
Abstract
This document is an update of the British Sarcoma Group guidelines (2016) and provides a reference standard for the clinical care of UK patients with primary malignant bone tumours (PMBT) and giant cell tumours (GCTB) of bone. The guidelines recommend treatments that are effective and should be available in the UK, and support decisions about management and service delivery. The document represents a consensus amongst British Sarcoma Group members in 2024. Key recommendations are that bone pain, or a palpable mass should always lead to further investigation and that patients with clinical or radiological findings suggestive of a primary bone tumour at any anatomic site should be referred to a specialist centre and managed by an accredited bone sarcoma multidisciplinary team. Treatment recommendations are provided for the major tumour types and for localised, metastatic and recurrent disease. Follow-up schedules are suggested.
Collapse
Affiliation(s)
- Craig Gerrand
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Fernanda Amary
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | - Hanny A Anwar
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | | | - Palma Dileo
- Department of Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | | | | | | | - Michael C Parry
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, B31 2AP, UK
| | - Anish Patel
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, B31 2AP, UK
| | - Beatrice M Seddon
- Department of Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | | | - Roberto Tirabosco
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | - Sandra J Strauss
- Department of Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| |
Collapse
|
2
|
Bao C, Li P, Wang W, Wang Z, Cai X, Zhang Q. Intensity Modulated Carbon Ion Radiation Therapy Using Pencil Beam Scanning Technology for Patients With Unresectable Sacrococcygeal Chordoma. Adv Radiat Oncol 2024; 9:101558. [PMID: 39410957 PMCID: PMC11474278 DOI: 10.1016/j.adro.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/26/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose To investigate the safety and efficacy of intensity modulated carbon ion radiation therapy (IM-CIRT) using pencil beam scanning technology for patients with unresectable sacrococcygeal chordoma (SC). Methods and Materials A total of 35 patients with unresectable SC were retrospectively analyzed, including 54.3% (19/35) recurrent cases. In 68.6% (24/35) cases, tumor was located in S2 or above, and all cases were treated with hypofractionated IM-CIRT. The median dose was 70.4 Gy (range, 69-80 Gy) (relative biologic effectiveness) in 16 fractions (range, 16-23 fractions), typically delivered over 5 fractions per week. Results The 3-year overall survival, cause-specific survival, progression-free survival, locoregional progression-free survival, and distant metastasis-free survival rates with a median follow-up time of 42 months (range, 12-91 months) for the entire cohort were 93.2%, 96.3%, 61.8%, 80%, and 77.3%, respectively. Multivariate analysis revealed that gross tumor volume (hazard ratio, 3.807; 95% CI, 1.044-13.887; P = .043) was the only significant prognostic factor for progression-free survival and the dose for the gross tumor volume ≥70.4 Gy (relative biologic effectiveness) was relevant with significantly better locoregional progression-free survival (hazard ratio, 0.190; 95% CI, 0.038-0.940; P = .042). No significant prognostic factor for overall survival, cause-specific survival, and distant metastasis-free survival and no severe (ie, grade ≥3) acute toxicity were identified. Severe late toxicities occurred in 3 patients (8.57%): pain (1 patient), motor neuropathy (1 patient), and skin ulcer (1 patient). Furthermore, no severe toxicity related to urinary function or defecation was observed following IM-CIRT. Pain grades improved or remained unchanged in 85.7% of patients. Conclusions IM-CIRT produced acceptable 3-year outcomes without substantial late adverse effects, especially urinary and anorectal complications for SC, and did not appear to increase pain. IM-CIRT at high doses using hypofractionated radiation therapy may improve outcomes for local control and seems to be feasible even for postoperative recurrent SC.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
3
|
Seidensaal K, Froehlke A, Lentz-Hommertgen A, Lehner B, Geisbuesch A, Meis J, Liermann J, Kudak A, Stein K, Uhl M, Tessonnier T, Mairani A, Debus J, Herfarth K. Hypofractionated proton and carbon ion beam radiotherapy for sacrococcygeal chordoma (ISAC): An open label, randomized, stratified, phase II trial. Radiother Oncol 2024; 198:110418. [PMID: 38944346 DOI: 10.1016/j.radonc.2024.110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Sacrococcygeal chordomas have high recurrence rates and are challenging to treat. METHODS In this phase II prospective, randomized, stratified trial, the safety and feasibility of hypofractionated ion radiation therapy were investigated. The primary focus was monitored through the incidence of Grade 3-5 NCI-CTC-AE toxicity. Secondary endpoints included local progression-free (LPFS) and overall survival (OS). RESULTS The study enrolled 82 patients with primary (87 %) and recurrent (13 %) inoperable or incompletely resected sacral chordomas from January 2013 to July 2022, divided equally into proton therapy (Arm A) and carbon ion beam therapy (Arm B) groups, each receiving a total dose of 64 Gy (RBE) in 16 fractions, 5-6 fractions per week. Overall 74 % of patients received no previous surgery and 66 % of tumors were confirmed by a brachyury staining. The mean and median Gross Tumor Volume at the time of treatment (GTV) was 407 ml and 185 ml, respectively. The median follow-up of the surviving patients was 44.7 months, and the 2-year and 4-year OS rates were 96 % and 81 %, respectively. Factors such as smaller GTV and younger age trended towards better OS. The LPFS after 2-year and 4-year was 84 % and 70 %, respectively. Male gender emerged as a significant predictor of LPFS. There was no significant difference between the treatment groups. We observed five grade 4 wound healing disorders (6 %). CONCLUSION The initial response rates were promising; however local control was not sustained. More comparative research on fractionation schemes is essential to refine treatment approaches for inoperable sacral chordoma.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Andreas Froehlke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Burkhard Lehner
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Geisbuesch
- Center for Orthopedics, Trauma Surgery and Paraplegiology, University of Heidelberg, Heidelberg, Germany
| | - Jan Meis
- Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Kudak
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Katharina Stein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Thomas Tessonnier
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Mairani
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Yanagawa T, Okamoto M, Ohno T, Chikuda H. How to Prevent Local Recurrence of Sacral Chordoma Treated with Carbon-Ion Radiotherapy: An Analysis of the Risk Factors of Local Failure and an Adequate Disease Margin. Oncology 2024; 103:30-36. [PMID: 39134018 DOI: 10.1159/000540649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/27/2024] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Recent reports have described the usefulness of carbon ion radiotherapy (CIRT) for inoperable sacral chordomas. However, its long-term local control rate needs to be improved. The present study identified the risk factors that affect the local relapse of sacral chordomas and the appropriate margins from the tumors. METHODS Forty-nine patients with sacral chordoma treated with CIRT between 2011 and 2022 were retrospectively analyzed. Factors predicting the risk of local recurrence were evaluated, including age, sex, tumor size, muscle invaded with tumor, and surgery before CIRT. To determine the appropriate margin, the distance between the clinical target volume (CTV) and the out-field recurrent lesions was analyzed. RESULTS The patients included 37 males and 12 females with a mean age of 67.1 years. A multivariate analysis showed that a tumor size >8 cm and invasion into the gluteus maximus muscle were significant risk factors with hazard ratios of 5.56 and 15.20 (p = 0.02 and 0.01), respectively. Out-field recurrence occurred in 13 cases, with 6, 3, and 4 relapses occurring in the muscle, bone, and both, respectively. The tumor occurred within 20 mm from the CTV in 60% of relapses in the muscles. CONCLUSION The current study presented novel findings on CIRT for sacral chordomas, although there were several limitations, such as a short follow-up period to investigate slow-growth tumors and a small number of tumor specimens owing to inoperative cases. A tumor size >8 cm and invasion into the gluteus maximus muscle were shown to be risk factors for recurrence in the treatment of sacral chordoma with CIRT. Our findings further suggest that an additional 2-cm margin from the CTV in the muscle fiber direction is recommended during CIRT.
Collapse
Affiliation(s)
- Takashi Yanagawa
- Department of Musculoskeletal Oncology, Gunma Prefectural Cancer Center, Maebashi, Japan
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa, Maebashi, Japan
| | - Masahiko Okamoto
- Gunma University Heavy Ion Medical Center, Gunma University, Showa, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Gunma University, Showa, Maebashi, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showa, Maebashi, Japan
| |
Collapse
|
5
|
Kuwahara M, Okazaki H, Nashihara S, Kanagawa S, Sasaki C. Sacral Ulcer after Carbon Ion Radiotherapy Reconstructed with a Superior Gluteal Artery Perforator Flap. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6019. [PMID: 39534073 PMCID: PMC11556995 DOI: 10.1097/gox.0000000000006019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
As carbon ion radiotherapy (CIRT) was developed only recently, reports of CIRT-induced ulcers requiring plastic surgery are still rare, but the number of such cases is expected to increase. Here, we describe a case of a CIRT-induced ulcer to aid the treatment of such ulcers. An 82-year-old man had a sacral chordoma (12 × 7.5 × 7.5 cm), which extended from the fourth to fifth sacral vertebrae. He underwent CIRT (70.4 Gy). An ulcer developed 30 months after the treatment. The ulcer enlarged to 13 cm × 7 cm. Debridement, negative-pressure wound therapy, and antibiotics were used. We tried to avoid injuring the rectum and sciatic nerve, and covered the ulcer with a delayed superior gluteal artery perforator flap. Wound healing was difficult to achieve in the lower half of the flap. Further debridement was appropriate, but we considered that it was likely to cause complications. Once a post-CIRT ulcer develops, its progression and the required extent of debridement can be roughly predicted based on the radiotherapy treatment plan. In this case, the rectum and sciatic nerve were irradiated, but there were no related symptoms. Therefore, we performed surgery to preserve these structures. However, there was very thick scar tissue surrounding these structures, making debridement difficult, and the wound was slow to heal. It is desirable to use a flap with good blood flow, such as a myocutaneous flap, for covering post-CIRT ulcers.
Collapse
Affiliation(s)
- Masamitsu Kuwahara
- From the Division of Plastic Surgery, Nara Medical University Hospital, Nara, Japan
| | - Hideaki Okazaki
- From the Division of Plastic Surgery, Nara Medical University Hospital, Nara, Japan
| | - Sakuka Nashihara
- From the Division of Plastic Surgery, Nara Medical University Hospital, Nara, Japan
| | - Saori Kanagawa
- From the Division of Plastic Surgery, Nara Medical University Hospital, Nara, Japan
| | - Chikako Sasaki
- From the Division of Plastic Surgery, Nara Medical University Hospital, Nara, Japan
| |
Collapse
|
6
|
Takemori T, Hara H, Kawamoto T, Fukase N, Sawada R, Fujiwara S, Fujita I, Fujimoto T, Morishita M, Yahiro S, Miyamoto T, Saito M, Sugaya J, Hayashi K, Kawashima H, Torigoe T, Nakamura T, Kondo H, Wakamatsu T, Watanuki M, Kito M, Tsukushi S, Nagano A, Outani H, Toki S, Nishimura S, Kobayashi H, Watanabe I, Demizu Y, Sasaki R, Fukumoto T, Matsumoto T, Kuorda R, Akisue T. Comparison of clinical outcome between surgical treatment and particle beam therapy for pelvic bone sarcomas: A retrospective multicenter study in Japan. J Orthop Sci 2024:S0949-2658(24)00108-8. [PMID: 38964957 DOI: 10.1016/j.jos.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Few studies have compared the clinical outcomes of patients with pelvic bone sarcomas treated surgically and those treated with particle beam therapy. This is a multicenter retrospective cohort study which compared the clinical outcomes of patients with pelvic bone sarcoma who underwent surgical treatment and particle beam therapy in Japan. METHODS A total of 116 patients with pelvic bone sarcoma treated at 19 specialized sarcoma centers in Japan were included in this study. Fifty-seven patients underwent surgery (surgery group), and 59 patients underwent particle beam therapy (particle beam group; carbon-ion radiotherapy: 55 patients, proton: four patients). RESULTS The median age at primary tumor diagnosis was 52 years in the surgery group and 66 years in the particle beam group (P < 0.001), and the median tumor size was 9 cm in the surgery group and 8 cm in the particle beam group (P = 0.091). Overall survival (OS), local control (LC), and metastasis-free survival (MFS) rates were evaluated using the Kaplan-Meier method and compared among 116 patients with bone sarcoma (surgery group, 57 patients; particle beam group, 59 patients). After propensity score matching, the 3-year OS, LC, and MFS rates were 82.9% (95% confidence interval [CI], 60.5-93.2%), 66.0% (95% CI, 43.3-81.3%), and 78.4% (95% CI, 55.5-90.5%), respectively, in the surgery group and 64.9% (95% CI, 41.7-80.8%), 86.4% (95% CI, 63.3-95.4%), and 62.6% (95% CI, 38.5-79.4%), respectively, in the particle beam group. In chordoma patients, only surgery was significantly correlated with worse LC in the univariate analysis. CONCLUSIONS The groups had no significant differences in the OS, LC, and MFS rates. Among the patients with chordomas, the 3-year LC rate in the particle beam group was significantly higher than in the surgery group.
Collapse
Affiliation(s)
- Toshiyuki Takemori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-8558, Japan
| | - Hitomi Hara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan.
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Division of Orthopaedic Surgery, Kobe University Hospital, International Clinical Cancer Research Center, Kobe 650-0047, Japan
| | - Naomasa Fukase
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Ryoko Sawada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Shuichi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Ikuo Fujita
- Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-8558, Japan
| | - Takuya Fujimoto
- Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-8558, Japan
| | - Masayuki Morishita
- Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-8558, Japan
| | - Shunsuke Yahiro
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomohiro Miyamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Masanori Saito
- Department of Orthopaedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Kawashima
- Division of Orthopaedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomoaki Torigoe
- Department of Orthopaedic Oncology and Surgery, Saitama Medical University International Medical Center, Hidaka 350-1298, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Hiroya Kondo
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama 700-8558, Japan
| | - Toru Wakamatsu
- Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Munenori Watanuki
- Department of Orthopaedic Surgery, School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Munehisa Kito
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Satoshi Tsukushi
- Department of Orthopaedic Surgery, Aichi Cancer Center Hospital, Nagoya 464-0021, Japan
| | - Akihito Nagano
- Department of Orthopaedic Surgery, Gifu University, Gifu 501-1194, Japan
| | - Hidetatsu Outani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Shunichi Toki
- Department of Orthopaedics, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8503, Japan
| | - Shunji Nishimura
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama 589-8511, Japan
| | - Hiroshi Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Itsuo Watanabe
- Department of Orthopaedic Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa 272-8513, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe 650-0047, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Ryosuke Kuorda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Toshihiro Akisue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe 654-0142, Japan
| |
Collapse
|
7
|
Schafasand M, Resch AF, Nachankar A, Góra J, Martino G, Traneus E, Glimelius L, Georg D, Fossati P, Carlino A, Stock M. Dose averaged linear energy transfer optimization for large sacral chordomas in carbon ion therapy. Med Phys 2024; 51:3950-3960. [PMID: 38696546 DOI: 10.1002/mp.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Carbon ion beams are well accepted as densely ionizing radiation with a high linear energy transfer (LET). However, the current clinical practice does not fully exploit the highest possible dose-averaged LET (LETd) and, consequently, the biological potential in the target. This aspect becomes worse in larger tumors for which inferior clinical outcomes and corresponding lower LETd was reported. PURPOSE The vicinity to critical organs in general and the inferior overall survival reported for larger sacral chordomas treated with carbon ion radiotherapy (CIRT), makes the treatment of such tumors challenging. In this work it was aimed to increase the LETd in large volume tumors while maintaining the relative biological effectiveness (RBE)-weighted dose, utilizing the LETd optimization functions of a commercial treatment planning system (TPS). METHODS Ten reference sequential boost carbon ion treatment plans, designed to mimic clinical plans for large sacral chordoma tumors, were generated. High dose clinical target volumes (CTV-HD) larger than250 cm 3 $250 \,{\rm cm}^{3}$ were considered as large targets. The total RBE-weighted median dose prescription with the local effect model (LEM) wasD RBE , 50 % = 73.6 Gy $\textrm {D}_{\rm RBE, 50\%}=73.6 \,{\rm Gy}$ in 16 fractions (nine to low dose and seven to high dose planning target volume). No LETd optimization was performed in the reference plans, while LETd optimized plans used the minimum LETd (Lmin) optimization function in RayStation 2023B. Three different Lmin values were investigated and specified for the seven boost fractions:L min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ ,L min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ andL min = 100 keV / μ m $\textrm {L}_{\rm min}=100 \,{\rm keV}/{\umu }{\rm m}$ . To compare the LETd optimized against reference plans, LETd and RBE-weighted dose based goals similar to and less strict than clinical ones were specified for the target. The goals for the organs at risk (OAR) remained unchanged. Robustness evaluation was studied for eight scenarios (± 3.5 % $\pm 3.5\%$ range uncertainty and± 3 mm $\pm 3 \,{\rm mm}$ setup uncertainty along the main three axes). RESULTS The optimization method withL min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ resulted in an optimal LETd distribution with an average increase ofLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) in the CTV-HD by8.9 ± 1.5 keV / μ m $8.9\pm 1.5 \,{\rm keV}/{\umu }{\rm m}$ (27 % $27\%$ ) (and6.9 ± 1.3 keV / μ m $6.9\pm 1.3 \,{\rm keV}/{\umu }{\rm m}$ (17 % $17\%$ )), without significant difference in the RBE-weighted dose. By allowing± 5 % $\pm 5\%$ over- and under-dosage in the target, theLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) can be increased by11.3 ± 1.2 keV / μ m $11.3\pm 1.2 \,{\rm keV}/{\umu }{\rm m}$ (34 % $34\%$ ) (and11.7 ± 3.4 keV / μ m $11.7\pm 3.4 \,{\rm keV}/{\umu }{\rm m}$ (29 % $29\%$ )), using the optimization parametersL min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ . The pass rate for the OAR goals in the LETd optimized plans was in the same level as the reference plans. LETd optimization lead to less robust plans compared to reference plans. CONCLUSIONS Compared to conventionally optimized treatment plans, the LETd in the target was increased while maintaining the RBE-weighted dose using TPS LETd optimization functionalities. Regularly assessing RBE-weighted dose robustness and acquiring more in-room images remain crucial and inevitable aspects during treatment.
Collapse
Affiliation(s)
- Mansure Schafasand
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Ankita Nachankar
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- ACMIT Gmbh, Wiener Neustadt, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | | | | | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Piero Fossati
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Markus Stock
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
8
|
Sabe H, Outani H, Imura Y, Takami H, Nakai T, Takenaka S, Kakunaga S, Tamiya H, Wakamatsu T, Nakai S, Demizu Y, Imai R, Okada S. Local surgery feasibility and safety after carbon ion radiotherapy for primary bone sarcomas. J Orthop Sci 2024; 29:903-907. [PMID: 37045686 DOI: 10.1016/j.jos.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND It is known that several complications are caused by local surgery after radiotherapy. Clinical reports that describe the postoperative complications associated with surgery after carbon ion radiotherapy are sparse. This study aimed to elucidate local surgery feasibility after carbon ion radiotherapy specifically for primary bone sarcomas. METHODS The medical, surgical, and irradiation records of patients who had local surgery at the area irradiated with carbon ion beams between 2004 and 2018 were reviewed retrospectively to evaluate the feasibility and indication of local surgery after CIRT. RESULTS There were eight patients who had 10 local surgeries at the irradiated sites among the 42 carbon ion radiotherapy patients. There were seven males and one female with a median age of 50 years (range 26-73 years). The reasons for surgery were three for skin toxicity and associated infection, five for bone collapse, and associated implant failure, and two for tumor regrowth. All surgical fields included the area of more than 60 Gy (RBE) irradiated dose. All three surgical cases caused by skin toxicity and associated infection had Grade I wound complication after surgery according to the Clavien-Dindo Classification. CONCLUSION Local surgery after CIRT appeared feasible in selected patients with primary bone sarcoma, especially for the patients with bone collapse and associated implant failure. However, infection and prescribed irradiation dose at the incision site must be carefully evaluated.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidetatsu Outani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yoshinori Imura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruna Takami
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takaaki Nakai
- Department of Orthopaedic Surgery, Itami City Hospital, Itami, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hironari Tamiya
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Toru Wakamatsu
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Japan
| | - Reiko Imai
- QST Hospital, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
9
|
Thwaites DI, Prokopovich DA, Garrett RF, Haworth A, Rosenfeld A, Ahern V. The rationale for a carbon ion radiation therapy facility in Australia. J Med Radiat Sci 2024; 71 Suppl 2:59-76. [PMID: 38061984 PMCID: PMC11011608 DOI: 10.1002/jmrs.744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 04/13/2024] Open
Abstract
Australia has taken a collaborative nationally networked approach to achieve particle therapy capability. This supports the under-construction proton therapy facility in Adelaide, other potential proton centres and an under-evaluation proposal for a hybrid carbon ion and proton centre in western Sydney. A wide-ranging overview is presented of the rationale for carbon ion radiation therapy, applying observations to the case for an Australian facility and to the clinical and research potential from such a national centre.
Collapse
Affiliation(s)
- David I. Thwaites
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Radiotherapy Research Group, Institute of Medical ResearchSt James's Hospital and University of LeedsLeedsUK
| | | | - Richard F. Garrett
- Australian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | - Annette Haworth
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, School of PhysicsUniversity of WollongongSydneyNew South WalesAustralia
| | - Verity Ahern
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Nachankar A, Schafasand M, Hug E, Martino G, Góra J, Carlino A, Stock M, Fossati P. Sacral-Nerve-Sparing Planning Strategy in Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2024; 16:1284. [PMID: 38610962 PMCID: PMC11010899 DOI: 10.3390/cancers16071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
To minimize radiation-induced lumbosacral neuropathy (RILSN), we employed sacral-nerve-sparing optimized carbon-ion therapy strategy (SNSo-CIRT) in treating 35 patients with pelvic sarcomas/chordomas. Plans were optimized using Local Effect Model-I (LEM-I), prescribed DRBE|LEM-I|D50% (median dose to HD-PTV) = 73.6 (70.4-76.8) Gy (RBE)/16 fractions. Sacral nerves were contoured between L5-S3 levels. DRBE|LEM-I to 5% of sacral nerves-to-spare (outside HD-CTV) (DRBE|LEM-I|D5%) were restricted to <69 Gy (RBE). The median follow-up was 25 months (range of 2-53). Three patients (9%) developed late RILSN (≥G3) after an average period of 8 months post-CIRT. The RILSN-free survival at 2 years was 91% (CI, 81-100). With SNSo-CIRT, DRBE|LEM-I|D5% for sacral nerves-to-spare = 66.9 ± 1.9 Gy (RBE), maintaining DRBE|LEM-I to 98% of HD-CTV (DRBE|LEM-I|D98%) = 70 ± 3.6 Gy (RBE). Two-year OS and LC were 100% and 93% (CI, 84-100), respectively. LETd and DRBE with modified-microdosimetric kinetic model (mMKM) were recomputed retrospectively. DRBE|LEM-I and DRBE|mMKM were similar, but DRBE-filtered-LETd was higher in sacral nerves-to-spare in patients with RILSN than those without. At DRBE|LEM-I cutoff = 64 Gy (RBE), 2-year RILSN-free survival was 100% in patients with <12% of sacral nerves-to-spare voxels receiving LETd > 55 keV/µm than 75% (CI, 54-100) in those with ≥12% of voxels (p < 0.05). DRBE-filtered-LETd holds promise for the SNSo-CIRT strategy but requires longer follow-up for validation.
Collapse
Affiliation(s)
- Ankita Nachankar
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (E.H.); (P.F.)
| | - Mansure Schafasand
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Eugen Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (E.H.); (P.F.)
| | - Giovanna Martino
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
| | - Joanna Góra
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
| | - Antonio Carlino
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
| | - Markus Stock
- Department of Medical Physics, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (G.M.); (J.G.); (A.C.); (M.S.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (E.H.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
11
|
Harada K, Shinojima N, Yamamoto H, Itoyama M, Uchida D, Dekita Y, Miyamaru S, Uetani H, Orita Y, Mikami Y, Nosaka K, Hirai T, Mukasa A. A Rare Case of Adult Poorly Differentiated Chordoma of the Skull Base With Rapid Progression and Systemic Metastasis: A Review of the Literature. Cureus 2024; 16:e51605. [PMID: 38173946 PMCID: PMC10764176 DOI: 10.7759/cureus.51605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
Chordoma is a rare tumor that arises from chordal tissue during fetal life. Recently, the concept of poorly differentiated chordoma, a subtype of chordoma characterized by loss of SMARCB1/INI1 with a poorer prognosis than conventional chordomas, was established. It predominantly occurs in children and is rare in adults. Here, we report a rare adult case of poorly differentiated chordoma of the skull base with a unique course that rapidly systemically metastasized and had the shortest survival time of any adult chordoma reported to date. The patient was a 32-year-old male with a chief complaint of diplopia. MRI showed a widespread neoplastic lesion with the clivus as the main locus. Endoscopic extended transsphenoidal tumor resection was performed. Pathological findings showed that the tumor was malignant, and immunohistochemistry revealed a Ki-67 labeling index of 80%, diffusely positive brachyury, and loss of INI1 expression. The final diagnosis was poorly differentiated chordoma. Postoperatively, the residual tumor in the right cavernous sinus showed rapid growth. The patient was promptly treated with gamma knife three fractions. The residual tumor regressed, but the tumor developed systemic metastasis in a short period, and the patient died seven months after diagnosis. This report of a rapidly progressing and fatal adult poorly differentiated chordoma shows the highest Ki-67 labeling index reported to date. Prompt multidisciplinary treatment should be considered when the Ki-67 labeling index is high.
Collapse
Affiliation(s)
- Keisuke Harada
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, JPN
| | - Naoki Shinojima
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, JPN
| | - Haruaki Yamamoto
- Department of Neurosurgery, Saiseikai Kumamoto Hospital, Kumamoto, JPN
| | - Mai Itoyama
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, JPN
| | - Daichi Uchida
- Department of Radiosurgery, Kumamoto Radiosurgery Clinic, Kumamoto, JPN
| | - Yuji Dekita
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, JPN
| | - Satoru Miyamaru
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, JPN
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, JPN
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, JPN
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, JPN
| | - Kisato Nosaka
- Department of Cancer Treatment Center, Kumamoto University Hospital, Kumamoto, JPN
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Hospital, Kumamoto, JPN
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, JPN
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, JPN
| |
Collapse
|
12
|
Schafasand M, Resch AF, Nachankar A, Gora J, Traneus E, Glimelius L, Georg D, Stock M, Carlino A, Fossati P. Investigation on the physical dose filtered by linear energy transfer for treatment plan evaluation in carbon ion therapy. Med Phys 2024; 51:556-565. [PMID: 37727137 DOI: 10.1002/mp.16751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Large tumor size has been reported as a predicting factor for inferior clinical outcome in carbon ion radiotherapy (CIRT). Besides the clinical factors accompanied with such tumors, larger tumors receive typically more low linear energy transfer (LET) contributions than small ones which may be the underlying physical cause. Although dose averaged LET is often used as a single parameter descriptor to quantify the beam quality, there is no evidence that this parameter is the optimal clinical predictor for the complex mixed radiation fields in CIRT. PURPOSE Purpose of this study was to investigate on a novel dosimetric quantity, namely high-LET-dose (D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ , the physical dose filtered based on an LET threshold) as a single parameter estimator to differentiate between carbon ion treatment plans (cTP) with a small and large tumor volume. METHODS Ten cTPs with a planning target volume,PTV ≥ 500 cm 3 $\mathrm{PTV}\ge {500}\,{{\rm cm}^{3}}$ (large) and nine with aPTV < 500 cm 3 $\mathrm{PTV}<{500}\,{{\rm cm}^{3}}$ (small) were selected for this study. To find a reasonable LET threshold (L thr $\textrm {L}_{\textrm {thr}}$ ) that results in a significant difference in terms ofD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ , the voxel based normalized high-LET-dose (D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) distribution in the clinical target volume (CTV) was studied on a subset (12 out of 19 cTPs) for 18 LET thresholds, using standard distribution descriptors (mean, variance and skewness). The classical dose volume histogram concept was used to evaluate theD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ andD ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ distributions within the target of all 19 cTPs at the before determinedL thr $\textrm {L}_{\textrm {thr}}$ . Statistical significance of the difference between the two groups in terms of meanD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ andD ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ volume histogram parameters was evaluated by means of (two-sided) t-test or Mann-Whitney-U-test. In addition, the minimum target coverage at the above determinedL thr $\textrm {L}_{\textrm {thr}}$ was compared and validated against three other thresholds to verify its potential in differentiation between small and large volume tumors. RESULTS AnL thr $\textrm {L}_{\textrm {thr}}$ of approximately30 keV / μ m ${30}\,{\rm keV/}\umu {\rm m}$ was found to be a reasonable threshold to classify the two groups. At this threshold, theD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ andD ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ were significantly larger (p < 0.05 $p<0.05$ ) in small CTVs. For the small tumor group, the near-minimum and medianD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ (andD ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) in the CTV were in average9.3 ± 1.5 Gy $9.3\pm {1.5}\,{\rm Gy}$ (0.31 ± 0.08) and13.6 ± 1.6 Gy $13.6\pm {1.6}\,{\rm Gy}$ (0.46 ± 0.06), respectively. For the large tumors, these parameters were6.6 ± 0.2 Gy $6.6\pm {0.2}\,{\rm Gy}$ (0.20 ± 0.01) and8.6 ± 0.4 Gy $8.6\pm {0.4}\,{\rm Gy}$ (0.28 ± 0.02). The difference between the two groups in terms of mean near-minimum and medianD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ (D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) was 2.7 Gy (11%) and 5.0 Gy (18%), respectively. CONCLUSIONS The feasibility of high-LET-dose based evaluation was shown in this study where a lowerD > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ was found in cTPs with a large tumor size. Further investigation is needed to draw clinical conclusions. The proposed methodology in this work can be utilized for future high-LET-dose based studies.
Collapse
Affiliation(s)
- Mansure Schafasand
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Ankita Nachankar
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- ACMIT Gmbh, Wiener Neustadt, Austria
| | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | | | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | | | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
13
|
Nachankar A, Schafasand M, Carlino A, Hug E, Stock M, Góra J, Fossati P. Planning Strategy to Optimize the Dose-Averaged LET Distribution in Large Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2023; 15:4903. [PMID: 37835598 PMCID: PMC10571585 DOI: 10.3390/cancers15194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
To improve outcomes in large sarcomas/chordomas treated with CIRT, there has been recent interest in LET optimization. We evaluated 22 pelvic sarcoma/chordoma patients treated with CIRT [large: HD-CTV ≥ 250 cm3 (n = 9), small: HD-CTV < 250 cm3 (n = 13)], DRBE|LEM-I = 73.6 (70.4-73.6) Gy (RBE)/16 fractions, using the local effect model-I (LEM-I) optimization and modified-microdosimetric kinetic model (mMKM) recomputation. We observed that to improve high-LETd distribution in large tumors, at least 27 cm3 (low-LETd region) of HD-CTV should receive LETd of ≥33 keV/µm (p < 0.05). Hence, LETd optimization using 'distal patching' was explored in a treatment planning setting (not implemented clinically yet). Distal-patching structures were created to stop beams 1-2 cm beyond the HD-PTV-midplane. These plans were reoptimized and DRBE|LEM-I, DRBE|mMKM, and LETd were recomputed. Distal patching increased (a) LETd50% in HD-CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm), (b) LETdmin in low-LETd regions of the HD-CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), (c) the GTV fraction receiving LETd of ≥50 keV/µm, (from <10% to >50%) and (d) the high-LETd component in the central region of the GTV, without significant compromise in DRBE distribution. However, distal patching is sensitive to setup/range uncertainties, and efforts to ascertain robustness are underway, before routine clinical implementation.
Collapse
Affiliation(s)
- Ankita Nachankar
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
| | - Mansure Schafasand
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Antonio Carlino
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Markus Stock
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Piero Fossati
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
14
|
Dong M, Liu R, Zhang Q, Wang D, Luo H, Wang Y, Chen J, Ou Y, Wang X. Efficacy and safety of carbon ion radiotherapy for chordomas: a systematic review and meta-analysis. Radiat Oncol 2023; 18:152. [PMID: 37705083 PMCID: PMC10500892 DOI: 10.1186/s13014-023-02337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE Carbon ion radiotherapy (C-ion RT) for chordomas has been gradually performed in several research centres. This study aimed to systematically review the results of clinical reports from these institutions and to evaluate the safety and efficacy of C-ion RT. METHODS In accordance with the PRISMA guidelines and set search strategies, we searched four databases for articles from their inception to February 11, 2023. These articles were screened, and data were extracted independently by two researchers. STATA 14.0 was used for statistical analysis of survival results. RESULTS A total of 942 related articles were retrieved, 11 of which were included. Regarding lesion location, 57% (n = 552) originated in the sacral region, 41% (n = 398) in the skull base, and 2% (n = 19) in the spine (upper cervical). The local control (LC) rates at 1, 2, 3, 5, 9, and 10 years in these studies were 96%, 93%, 83%, 76%, 71%, and 54%, respectively. The overall survival (OS) rates at 1, 2, 3, 5, 9, and 10 years in these studies were 99%, 100%, 93%, 85%, 76%, and 69%, respectively. Acute and late toxicities were acceptable, acute toxicities were mainly grade 1 to grade 2 and late toxicities were mainly grade 1 to grade 3. CONCLUSION C-ion RT has attractive clinical application prospects and is an important local treatment strategy for chordomas. Encouraging results were observed in terms of LC and OS. Meanwhile, the acute and late toxicities were acceptable. PROSPERO registration number: CRD42023398792.
Collapse
Affiliation(s)
- Meng Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China.
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Yuhang Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Junru Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Yuhong Ou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China.
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| |
Collapse
|
15
|
Sherry AD, Maroongroge S, De B, Amini B, Conley AP, Bishop AJ, Wang C, Beckham T, Tom M, Briere T, Li J, Yeboa DN, McAleer MF, North R, Tatsui CE, Rhines LD, Ghia AJ. Management of chordoma and chondrosarcoma with definitive dose-escalated single-fraction spine stereotactic radiosurgery. J Neurooncol 2023; 164:377-386. [PMID: 37667065 PMCID: PMC11917496 DOI: 10.1007/s11060-023-04432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE The management of chordoma or chondrosarcoma involving the spine is often challenging due to adjacent critical structures and tumor radioresistance. Spine stereotactic radiosurgery (SSRS) has radiobiologic advantages compared with conventional radiotherapy, though there is limited evidence on SSRS in this population. We sought to characterize the long-term local control (LC) of patients treated with SSRS. METHODS We retrospectively reviewed patients with chordoma or chondrosarcoma treated with dose-escalated SSRS, defined as 24 Gy in 1 fraction to the gross tumor volume. Overall survival (OS) was calculated by Kaplan-Meier functions. Competing risk analysis using the cause-specific hazard function estimated LC time. RESULTS Fifteen patients, including 12 with chordoma and 3 with chondrosarcoma, with 22 lesions were included. SSRS intent was definitive, single-modality in 95% of cases (N = 21) and post-operative in 1 case (5%). After a median censored follow-up time of 5 years (IQR 4 to 8 years), median LC time was not reached (IQR 8 years to not reached), with LC rates of 100%, 100%, and 90% at 1 year, 2 years, and 5 years. The median OS was 8 years (IQR 3 years to not reached). Late grade 3 toxicity occurred after 23% of treatments (N = 5, fracture), all of which were managed successfully with stabilization. CONCLUSION Definitive dose-escalated SSRS to 24 Gy in 1 fraction appears to be a safe and effective treatment for achieving durable local control in chordoma or chondrosarcoma involving the spine, and may hold particular importance as a low-morbidity alternative to surgery in selected cases.
Collapse
Affiliation(s)
- Alexander D Sherry
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Sean Maroongroge
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Brian De
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Behrang Amini
- Department of Musculoskeletal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Bishop
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Chenyang Wang
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Thomas Beckham
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Martin Tom
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Tina Briere
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA
| | - Robert North
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio E Tatsui
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurence D Rhines
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amol J Ghia
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Bldv, Unit 1202, 77030, Houston, TX, USA.
| |
Collapse
|
16
|
Redmond KJ, Schaub SK, Lo SFL, Khan M, Lubelski D, Bilsky M, Yamada Y, Fehlings M, Gogineni E, Vajkoczy P, Ringel F, Meyer B, Amin AG, Combs SE, Lo SS. Radiotherapy for Mobile Spine and Sacral Chordoma: A Critical Review and Practical Guide from the Spine Tumor Academy. Cancers (Basel) 2023; 15:cancers15082359. [PMID: 37190287 DOI: 10.3390/cancers15082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chordomas are rare tumors of the embryologic spinal cord remnant. They are locally aggressive and typically managed with surgery and either adjuvant or neoadjuvant radiation therapy. However, there is great variability in practice patterns including radiation type and fractionation regimen, and limited high-level data to drive decision making. The purpose of this manuscript was to summarize the current literature specific to radiotherapy in the management of spine and sacral chordoma and to provide practice recommendations on behalf of the Spine Tumor Academy. A systematic review of the literature was performed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) approach. Medline and Embase databases were utilized. The primary outcome measure was the rate of local control. A detailed review and interpretation of eligible studies is provided in the manuscript tables and text. Recommendations were defined as follows: (1) consensus: approved by >75% of experts; (2) predominant: approved by >50% of experts; (3) controversial: not approved by a majority of experts. Expert consensus supports dose escalation as critical in optimizing local control following radiation therapy for chordoma. In addition, comprehensive target volumes including sites of potential microscopic involvement improve local control compared with focal targets. Level I and high-quality multi-institutional data comparing treatment modalities, sequencing of radiation and surgery, and dose/fractionation schedules are needed to optimize patient outcomes in this locally aggressive malignancy.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Stephanie K Schaub
- Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA
| | - Sheng-Fu Larry Lo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Hempstead, NY 11549, USA
| | - Majid Khan
- Department of Radiology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel Lubelski
- Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mark Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Fehlings
- Department of Neurosurgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charite University Hospital, 10117 Berlin, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, 80333 Munich, Germany
| | - Anubhav G Amin
- Department of Neurological Surgery, University of Washington, Seattle, WA 98115, USA
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, 81675 Munich, Germany
| | - Simon S Lo
- Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Hoppe BS, Petersen IA, Wilke BK, DeWees TA, Imai R, Hug EB, Fiore MR, Debus J, Fossati P, Yamada S, Orlandi E, Zhang Q, Bao C, Seidensaal K, May BC, Harrell AC, Houdek MT, Vallow LA, Rose PS, Haddock MG, Ashman JB, Goulding KA, Attia S, Krishnan S, Mahajan A, Foote RL, Laack NN, Keole SR, Beltran CJ, Welch EM, Karim M, Ahmed SK. Pragmatic, Prospective Comparative Effectiveness Trial of Carbon Ion Therapy, Surgery, and Proton Therapy for the Management of Pelvic Sarcomas (Soft Tissue/Bone) Involving the Bone: The PROSPER Study Rationale and Design. Cancers (Basel) 2023; 15:1660. [PMID: 36980545 PMCID: PMC10046156 DOI: 10.3390/cancers15061660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
Surgical treatment of pelvic sarcoma involving the bone is the standard of care but is associated with several sequelae and reduced functional quality of life (QOL). Treatment with photon and proton radiotherapy is associated with relapse. Carbon ion radiotherapy (CIRT) may reduce both relapse rates and treatment sequelae. The PROSPER study is a tricontinental, nonrandomized, prospective, three-arm, pragmatic trial evaluating treatments of pelvic sarcoma involving the bone. Patients aged at least 15 years are eligible for inclusion. Participants must have an Eastern Cooperative Oncology Group Performance Status score of two or less, newly diagnosed disease, and histopathologic confirmation of pelvic chordoma, chondrosarcoma, osteosarcoma, Ewing sarcoma with bone involvement, rhabdomyosarcoma (RMS) with bone involvement, or non-RMS soft tissue sarcoma with bone involvement. Treatment arms include (1) CIRT (n = 30) delivered in Europe and Asia, (2) surgical treatment with or without adjuvant radiotherapy (n = 30), and (3) proton therapy (n = 30). Arms two and three will be conducted at Mayo Clinic campuses in Arizona, Florida, and Minnesota. The primary end point is to compare the 1-year change in functional QOL between CIRT and surgical treatment. Additional comparisons among the three arms will be made between treatment sequelae, local control, and other QOL measures.
Collapse
Affiliation(s)
- Bradford S. Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ivy A. Petersen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin K. Wilke
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Todd A. DeWees
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Phoenix, AZ 85054, USA
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Reiko Imai
- Division of Radiation Oncology, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Eugen B. Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Shigeru Yamada
- Division of Radiation Oncology, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201102, China
| | - Cihang Bao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201102, China
| | - Katharina Seidensaal
- Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Byron C. May
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna C. Harrell
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Matthew T. Houdek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura A. Vallow
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter S. Rose
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Steven Attia
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, University of Texas Health Houston Neurosciences-Texas Medical Center, Houston, TX 77030, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Eric M. Welch
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mohammed Karim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Safia K. Ahmed
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
18
|
Morelli L, Parrella G, Molinelli S, Magro G, Annunziata S, Mairani A, Chalaszczyk A, Fiore MR, Ciocca M, Paganelli C, Orlandi E, Baroni G. A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy. Cancers (Basel) 2022; 15:cancers15010033. [PMID: 36612029 PMCID: PMC9817801 DOI: 10.3390/cancers15010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Carbon Ion Radiotherapy (CIRT) is one of the most promising therapeutic options to reduce Local Recurrence (LR) in Sacral Chordomas (SC). The aim of this work is to compare the performances of survival models fed with dosiomics features and conventional DVH metrics extracted from relative biological effectiveness (RBE)-weighted dose (DRBE) and dose-averaged Linear Energy Transfer (LETd) maps, towards the identification of possible prognostic factors for LR in SC patients treated with CIRT. This retrospective study included 50 patients affected by SC with a focus on patients that presented a relapse in a high-dose region. Survival models were built to predict both LR and High-Dose Local Recurrencies (HD-LR). The models were evaluated through Harrell Concordance Index (C-index) and patients were stratified into high/low-risk groups. Local Recurrence-free Kaplan-Meier curves were estimated and evaluated through log-rank tests. The model with highest performance (median(interquartile-range) C-index of 0.86 (0.22)) was built on features extracted from LETd maps, with DRBE models showing promising but weaker results (C-index of 0.83 (0.21), 0.80 (0.21)). Although the study should be extended to a wider patient population, LETd maps show potential as a prognostic factor for SC HD-LR in CIRT, and dosiomics appears to be the most promising approach against more conventional methods (e.g., DVH-based).
Collapse
Affiliation(s)
- Letizia Morelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Correspondence: (L.M.); (G.P.); Tel.: +39-02-2399-9022 (G.P.)
| | - Giovanni Parrella
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Correspondence: (L.M.); (G.P.); Tel.: +39-02-2399-9022 (G.P.)
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Simone Annunziata
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Mairani
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
- Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Agnieszka Chalaszczyk
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Ester Orlandi
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
19
|
Jae-Min Park A, McDowell S, Mesfin A. Management of Chordoma of the Sacrum and Mobile Spine. JBJS Rev 2022; 10:01874474-202212000-00004. [PMID: 36639876 DOI: 10.2106/jbjs.rvw.22.00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
➢ Chordomas account for 1% to 4% of primary tumors of the spine and sacrum. ➢ En bloc resection is the preferred surgical treatment for the management of chordomas. ➢ Proton beam radiation is increasingly being used as a postoperative radiation modality for the treatment of chordomas.
Collapse
Affiliation(s)
- Andrew Jae-Min Park
- Department of Orthopedic Surgery and Physical Performance, University of Rochester School of Medicine & Dentistry, Rochester, New York
| | | | | |
Collapse
|
20
|
Gao J, Huang R, Yin H, Song D, Meng T. Research hotspots and trends of chordoma: A bibliometric analysis. Front Oncol 2022; 12:946597. [PMID: 36185236 PMCID: PMC9523362 DOI: 10.3389/fonc.2022.946597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chordoma is a type of mesenchymal malignancy with a high recurrence rate and poor prognosis. Due to its rarity, the tumorigenic mechanism and optimal therapeutic strategy are not well known. Methods All relevant articles of chordoma research from 1 January 2000 to 26 April 2022 were obtained from Web of Science Core Collection database. Blibliometrix was used to acquire basic publication data. Visualization and data table of collaboration network, dynamic analysis, trend topics, thematic map, and factorial analysis were acquired using Blibliometrix package. VOSviewer was used to generate a visualization map of co-citation analysis and co-occurrence. Results A total of 2,285 articles related to chordoma were identified. The most influential and productive country/region was the United States, and Capital Medical University has published the most articles. Among all high-impact authors, Adrienne M. Flanagan had the highest average citation rate. Neurosurgery was the important periodical for chordoma research with the highest total/average citation rate. We focused on four hotspots in recent chordoma research. The research on surgical treatment and radiotherapy was relatively mature. The molecular signaling pathway, targeted therapy and immunotherapy for chordoma are not yet mature, which will be the future trends of chordoma research. Conclusion This study indicates that chordoma studies are increasing. Surgery and radiotherapy are well reported and always play fundamental roles in chordoma treatment. The molecular signaling pathway, targeted therapy, and immunotherapy of chordoma are the latest research hotspots.
Collapse
Affiliation(s)
- Jianxuan Gao
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Huabin Yin
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dianwen Song
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Tong Meng, ; Dianwen Song,
| | - Tong Meng
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Tong Meng, ; Dianwen Song,
| |
Collapse
|
21
|
Aoki S, Koto M, Ikawa H, Imai R, Tokuhiko O, Shinoto M, Takiyama H, Yamada S, Tsuji H. Long-term outcomes of high dose carbon-ion radiation therapy for unresectable upper cervical (C1-2) chordoma. Head Neck 2022; 44:2162-2170. [PMID: 35734902 PMCID: PMC9544549 DOI: 10.1002/hed.27127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Chordoma is a rare, locally invasive neoplasm of the axial skeleton. Complete resection is often difficult, especially for the upper‐cervical (C1‐2) spine. We evaluated the efficacy and safety of carbon‐ion radiotherapy (CIRT) for unresectable C1‐2 chordoma. Methods Patients with C1‐2 chordoma treated with definitive CIRT (60.8 Gy [RBE] in 16 fractions) were retrospectively analyzed. We evaluated OS, LC, PFS, and toxicity. Results Nineteen eligible patients all completed the planned course of CIRT. With the median follow‐up 68 months (range: 29–144), median OS was 126 months (range: 36‐NA). Five‐year OS, LC, and PFS were 68.4% (95% CI, 42.8%–84.4%), 75.2% (46.1%–90.0%), and 64.1% (36.3%–82.3%), respectively. Regarding acute toxicity of grade ≥3, there was only one grade 3 mucositis. Late toxicity included radiation‐induced myelitis (grade 3 in 1 patient; 5.3%), and compression fractures (n = 5; 26.3%). Conclusions High‐dose CIRT is a promising treatment option for unresectable upper cervical chordoma.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.,Department of Radiology, University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Omatsu Tokuhiko
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
22
|
Court C, Briand S, Mir O, Le Péchoux C, Lazure T, Missenard G, Bouthors C. Management of chordoma of the sacrum and mobile spine. Orthop Traumatol Surg Res 2022; 108:103169. [PMID: 34890865 DOI: 10.1016/j.otsr.2021.103169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/03/2023]
Abstract
Chordoma is a very rare, poorly known malignancy, with slow progression, mainly located in the sacrum and spine. All age groups may be affected, with a diagnostic peak in the 5th decade of life. Clinical diagnosis is often late. Histologic diagnosis is necessary, based on percutaneous biopsy. Specific markers enable diagnosis and prediction of response to novel treatments. New radiation therapy techniques can stabilize the tumor for 5 years in inoperable patients, but en-bloc resection is the most effective treatment, and should be decided on after a multidisciplinary oncology team meeting in an expert reference center. The type of resection is determined by fine analysis of invasion. According to the level of resection, the patients should be informed and prepared for the expected vesico-genito-sphincteral neurologic sequelae. In tumors not extending above S3, isolated posterior resection is possible. Above S3, a double approach is needed. Anterior release of the sacrum is performed laparoscopically or by robot; resection uses a posterior approach. Posterior wall reconstruction is performed, with an associated flap. Spinopelvic stabilization is necessary in trans-S1 resection. Total or partial sacrectomy shows high rates of complications: intraoperative blood loss, infection or mechanical issues. Neurologic sequelae depend on the level of root sacrifice. No genital-sphincteral function survives S3 root sacrifice. Patient survival depends on initial resection quality and the center's experience. Immunotherapy is an ongoing line of research.
Collapse
Affiliation(s)
- Charles Court
- Service d'Orthopédie et Traumatologie de l'Hôpital de Bicêtre, Université Paris-Saclay, 78, rue du Général Leclerc, 94275 Le Kremlin Bicêtre Cedex, France.
| | - Sylvain Briand
- Service d'Orthopédie et Traumatologie de l'Hôpital de Bicêtre, Université Paris-Saclay, 78, rue du Général Leclerc, 94275 Le Kremlin Bicêtre Cedex, France
| | - Olivier Mir
- Service d'Oncologie, Institut Gustave Roussy, Université Paris Saclay, 114, rue Edouard-Vaillant, 94805 Villejuif Cedex, France
| | - Cécile Le Péchoux
- Service d'Oncologie, Institut Gustave Roussy, Université Paris Saclay, 114, rue Edouard-Vaillant, 94805 Villejuif Cedex, France
| | - Thierry Lazure
- Service d'Anatomopathologie de l'Hôpital de Bicêtre, Université Paris Saclay, 78, rue du Général Leclerc, 94275 Le Kremlin Bicêtre Cedex, France
| | - Gilles Missenard
- Service d'Orthopédie et Traumatologie de l'Hôpital de Bicêtre, Université Paris-Saclay, 78, rue du Général Leclerc, 94275 Le Kremlin Bicêtre Cedex, France
| | - Charlie Bouthors
- Service d'Orthopédie et Traumatologie de l'Hôpital de Bicêtre, Université Paris-Saclay, 78, rue du Général Leclerc, 94275 Le Kremlin Bicêtre Cedex, France
| |
Collapse
|
23
|
Yolcu YU, Zreik J, Wahood W, Bhatti AUR, Bydon M, Houdek MT, Rose PS, Mahajan A, Petersen IA, Haddock MG, Ahmed SK, Laack NN, Jethwa K, Jeans EB, Imai R, Yamada S, Foote RL. Comparison of Oncologic Outcomes and Treatment-Related Toxicity of Carbon Ion Radiotherapy and En Bloc Resection for Sacral Chordoma. JAMA Netw Open 2022; 5:e2141927. [PMID: 34994795 PMCID: PMC8742192 DOI: 10.1001/jamanetworkopen.2021.41927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Maximal resection is the preferred management for sacral chordomas but can be associated with unacceptable morbidity. Outcomes with radiotherapy are poor. Carbon ion radiotherapy (CIRT) is being explored as an alternative when surgery is not preferred. OBJECTIVE To compare oncologic outcomes and treatment-related toxicity of CIRT and en bloc resection for sacral chordoma. DESIGN, SETTING, AND PARTICIPANTS Univariable logistic regression was performed to evaluate the association between treatment type and oncologic and toxicity outcomes in this retrospective cohort study. Nearest-neighbor propensity score matching was used to match the CIRT cohort with the en bloc resection cohort and 10 National Cancer Database (NCDB) cohorts separately, with the objective of obtaining more homogeneous cohorts when comparing treatments. Patient- and tumor-related characteristics from 2 institutional cohorts were collected for patients diagnosed with sacral chordomas between April 1, 1994, and July 31, 2017. The NCDB was queried for data on patients with sacral chordoma from January 1, 2004, to December 31, 2016, as a comparator in overall survival (OS) analyses. Data analysis was conducted from February 24, 2020, to January 16, 2021. EXPOSURES En bloc resection, incomplete resection, photon radiotherapy, proton radiotherapy, and CIRT. MAIN OUTCOMES AND MEASURES Overall survival was estimated using the Kaplan-Meier method and compared using the Cox proportional hazards model. Peripheral motor nerve toxic effects were scored using Common Terminology Criteria for Adverse Events, version 4.03. RESULTS A total of 911 patients were included in the study (NCDB: n = 669; median age, 64 [IQR, 52-74] years; 410 [61.3%] men; CIRT: n = 188; median age, 66 [IQR, 58-71] years; 128 [68.1%] men; en bloc surgical resection: n = 54; median age, 53.5 [IQR 49-64] years, 36 [66.7%] men). Comparison of the propensity score-matched institutional en bloc resection and CIRT cohorts revealed no statistically significant difference in OS (CIRT: median OS, 68.1 [95% CI, 44.0-102.6] months; en bloc resection: median OS, 58.6 [95% CI, 25.6-123.5] months; P = .57; hazard ratio, 0.71 [95% CI, 0.25-2.06]; P = .53). The CIRT cohort experienced lower rates of peripheral motor neuropathy (odds ratio, 0.13 [95% CI, 0.04-0.40]; P < .001). On comparison of the propensity score-matched NCDB cohorts with the CIRT cohort, significantly higher OS was found for CIRT compared with margin-positive surgery without adjuvant radiotherapy (CIRT: median OS, 64.7 [95% CI, 57.8-69.7] months; margin-positive surgery without adjuvant radiotherapy: median OS, 60.6 [95% CI, 44.2-69.7] months, P = .03) and primary radiotherapy alone (CIRT: median OS, 64.9 [95% CI 57.0-70.5] months; primary radiotherapy alone: 31.8 [95% CI, 27.9-40.6] months; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that CIRT can be used as treatment for older patients with high performance status and sacral chordoma in whom surgery is not preferred. CIRT might provide additional benefit for patients who undergo margin-positive resection or who are candidates for primary photon radiotherapy.
Collapse
Affiliation(s)
- Yagiz U Yolcu
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, Minnesota
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jad Zreik
- Central Michigan University College of Medicine, Mount Pleasant
| | - Waseem Wahood
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | | | - Mohamad Bydon
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, Minnesota
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Matthew T Houdek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Peter S Rose
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Ivy A Petersen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Safia K Ahmed
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Krishan Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Reiko Imai
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Inageku, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Inageku, Chiba, Japan
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Strauss SJ, Frezza AM, Abecassis N, Bajpai J, Bauer S, Biagini R, Bielack S, Blay JY, Bolle S, Bonvalot S, Boukovinas I, Bovee JVMG, Boye K, Brennan B, Brodowicz T, Buonadonna A, de Álava E, Dei Tos AP, Garcia Del Muro X, Dufresne A, Eriksson M, Fagioli F, Fedenko A, Ferraresi V, Ferrari A, Gaspar N, Gasperoni S, Gelderblom H, Gouin F, Grignani G, Gronchi A, Haas R, Hassan AB, Hecker-Nolting S, Hindi N, Hohenberger P, Joensuu H, Jones RL, Jungels C, Jutte P, Kager L, Kasper B, Kawai A, Kopeckova K, Krákorová DA, Le Cesne A, Le Grange F, Legius E, Leithner A, López Pousa A, Martin-Broto J, Merimsky O, Messiou C, Miah AB, Mir O, Montemurro M, Morland B, Morosi C, Palmerini E, Pantaleo MA, Piana R, Piperno-Neumann S, Reichardt P, Rutkowski P, Safwat AA, Sangalli C, Sbaraglia M, Scheipl S, Schöffski P, Sleijfer S, Strauss D, Sundby Hall K, Trama A, Unk M, van de Sande MAJ, van der Graaf WTA, van Houdt WJ, Frebourg T, Ladenstein R, Casali PG, Stacchiotti S. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2021; 32:1520-1536. [PMID: 34500044 DOI: 10.1016/j.annonc.2021.08.1995] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- S J Strauss
- Department of Oncology, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - A M Frezza
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - N Abecassis
- Instituto Portugues de Oncologia de Lisboa Francisco Gentil, EPE, Lisbon, Portugal
| | - J Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - S Bauer
- Department of Medical Oncology, Interdisciplinary Sarcoma Center, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - R Biagini
- Department of Oncological Orthopedics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - S Bielack
- Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - J Y Blay
- Centre Leon Berard and UCBL1, Lyon, France
| | - S Bolle
- Radiation Oncology Department, Gustave Roussy, Villejuif, France
| | - S Bonvalot
- Department of Surgery, Institut Curie, Paris, France
| | | | - J V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - K Boye
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - B Brennan
- Paediatric Oncology, Royal Manchester Children's Hospital, Manchester, UK
| | - T Brodowicz
- Vienna General Hospital (AKH), Medizinische Universität Wien, Vienna, Austria
| | - A Buonadonna
- Centro di Riferimento Oncologico di Aviano, Aviano, Italy
| | - E de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, Seville, Spain; Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - A P Dei Tos
- Department of Pathology, Azienda Ospedale Università Padova, Padua, Italy
| | | | - A Dufresne
- Département d'Oncologie Médicale Centre Leon Berard, Lyon, France
| | - M Eriksson
- Skane University Hospital-Lund, Lund, Sweden
| | - F Fagioli
- Paediatric Onco-Haematology Department, Regina Margherita Children's Hospital, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - A Fedenko
- P.A. Herzen Cancer Research Institute, Moscow, Russian Federation
| | - V Ferraresi
- Sarcomas and Rare Tumors Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - A Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - N Gaspar
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France
| | - S Gasperoni
- Department of Oncology and Robotic Surgery, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - F Gouin
- Centre Leon-Berard Lyon, Lyon, France
| | - G Grignani
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - A Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori and University of Milan, Milan, Italy
| | - R Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Radiotherapy, Leiden University Medical Centre, Leiden, The Netherlands
| | - A B Hassan
- Oxford University Hospitals NHS Foundation Trust and University of Oxford, Oxford, UK
| | | | - N Hindi
- Department of Medical Oncology, Fundación Jimenez Diaz, University Hospital, Advanced Therapies in Sarcoma Lab, Madrid, Spain
| | - P Hohenberger
- Mannheim University Medical Center, Mannheim, Germany
| | - H Joensuu
- Helsinki University Hospital (HUH) and University of Helsinki, Helsinki, Finland
| | - R L Jones
- Sarcoma Unit, Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - C Jungels
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - P Jutte
- University Medical Center Groningen, Groningen, The Netherlands
| | - L Kager
- St. Anna Children's Hospital and Children's Cancer Research Institute (CCRI), Department of Pediatrics and Medical University Vienna Children's Cancer Research Institute, Vienna, Austria
| | - B Kasper
- Mannheim University Medical Center, Mannheim, Germany
| | - A Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - K Kopeckova
- University Hospital Motol, Prague, Czech Republic
| | - D A Krákorová
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - A Le Cesne
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - F Le Grange
- Department of Oncology, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - E Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - A Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - A López Pousa
- Medical Oncology Department, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - J Martin-Broto
- Department of Medical Oncology, Fundación Jimenez Diaz, University Hospital, Advanced Therapies in Sarcoma Lab, Madrid, Spain
| | - O Merimsky
- Tel Aviv Sourasky Medical Center (Ichilov), Tel Aviv, Israel
| | - C Messiou
- Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - A B Miah
- Department of Oncology, Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - O Mir
- Department of Ambulatory Cancer Care, Gustave Roussy, Villejuif, France
| | - M Montemurro
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - B Morland
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - C Morosi
- Department of Radiology, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - E Palmerini
- Department of Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M A Pantaleo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria, di Bologna, Bologna, Italy
| | - R Piana
- Azienda Ospedaliero, Universitaria Cita della Salute e della Scienza di Torino, Turin, Italy
| | | | - P Reichardt
- Helios Klinikum Berlin Buch, Berlin, Germany
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - A A Safwat
- Aarhus University Hospital, Aarhus, Denmark
| | - C Sangalli
- Department of Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Sbaraglia
- Department of Pathology, Azienda Ospedale Università Padova, Padua, Italy
| | - S Scheipl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - P Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - S Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - D Strauss
- Department of Surgery, Royal Marsden Hospital, London, UK
| | - K Sundby Hall
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - A Trama
- Department of Research, Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Unk
- Institute of Oncology of Ljubljana, Ljubljana, Slovenia
| | - M A J van de Sande
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - W T A van der Graaf
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - W J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T Frebourg
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - R Ladenstein
- University Medical Center Groningen, Groningen, The Netherlands
| | - P G Casali
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Department of Oncology and Hemato-oncology University of Milan, Milan, Italy
| | - S Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
25
|
Single-institution clinical experience using robust intensity modulated proton therapy in chordoma and chondrosarcoma of the mobile spine and sacrum: Feasibility and need for plan adaptation. Radiother Oncol 2021; 166:58-64. [PMID: 34843840 DOI: 10.1016/j.radonc.2021.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/11/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Due to its specific physical characteristics, proton irradiation is especially suited for irradiation of chordomas and chondrosarcoma in the axial skeleton. Robust plan optimization renders the proton beam therapy more predictable upon individual setup errors. Reported experience with the planning and delivery of robustly optimized plans in chordoma and chondrosarcoma of the mobile spine and sacrum, is limited. In this study, we report on the clinical use of robustly optimized, intensity modulated proton beam therapy in these patients. METHODS We retrospectively reviewed patient, treatment and acute toxicity data of all patients with chordoma and chondrosarcoma of the mobile spine and sacrum, treated between 1 April 2019 and 1 April 2020 at our institute. Anatomy changes during treatment were evaluated by weekly cone-beam CTs (CBCT), supplemented by scheduled control-CTs or ad-hoc control-CTs. Acute toxicity was scored weekly during treatment and at 3 months after therapy according to CTCAE 4.0. RESULTS 17 chordoma and 3 chondrosarcoma patients were included. Coverage of the high dose clinical target volume was 99.8% (range 56.1-100%) in the nominal and 80.9% (range 14.3-99.6%) in the voxel-wise minimum dose distribution. Treatment plan adaptation was needed in 5 out of 22 (22.7%) plans. Reasons for plan adaptation were either reduced tumor coverage or increased dose to the OAR. CONCLUSIONS Robustly optimized intensity modulated proton beam therapy for chordoma and chondrosarcoma of the mobile spine is feasible. Plan adaptations due to anatomical changes were required in approximately 23 percent of treatment courses.
Collapse
|
26
|
Sharma R, Mukherjee D, Arnav A, Shankaran R, Agarwal VK. Surgical and Functional Outcomes of En Bloc Resection of Sacral Chordoma: a Retrospective Analysis. Indian J Surg Oncol 2021; 12:750-758. [DOI: 10.1007/s13193-021-01471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
|
27
|
Zhou Y, Li Y, Kubota Y, Sakai M, Ohno T. Robust Angle Selection in Particle Therapy. Front Oncol 2021; 11:715025. [PMID: 34621672 PMCID: PMC8490826 DOI: 10.3389/fonc.2021.715025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
The popularity of particle radiotherapy has grown exponentially over recent years owing to the marked advantage of the depth–dose curve and its unique biological property. However, particle therapy is sensitive to changes in anatomical structure, and the dose distribution may deteriorate. In particle therapy, robust beam angle selection plays a crucial role in mitigating inter- and intrafractional variation, including daily patient setup uncertainties and tumor motion. With the development of a rotating gantry, angle optimization has gained increasing attention. Currently, several studies use the variation in the water equivalent thickness to quantify anatomical changes during treatment. This method seems helpful in determining better beam angles and improving the robustness of planning. Therefore, this review will discuss and summarize the robust beam angles at different tumor sites in particle radiotherapy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| |
Collapse
|
28
|
Molinelli S, Magro G, Mairani A, Allajbej A, Mirandola A, Chalaszczyk A, Imparato S, Ciocca M, Fiore MR, Orlandi E. How LEM-based RBE and dose-averaged LET affected clinical outcomes of sacral chordoma patients treated with carbon ion radiotherapy. Radiother Oncol 2021; 163:209-214. [PMID: 34506829 DOI: 10.1016/j.radonc.2021.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE/OBJECTIVE To understand the role of relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LETd) distributions in the treatment of sacral chordoma (SC) patients with carbon ion radiotherapy (CIRT). MATERIAL/METHODS Clinical plans of 50 SC patients consecutively treated before August 2018 with a local effect model-based optimization were recalculated with the modified microdosimetric kinetic RBE model (mMKM). Twenty-six patients were classified as progressive disease and the relapse volume was contoured on the corresponding follow-up diagnostic sequence. The remaining 24 patients populated the control group. Target prescription dose (DRBE|50%), near-to-minimum- (DRBE|95%) and near-to-maximum- (DRBE|2%) doses were compared between the two cohorts in both RBE systems. LETd distribution was evaluated for in-field relapsed cases with respect to the control group. RESULTS Target DMKM|50% and DMKM|95% were respectively 10% and 18% lower than what we aimed at. Dosimetric evaluators showed no significant difference, in neither of the RBE frameworks, between relapsed and control sets. Half of the relapse volumes were located in a well-covered high dose region. On average, over these cases, median target LETd was significantly lower than the control cohort mean value (27 vs 30 keV/μm). Most notably, the volume receiving dose from high-LET particles (>50 keV/μm) lay substantially below recently reported data in the literature. CONCLUSION A combined multi model RBE- and LET-based optimization could play a key role in the enhancement of the therapeutic ratio of CIRT for large radioresistant tumors such as sacral chordomas.
Collapse
|
29
|
Kim KS, Wu HG. Who Will Benefit from Charged-Particle Therapy? Cancer Res Treat 2021; 53:621-634. [PMID: 34176253 PMCID: PMC8291184 DOI: 10.4143/crt.2021.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Charged-particle therapy (CPT) such as proton beam therapy (PBT) and carbon-ion radiotherapy (CIRT) exhibit substantial physical and biological advantages compared to conventional photon radiotherapy. As it can reduce the amount of radiation irradiated in the normal organ, CPT has been mainly applied to pediatric cancer and radioresistent tumors in the eloquent area. Although there is a possibility of greater benefits, high set-up cost and dearth of high level of clinical evidence hinder wide applications of CPT. This review aims to present recent clinical results of PBT and CIRT in selected diseases focusing on possible indications of CPT. We also discussed how clinical studies are conducted to increase the number of patients who can benefit from CPT despite its high cost.
Collapse
Affiliation(s)
- Kyung Su Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul,
Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul,
Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
30
|
Zhao J, Wang W, Shahnaz K, Wu X, Mao J, Li P, Zhang Q. Dosimetric impact of using a commercial metal artifact reduction tool in carbon ion therapy in patients with hip prostheses. J Appl Clin Med Phys 2021; 22:224-234. [PMID: 34159721 PMCID: PMC8292709 DOI: 10.1002/acm2.13314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
The study investigated the dosimetric impact of an iterative metal artifact reduction (iMAR) tool on carbon ion therapy for pelvic cancer patients with hip prostheses. An anthropomorphic pelvic phantom with unilateral and bilateral hip prostheses was used to simulate pelvic cancer patients with metal implants. The raw data obtained from phantom CT scanning were reconstructed with a regular filtered back projection (FBP) algorithm and then corrected with iMAR. The phantom without hip prosthesis was also scanned and used as a reference ground truth (GT). The CT images of three prostate and four sarcoma patients with unilateral hip prosthesis were also reconstructed by FBP and iMAR algorithm and compared. iMAR algorithm reduced the metal artifacts and the maximum WEPL deviation in phantom images from −19.1 to −0.4 mm. However, the CT numbers cannot be retrieved using iMAR for periprosthetic bone materials, eventually leading to a WEPL deviation of −3.6 mm. The use of iMAR improved large discrepancies in DVHs of PTVs and the gamma index between FBP and GT images but increased the difference in the bladder DVH for bilateral hip prostheses due to newly introduced artifacts. In the patient study, the discrepancies of dose distribution were small on iMAR images when compared with FBP images for most cases, except for two sarcoma cases where gamma analysis failed and dose coverage in 98% of the PTV maximally reduced due to large volume of dark metal artifacts. iMAR reduced the metal artifacts and improved dose distribution accuracy in carbon ion radiotherapy for pelvic cancer. However, the residual and newly introduced artifacts, especially with bilateral hip prostheses, may potentially increase WEPL inaccuracy and dose uncertainty. The use of iMAR has the potential to improve carbon ion treatment planning of pelvic cancer but should be used with caution.
Collapse
Affiliation(s)
- Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Kambiz Shahnaz
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianwei Wu
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingfang Mao
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Qing Zhang
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
31
|
Pennington Z, Ehresman J, Elsamadicy AA, Shin JH, Goodwin CR, Schwab JH, Sciubba DM. Systematic review of charged-particle therapy for chordomas and sarcomas of the mobile spine and sacrum. Neurosurg Focus 2021; 50:E17. [PMID: 33932924 DOI: 10.3171/2021.2.focus201059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Long-term local control in patients with primary chordoma and sarcoma of the spine and sacrum is increasingly reliant upon en bloc resection with negative margins. At many institutions, adjuvant radiation is recommended; definitive radiation is also recommended for the treatment of unresectable tumors. Because of the high off-target radiation toxicities associated with conventional radiotherapy, there has been growing interest in the use of proton and heavy-ion therapies. The aim of this study was to systematically review the literature regarding these therapies. METHODS The PubMed, OVID, Embase, and Web of Science databases were queried for articles describing the use of proton, combined proton/photon, or heavy-ion therapies for adjuvant or definitive radiotherapy in patients with primary sarcoma or chordoma of the mobile spine and sacrum. A qualitative synthesis of the results was performed, focusing on overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and disease-specific survival (DSS); local control; and postradiation toxicities. RESULTS Of 595 unique articles, 64 underwent full-text screening and 38 were included in the final synthesis. All studies were level III or IV evidence with a high risk of bias; there was also significant overlap in the reported populations, with six centers accounting for roughly three-fourths of all reports. Five-year therapy outcomes were as follows: proton-only therapies, OS 67%-82%, PFS 31%-57%, and DFS 52%-62%; metastases occurred in 17%-18% and acute toxicities in 3%-100% of cases; combined proton/photon therapy, local control 62%-85%, OS 78%-87%, PFS 90%, and DFS 61%-72%; metastases occurred in 12%-14% and acute toxicities in 84%-100% of cases; and carbon ion therapy, local control 53%-100%, OS 52%-86%, PFS (only reported for 3 years) 48%-76%, and DFS 50%-53%; metastases occurred in 2%-39% and acute toxicities in 26%-48%. There were no studies directly comparing outcomes between photon and charged-particle therapies or comparing outcomes between radiation and surgical groups. CONCLUSIONS The current evidence for charged-particle therapies in the management of sarcomas of the spine and sacrum is limited. Preliminary evidence suggests that with these therapies local control and OS at 5 years are comparable among various charged-particle options and may be similar between those treated with definitive charged-particle therapy and historical surgical cohorts. Further research directly comparing charged-particle and photon-based therapies is necessary.
Collapse
Affiliation(s)
- Zach Pennington
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aladine A Elsamadicy
- 2Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - John H Shin
- 3Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - C Rory Goodwin
- 4Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina; and
| | - Joseph H Schwab
- 5Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Sciubba
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
In response to Liu et al. Radiother Oncol 2020; 155:e18-e19. [PMID: 33227354 DOI: 10.1016/j.radonc.2020.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022]
|
33
|
Liu FS, Liu FB, Zhang QS, Wang XB, Zou MX, Li J. Letter to the editor of radiotherapy and oncology regarding the article "Carbon ion radiotherapy for sacral chordoma: A retrospective nationwide multicentre study in Japan" by Demizu et al. Radiother Oncol 2020; 155:e16-e17. [PMID: 33227355 DOI: 10.1016/j.radonc.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian-Shi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|