1
|
Pinto IS, Cordeiro RA, Oliveira ASR, Serra AC, Coelho JFJ, Faneca H. Polymer-Based DNA Delivery Nanoplatforms for Chimeric Antigen Receptor T Cells Engineering. Biomacromolecules 2025. [PMID: 40421765 DOI: 10.1021/acs.biomac.5c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy represents a groundbreaking advancement in cancer treatment, its widespread application is hindered by high costs and complex protocols associated with the current gene delivery systems used for CAR T cell production. This study introduces an innovative, cost-effective, nonviral polymeric nanosystem for ex vivo delivery of a leukemia-targeting anti-CD19 CAR gene (used as a model) to T cells. Using cationic polymers, specifically poly[(2-dimethylamino)ethyl methacrylate] (PDMAEMA) and poly(β-amino ester) (PβAE), we developed various formulations through straightforward processes. Notably, star-shaped PDMAEMA/PβAE-based polyplexes exhibit favorable physicochemical properties as gene delivery platforms and demonstrate remarkable efficiency in CAR gene delivery with minimal toxicity due to enhanced internalization and effective endosomal escape. Our best nanosystem formulation successfully generated CAR T cells that effectively target and induce leukemia cell death. Overall, this approach simplifies manufacturing and reduces costs of CAR T cell engineering, paving the way for more accessible and effective cell therapies against cancer.
Collapse
Affiliation(s)
- Inês S Pinto
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra 3004-504, Portugal
- CNC-UC─Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão─Polo II, Coimbra 3030-789, Portugal
| | - Rosemeyre A Cordeiro
- CNC-UC─Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão─Polo II, Coimbra 3030-789, Portugal
| | - Andreia S R Oliveira
- Department of Chemical Engineering, University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Rua Sílvio Lima-Polo II, Coimbra 3030-790, Portugal
| | - Arménio C Serra
- Department of Chemical Engineering, University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Rua Sílvio Lima-Polo II, Coimbra 3030-790, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Rua Sílvio Lima-Polo II, Coimbra 3030-790, Portugal
- IPN─Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Coimbra 3030-199, Portugal
| | - Henrique Faneca
- CNC-UC─Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão─Polo II, Coimbra 3030-789, Portugal
| |
Collapse
|
2
|
Mehta MJ, Kim HJ, Lim SB, Naito M, Miyata K. Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery. Macromol Biosci 2024; 24:e2300366. [PMID: 38226723 DOI: 10.1002/mabi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
Collapse
Affiliation(s)
- Mohit J Mehta
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Sung Been Lim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Stawski D. Poly(N,N-dimethylaminoethyl methacrylate) as a bioactive polyelectrolyte-production and properties. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230188. [PMID: 37736533 PMCID: PMC10509595 DOI: 10.1098/rsos.230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Poly(N,N-dimethylaminoethyl methacrylate) is a polyelectrolyte with many important chemical and physical properties and, above all, offers a wide range of interesting biological properties. Currently, research on this polymer is ongoing in several centres around the world. The process of polymerizing the monomer is not easy, as there are difficulties in obtaining a product with repeatable properties. This work collected and described most of the currently known and used polymerization methods of N,N-dimethylaminoethyl methacrylate, taking into account the type of method, the solvent used, the initiator, as well as the process temperature and the average molecular weight of the polymer obtained. The most important properties of the discussed polymer, such as solubility, bioactivity, hydrophilicity, cytotoxicity, conductivity, and thermal and hydrodynamic parameters, are discussed on the basis of the available scientific literature. This work aims, among other things, to increase the possibility of using poly(N,N-dimethylaminoethyl methacrylate) as a material in advanced practical applications. Therefore, various methods of applied use of the polymer in question have also been described so far. Copolymers of the N,N-dimethylaminoethyl methacrylate are now too large a collection to fit in a single publication. Therefore, only the most interesting examples were cited in this work.
Collapse
Affiliation(s)
- Dawid Stawski
- Institute of Materials Science of Textiles and Polymer Composites, Lodz University of Technology, Żeromskiego 116 str, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Correia JS, Mirón-Barroso S, Hutchings C, Ottaviani S, Somuncuoğlu B, Castellano L, Porter AE, Krell J, Georgiou TK. How does the polymer architecture and position of cationic charges affect cell viability? Polym Chem 2023; 14:303-317. [PMID: 36760606 PMCID: PMC9846193 DOI: 10.1039/d2py01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Silvia Ottaviani
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent UniversityNottingham NG11 8NSUK,Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK
| | | | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK,School of Life Sciences, John Maynard Smith Building, University of SussexBrightonUK
| | | | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College LondonUK
| | | |
Collapse
|
5
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
6
|
Constantinou AP, Nele V, Doutch JJ, S. Correia J, Moiseev RV, Cihova M, Gaboriau DCA, Krell J, Khutoryanskiy VV, Stevens MM, Georgiou TK. Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127. Macromolecules 2022; 55:1783-1799. [PMID: 35431333 PMCID: PMC9007541 DOI: 10.1021/acs.macromol.1c02123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Indexed: 01/15/2023]
Abstract
![]()
Thermoresponsive polymers with the
appropriate structure form physical
networks upon changes in temperature, and they find utility in formulation
science, tissue engineering, and drug delivery. Here, we report a
cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w);
OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl
ether methacrylate (MM = 300 g mol–1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate,
respectively. This polymer is investigated in depth and is compared
to its commercially available counterpart, Poloxamer P407 (Pluronic
F127). To elucidate the differences in their macroscale gelling behavior,
we investigate their nanoscale self-assembly by means of small-angle
neutron scattering and simultaneously recording their rheological
properties. Two different gelation mechanisms are revealed. The triblock
copolymer inherently forms elongated micelles, whose length increases
by temperature to form worm-like micelles, thus promoting gelation.
In contrast, Pluronic F127’s micellization is temperature-driven,
and its gelation is attributed to the close packing of the micelles.
The gel structure is analyzed through cryogenic scanning and transmission
electron microscopy. Ex vivo gelation study upon intracameral injections
demonstrates excellent potential for its application to improve drug
residence in the eye.
Collapse
Affiliation(s)
| | - Valeria Nele
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, UK
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman V. Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Martina Cihova
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
7
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Zhang Z, Wen Y, Song X, Zhu J, Li J. Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host-Guest Pseudo-Block Copolymers. ACS APPLIED BIO MATERIALS 2021; 4:5057-5070. [PMID: 35007054 DOI: 10.1021/acsabm.1c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cationic supramolecular system based on host-guest pseudoblock copolymers was developed for nonviral DNA delivery. In this system, the macromolecular host was a cationic star-shaped polymer composed of a β-cyclodextrin (β-CD) core and multiple poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) chains grafted on the core, while the macromolecular guest was a linear adamantyl-ended poly(ethylene glycol) (mPEG-Ad). Pseudoblock copolymers were self-assembled from the polymeric host-guest pairs (typically, 1:1 molar ratio) in aqueous media through the inclusion of an adamantyl group at the end of guest polymer into the β-CD cavity of host polymers. Through such an approach, the resultant supramolecular system was integrated with not only a superior DNA condensing ability due to the host polymer but also an outstanding polyplex-stabilizing ability as well as biocompatibility due to the guest polymer. The cationic star-shaped host polymers alone were capable of condensing plasmid DNA efficiently into nanoparticles (70-100 nm) with positive surface charge. They showed obviously lower cytotoxicity than PEI 25K (commercial branched polyethylenimine with a molecular weight around 25 kDa) in cell lines of L929, MB231, and Hela under high dose. In serum-free or serum-containing culture conditions, these host polymers exhibited either higher or lower in vitro DNA transfection efficiency as compared with PEI 25K in the three cell lines under study, which was dependent on the N/P ratios and PDMAEMA arm length. Upon incorporation of the PEG block through host-guest complexation with mPEG-Ad (i.e., supramolecular PEGylation), the resulting host-guest supramolecular systems exhibited even lower cytotoxicity than the host polymers alone. The polyplexes between plasmid DNA (pDNA) and the host-guest systems showed significantly improved stability in BSA-PBS buffer solution (pH 7.4) and enhanced in vitro DNA transfection efficiency in the cases of higher N/P ratios or longer PDMAEMA arms in all tested cell lines under both serum-free and serum-containing culture conditions, as compared with the corresponding polyplexes without supramolecular PEGylation. Further, through forming pseudoblock copolymer, the DNA transfection ability of the supramolecular system can be easily modulated and optimized either by changing the ratio between the guest and host or by using different hosts with varied PDMAEMA arm lengths.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
9
|
Richter F, Mapfumo P, Martin L, Solomun JI, Hausig F, Frietsch JJ, Ernst T, Hoeppener S, Brendel JC, Traeger A. Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. J Nanobiotechnology 2021; 19:70. [PMID: 33676500 PMCID: PMC7936509 DOI: 10.1186/s12951-021-00801-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Although there has been substantial progress in the research field of gene delivery, there are some challenges remaining, e.g. there are still cell types such as primary cells and suspension cells (immune cells) known to be difficult to transfect. Cationic polymers have gained increasing attention due to their ability to bind, condense and mask genetic material, being amenable to scale up and highly variable in their composition. In addition, they can be combined with further monomers exhibiting desired biological and chemical properties, such as antioxidative, pH- and redox-responsive or biocompatible features. By introduction of hydrophobic monomers, in particular as block copolymers, cationic micelles can be formed possessing an improved chance of transfection in otherwise challenging cells. In this study, the antioxidant biomolecule lipoic acid, which can also be used as crosslinker, was incorporated into the hydrophobic block of a diblock copolymer, poly{[2-(dimethylamino)ethyl methacrylate]101-b-[n-(butyl methacrylate)124-co-(lipoic acid methacrylate)22]} (P(DMAEMA101-b-[nBMA124-co-LAMA22])), synthesized by RAFT polymerization and assembled into micelles (LAMA-mic). These micelles were investigated regarding their pDNA binding, cytotoxicity mechanisms and transfection efficiency in K-562 and HEK293T cells, the former representing a difficult to transfect, suspension leukemia cell line. The LAMA-mic exhibited low cytotoxicity at applied concentrations but demonstrated superior transfection efficiency in HEK293T and especially K-562 cells. In-depth studies on the transfection mechanism revealed that transfection efficiency in K-562 cells does not depend on the specific oncogenic fusion gene BCR-ABL alone. It is independent of the cellular uptake of polymer-pDNA complexes but correlates with the endosomal escape of the LAMA-mic. A comparison of the transfection efficiency of the LAMA-mic with structurally comparable micelles without lipoic acid showed that lipoic acid is not solely responsible for the superior transfection efficiency of the LAMA-mic. More likely, a synergistic effect of the antioxidative lipoic acid and the micellar architecture was identified. Therefore, the incorporation of lipoic acid into the core of hydrophobic-cationic micelles represents a promising tailor-made transfer strategy, which can potentially be beneficial for other difficult to transfect cell types.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jochen J Frietsch
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
10
|
Finiuk N, Romanyuk N, Mitina N, Lobachevska O, Zaichenko A, Terek O, Stoika R. Evaluation of Phytotoxicity and Mutagenicity of Novel DMAEMA-Containing Gene Carriers. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Guler Gokce Z, Birol SZ, Mitina N, Harhay K, Finiuk N, Glasunova V, Stoika R, Ercelen S, Zaichenko A. Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zeliha Guler Gokce
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Semra Zuhal Birol
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Nataliya Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Khrystyna Harhay
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Valentina Glasunova
- Department of Physical Materials, Donetsk O. O. Galkin Institute of Physics and Engineering, National Academy of Sciences of Ukraine, Donetsk, Ukraine
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Sebnem Ercelen
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| |
Collapse
|
12
|
Fus-Kujawa A, Teper P, Botor M, Klarzyńska K, Sieroń Ł, Verbelen B, Smet M, Sieroń AL, Mendrek B, Kowalczuk A. Functional star polymers as reagents for efficient nucleic acids delivery into HT-1080 cells. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1716227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Klarzyńska
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bram Verbelen
- Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Mario Smet
- Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
13
|
Gibson TJ, Smyth P, Semsarilar M, McCann AP, McDaid WJ, Johnston MC, Scott CJ, Themistou E. Star polymers with acid-labile diacetal-based cores synthesized by aqueous RAFT polymerization for intracellular DNA delivery. Polym Chem 2020. [DOI: 10.1039/c9py00573k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Facile low temperature aqueous heterogeneous RAFT polymerization for preparation of novel star polymers with acid-labile diacetal-based cores for DNA delivery.
Collapse
Affiliation(s)
- Thomas J. Gibson
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Peter Smyth
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Mona Semsarilar
- Institut Européen des Membranes
- IEM
- UMR 5635
- Université de Montpellier
- ENSCM
| | - Aidan P. McCann
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - William J. McDaid
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Michael C. Johnston
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Christopher J. Scott
- Centre for Cancer Research & Cell Biology
- Queen's University Belfast
- Belfast BT9 7AE
- UK
| | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|
14
|
Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release 2019; 316:263-291. [PMID: 31689462 DOI: 10.1016/j.jconrel.2019.10.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Within the field of gene therapy, there is a considerable need for the development of non-viral vectors that are able to compete with the efficiency obtained by viral vectors, while maintaining a good toxicity profile and not inducing an immune response within the body. While there have been many reports of possible polymeric delivery systems, few of these systems have been successful in the clinical setting due to toxicity, systemic instability or gene regulation inefficiency, predominantly due to poor endosomal escape and cytoplasmic release. The objective of this review is to provide an overview of previously published polymeric non-coding RNA and, to a lesser degree, oligo-DNA delivery systems with emphasis on their positive and negative attributes, in order to provide insight in the numerous hurdles that still limit the success of gene therapy.
Collapse
Affiliation(s)
- Anna Kargaard
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa; University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Joost P G Sluijter
- University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; Utrecht University, the Netherlands
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
15
|
Biswas Y, Banerjee P, Mandal TK. From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure-Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
16
|
Mogha NK, Yadav N, Sindhu A, Venkatesu P. Does poly(ionic liquid) modulate the non-covalent interactions of chicken egg white lysozyme? Elucidation of biomolecular interactions between biomolecules and macromolecular solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj04078a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stabilizing and destabilizing effects of different poly(ionic liquid) (PIL) concentrations on chicken egg white lysozyme as a reason for bimolecular interactions.
Collapse
Affiliation(s)
| | - Niketa Yadav
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Anamika Sindhu
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | | |
Collapse
|
17
|
Mendrek B, Fus A, Klarzyńska K, Sieroń AL, Smet M, Kowalczuk A, Dworak A. Synthesis, Characterization and Cytotoxicity of Novel Thermoresponsive Star Copolymers of N, N'-Dimethylaminoethyl Methacrylate and Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate. Polymers (Basel) 2018; 10:E1255. [PMID: 30961179 PMCID: PMC6401879 DOI: 10.3390/polym10111255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Novel, nontoxic star copolymers of N,N-dimethylaminoethyl methacrylate (DMAEMA) and hydroxyl-bearing oligo(ethylene glycol) methacrylate (OEGMA-OH) were synthesized via atom transfer radical polymerization (ATRP) using hyperbranched poly(arylene oxindole) as the macroinitiator. Stars with molar masses from 100,000 g/mol to 257,000 g/mol and with various amounts of OEGMA-OH in the arms were prepared. As these polymers can find applications, e.g., as carriers of nucleic acids, drugs or antibacterial or antifouling agents, in this work, much attention has been devoted to exploring their solution behavior and their stimuli-responsive properties. The behavior of the stars was studied in aqueous solutions under various pH and temperature conditions, as well as in PBS buffer, in Dulbecco's modified Eagle's medium (DMEM) and in organic solvents for comparison. The results indicated that increasing the content of hydrophilic OEGMA-OH units in the arms up to 10 mol% increased the cloud point temperature. For the stars with an OEGMA-OH content of 10 mol%, the thermo- and pH-responsivity was switched off. Since cytotoxicity experiments have shown that the obtained stars are less toxic than homopolymer DMAEMA stars, the presented studies confirmed that the prepared polymers are great candidates for the design of various nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Agnieszka Fus
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Katarzyna Klarzyńska
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Mario Smet
- Department of Chemistry, University of Leuven, Celestijnenlaan, 200F, B-3001 Leuven (Heverlee), Belgium.
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
18
|
Bitoque DB, Rosa da Costa AM, Silva GA. Insights on the intracellular trafficking of PDMAEMA gene therapy vectors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:277-288. [PMID: 30274059 DOI: 10.1016/j.msec.2018.07.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 11/29/2022]
Abstract
It is known that an efficient gene therapy vector must overcome several steps to be able to express the gene of interest: (I) enter the cell by crossing the cell membrane; (II) escape the endo-lysosomal degradation pathway; (III) release the genetic material; (IV) traffic through the cytoplasm and enter the nucleus; and last (V), enable gene expression to synthetize the protein of interest. In recent years, we and others have demonstrated the potential of poly(2‑(N,N'‑dimethylamino)ethylmethacrylate) (PDMAEMA) as a gene therapy vehicle. Further optimization of gene transfer efficiency requires the understanding of the intracellular pathway of PDMAEMA. Therefore the goal of this study was to determine the cellular entry and intracellular trafficking mechanisms of our PDMAEMA vectors and determine the gene transfer bottleneck. For this, we have produced rhodamine-labeled PDMAEMA polyplexes that were used to transfect retinal cells and the cellular localization determined by co-localization with cellular markers. Our vectors quickly and efficiently cross the cell membrane, and escape the endo-lysosomal system by 24 h. We have observed the PDMAEMA vectors to concentrate around the nucleus, and the DNA load to be released in the first 24 h after transfection. These results allow us to conclude that although the endo-lysosomal system is an important obstacle, PDMAEMA gene vectors can overcome it. The nuclear membrane, however, constitutes the bottleneck to PDMAEMA gene transfer ability.
Collapse
Affiliation(s)
- Diogo B Bitoque
- ProRegeM PhD Program, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; Algarve Chemistry Research Centre (CIQA), University of Algarve, 8005-139 Faro, Portugal; CEDOC - Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Ana M Rosa da Costa
- Department of Chemistry and Pharmacy, University of Algarve, Faro, Portugal; Algarve Chemistry Research Centre (CIQA), University of Algarve, 8005-139 Faro, Portugal
| | - Gabriela A Silva
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
19
|
Nehache S, Semsarilar M, Deratani A, Quemener D. Negatively Charged Porous Thin Film from ABA Triblock Copolymer Assembly. Polymers (Basel) 2018; 10:E733. [PMID: 30960658 PMCID: PMC6403756 DOI: 10.3390/polym10070733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
The preparation of well-arranged nano-porous thin films from an ABA triblock copolymer of polystyrene-block-poly(sodium 4-styrenesulfonate)-block-polystyrene (PS-PNaSS-PS) is reported. This copolymer was self-assembled in a N,N-dimethylformamide (DMF)/water mixture and the resulting micellar solution was used to prepare thin films via the compact packing of the flower-like micelles using spin coating method. The films were characterized by several microscopy techniques such as TEM, AFM, and SEM. Permeation test was performed to highlight the interconnected porous nature of the polymeric network obtained. Under applied water pressure, the micellar morphology was altered and a partial fusion of the micelles was observed that resulted in a change in the water permeability. Such hydrophilic nanoporous thin films with negatively charged interface could find applications in membrane filtration.
Collapse
Affiliation(s)
- Sabrina Nehache
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| | - Mona Semsarilar
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| | - André Deratani
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| | - Damien Quemener
- Institut Européen des Membranes-IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France.
| |
Collapse
|
20
|
Trützschler AK, Bus T, Reifarth M, Brendel JC, Hoeppener S, Traeger A, Schubert US. Beyond Gene Transfection with Methacrylate-Based Polyplexes-The Influence of the Amino Substitution Pattern. Bioconjug Chem 2018; 29:2181-2194. [PMID: 29712427 DOI: 10.1021/acs.bioconjchem.8b00074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methacrylate-based polymers represent promising nonviral gene delivery vectors, since they offer a large variety of polymer architectures and functionalities, which are beneficial for specific demands in gene delivery. In combination with controlled radical polymerization techniques, such as the reversible addition-fragmentation chain transfer polymerization, the synthesis of well-defined polymers is possible. In this study we prepared a library of defined linear polymers based on (2-aminoethyl)-methacrylate (AEMA), N-methyl-(2-aminoethyl)-methacrylate (MAEMA), and N,N-dimethyl-(2-aminoethyl)-methacrylate (DMAEMA) monomers, bearing pendant primary, secondary, and tertiary amino groups, and investigated the influence of the substitution pattern on their gene delivery capability. The polymers and the corresponding plasmid DNA complexes were investigated regarding their physicochemical characteristics, cytocompatibility, and transfection performance. The nonviral transfection by methacrylate-based polyplexes differs significantly from poly(ethylene imine)-based polyplexes, as a successful transfection is not affected by the buffer capacity. We observed that polyplexes containing a high content of primary amino groups (AEMA) offered the highest transfection efficiency, whereas polyplexes bearing tertiary amino groups (DMAEMA) exhibited the lowest transfection efficiency. Further insights into the uptake and release mechanisms could be identified by fluorescence and transmission electron microscopy, emphasizing the theory of membrane-pore formation for the time-efficient endosomal release of methacrylate-based vectors.
Collapse
Affiliation(s)
- Anne-Kristin Trützschler
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Tanja Bus
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Martin Reifarth
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Strasse 9 , 07745 Jena , Germany
| | - Johannes C Brendel
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Stephanie Hoeppener
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Anja Traeger
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Ulrich S Schubert
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
21
|
Góis JR, Reis F, Almeida AM, Pereira P, Sousa F, Serra AC, Coelho JFJ. Preparation of well-defined brush-like block copolymers for gene delivery applications under biorelevant reaction conditions. Colloids Surf B Biointerfaces 2018; 169:107-117. [PMID: 29753951 DOI: 10.1016/j.colsurfb.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023]
Abstract
Well-defined oligo(ethylene glycol) methyl ether methacrylate (OEOMA) based block copolymers with cationic segments composed by N,N-(dimethylamino) ethyl methacrylate (DMAEMA) and/or 2-(diisopropylamino) ethyl methacrylate (DPA) were developed under biorelevant reaction conditions. These brush-type copolymers were synthesized through supplemental activator and reducing agent (SARA) atom transfer radical polymerization (ATRP) using sodium dithionite as SARA agent. The synthesis was carried out using an eco-friendly solvent mixture, very low copper catalyst concentration, and mild reaction conditions. The structure of the block copolymers was characterized by size exclusion chromatography (SEC) analysis and 1H nuclear magnetic resonance (NMR) spectroscopy. The pH-dependent protonation of these copolymers enables the efficient complexation with plasmid DNA (pDNA), yielding polyplexes with sizes ranging from 200 up to 700 nm, depending on the molecular weight of the copolymers, composition and concentration used. Agarose gel electrophoresis confirmed the successful pDNA encapsulation. No cytotoxicity effect was observed, even for N/P ratios higher than 50, for human fibroblasts and cervical cancer cell lines cells. The in vitro cellular uptake experiments demonstrated that the pDNA-loaded block copolymers were efficiently delivered into nucleus of cervical cancer cells. The polymerization approach, the unique structure of the block copolymers and the efficient DNA encapsulation presented can open new avenues for development of efficient tailor made gene delivery systems under biorelevant conditions.
Collapse
Affiliation(s)
- Joana R Góis
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Fábio Reis
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Ana M Almeida
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Patrícia Pereira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| |
Collapse
|
22
|
Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918. [DOI: 10.1039/c8tb00967h] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endo-lysosomal escape strategies of cationic polymer-mediated gene delivery at a glance.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
23
|
Sahoo S, Bera S, Maiti S, Dhara D. Temperature- and Composition-Dependent DNA Condensation by Thermosensitive Block Copolymers. ACS OMEGA 2017; 2:7946-7958. [PMID: 30023568 PMCID: PMC6045361 DOI: 10.1021/acsomega.7b01331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/03/2017] [Indexed: 06/08/2023]
Abstract
Successful intracellular delivery of genes requires an efficient carrier, as genes by themselves cannot diffuse across cell membranes. Because of the toxicity and immunogenicity of viral vectors, nonviral vectors are gaining tremendous interest in research. In this work, we have investigated the temperature-dependent DNA condensation efficiency of various compositions of a thermosensitive block copolymer viz., poly(N-isopropylacrylamide)-b-poly(2-(diethylamino)ethyl methacrylate) (PNIPA-b-PDMAEMA). Three different copolymer compositions of varying molecular weights were successfully synthesized via the RAFT polymerization technique. Steady-state fluorescence and circular dichroism (CD) spectroscopies, dynamic light scattering (DLS) and zeta potential measurements, agarose gel electrophoresis, and atomic force microscopy techniques were utilized to study the interaction of the copolymers with DNA at temperatures above and below the critical aggregation temperature (CAT). All these experiments revealed that, above the CAT, there was formation of highly stable and tight polymer-DNA complexes (polyplexes). The size of polyplexes was dependent on the temperature up to a certain charge ratio, as determined by the DLS results. The results obtained from temperature-dependent fluorescence spectroscopy, CD, and gel electrophoresis indicated that the DNA molecules were shielded more from aqueous exposure above the CAT because of the formation of relatively more compact complexes. The polyplexes also exhibited changes in the particle morphology below and above the CAT, with particles generated above CAT being more spherical in morphology. These results suggested at the possibility of modulating the complex formation by temperature modification. The present biophysical studies would provide new physical insight into the design of novel gene carriers.
Collapse
Affiliation(s)
| | | | | | - Dibakar Dhara
- E-mail: , . Phone: +91-3222-282326. Fax: +91-3222-282252 (D.D.)
| |
Collapse
|
24
|
Milcovich G, Lettieri S, Antunes FE, Medronho B, Fonseca AC, Coelho JFJ, Marizza P, Perrone F, Farra R, Dapas B, Grassi G, Grassi M, Giordani S. Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
Affiliation(s)
- Gesmi Milcovich
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Stefania Lettieri
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Bruno Medronho
- Faculty of Sciences and Technology (MEDITBIO), University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Paolo Marizza
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, Kongens Lyngby 2800, Denmark
| | - Francesca Perrone
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Rossella Farra
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Silvia Giordani
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy; Chemistry Department, Università di Torino, Via Giuria 7, 10125 Turin, Italy.
| |
Collapse
|
25
|
Krishnamoorthy M, Li D, Sharili AS, Gulin-Sarfraz T, Rosenholm JM, Gautrot JE. Solution Conformation of Polymer Brushes Determines Their Interactions with DNA and Transfection Efficiency. Biomacromolecules 2017; 18:4121-4132. [DOI: 10.1021/acs.biomac.7b01175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Amir S. Sharili
- Barts
and the London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London, E1 2AT, United Kingdom
| | - Tina Gulin-Sarfraz
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland
| | | |
Collapse
|
26
|
Malcolm DW, Freeberg MAT, Wang Y, Sims KR, Awad HA, Benoit DSW. Diblock Copolymer Hydrophobicity Facilitates Efficient Gene Silencing and Cytocompatible Nanoparticle-Mediated siRNA Delivery to Musculoskeletal Cell Types. Biomacromolecules 2017; 18:3753-3765. [PMID: 28960967 DOI: 10.1021/acs.biomac.7b01349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
pH-responsive diblock copolymers provide tailorable nanoparticle (NP) architecture and chemistry critical for siRNA delivery. Here, diblock polymers varying in first (corona) and second (core) block molecular weight (Mn), corona/core ratio, and core hydrophobicity (%BMA) were synthesized to determine their effect on siRNA delivery in murine tenocytes (mTenocyte) and murine and human mesenchymal stem cells (mMSC and hMSCs, respectively). NP-mediated siRNA uptake, gene silencing, and cytocompatibility were quantified. Uptake is positively correlated with first block Mn in mTenocytes and hMSCs (p ≤ 0.0005). All NP resulted in significant gene silencing that was positively correlated with %BMA (p < 0.05) in all cell types. Cytocompatibility was reduced in mTenocytes compared to MSCs (p < 0.0001). %BMA was positively correlated with cytocompatibility in MSCs (p < 0.05), suggesting stable NP are more cytocompatible. Overall, this study shows that NP-siRNA cytocompatibility is cell type dependent, and hydrophobicity (%BMA) is the critical diblock copolymer property for efficient gene silencing in musculoskeletal cell types.
Collapse
Affiliation(s)
| | | | | | - Kenneth R Sims
- Translational Biomedical Science, University of Rochester School of Medicine and Dentistry , Rochester, New York, United States
| | - Hani A Awad
- Department of Orthopedics, University of Rochester Medical Center , Rochester, New York, United States
| | - Danielle S W Benoit
- Department of Orthopedics, University of Rochester Medical Center , Rochester, New York, United States
| |
Collapse
|
27
|
Bercea M, Wolf BA. Viscometry of polyelectrolyte solutions: Star-like versus linear poly[[2-(methacryloyloxy)ethyl] trimethylammonium iodide] and specific salt effects. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Stahlschmidt U, Jérôme V, Majewski AP, Müller AHE, Freitag R. Systematic Study of a Library of PDMAEMA-Based, Superparamagnetic Nano-Stars for the Transfection of CHO-K1 Cells. Polymers (Basel) 2017; 9:E156. [PMID: 30970835 PMCID: PMC6432303 DOI: 10.3390/polym9050156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
The introduction of the DNA into mammalian cells remains a challenge in gene delivery, particularly in vivo. Viral vectors are unmatched in their efficiency for gene delivery, but may trigger immune responses and cause severe side-reactions. Non-viral vectors are much less efficient. Recently, our group has suggested that a star-shaped structure improves and even transforms the gene delivery capability of synthetic polycations. In this contribution, this effect was systematically studied using a library of highly homogeneous, paramagnetic nano-star polycations with varied arm lengths and grafting densities. Gene delivery was conducted in CHO-K1 cells, using a plasmid encoding a green fluorescent reporter protein. Transfection efficiencies and cytotoxicities varied systematically with the nano-star architecture. The arm density was particularly important, with values of approximately 0.06 arms/nm² yielding the best results. In addition, a certain fraction of the cells became magnetic during transfection. The gene delivery potential of a nano-star and its ability to render the cells magnetic did not have any correlations. End-capping the polycation arms with di(ethylene glycol) methyl ether methacrylate (PDEGMA) significantly improved serum compatibility under transfection conditions; such nano-stars are potential candidates for future in vivo testing.
Collapse
Affiliation(s)
- Ullrich Stahlschmidt
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | | - Axel H E Müller
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
29
|
Lancelot A, González-Pastor R, Concellón A, Sierra T, Martín-Duque P, Serrano JL. DNA Transfection to Mesenchymal Stem Cells Using a Novel Type of Pseudodendrimer Based on 2,2-Bis(hydroxymethyl)propionic Acid. Bioconjug Chem 2017; 28:1135-1150. [PMID: 28256825 DOI: 10.1021/acs.bioconjchem.7b00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the search for effective vehicles to carry genetic material into cells, we present here new pseudodendrimers that consist of a hyperbranched polyester core surrounded by amino-terminated 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendrons. The pseudodendrimers are readily synthesized from commercial hyperbranched bis-MPA polyesters of the second, third, and fourth generations and third-generation bis-MPA dendrons, bearing eight peripheral glycine moieties, coupled by the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). This approach provides globular macromolecular structures bearing 128, 256, and 512 terminal amino groups, and these can complex pDNA. The toxicity of the three pseudodendrimers was studied on two cell lines, mesenchymal stem cells, and HeLa, and it was demonstrated that these compounds do not affect negatively cell viability up to 72 h. The complexation with DNA was investigated in terms of N-to-P ratio and dendriplex stability. The three generations were found to promote internalizing of pDNA into mesenchymal stem cells (MSCs), and their transfection capacity was compared with two nonviral commercial transfection agents, Lipofectamine and TransIT-X2. The highest generations were able to transfect these cells at levels comparable to both commercial reagents.
Collapse
Affiliation(s)
- Alexandre Lancelot
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Nanociencia de Aragón, Universidad de Zaragoza , Zaragoza 50009, Spain
| | | | - Alberto Concellón
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC , Zaragoza 50009, Spain
| | - Teresa Sierra
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC , Zaragoza 50009, Spain
| | - Pilar Martín-Duque
- Centro de Investigación Biomédica de Aragón, IIS Aragón, Fundación Araid, Universidad Francisco de Vitoria , Madrid 28223, Spain
| | - José L Serrano
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Nanociencia de Aragón, Universidad de Zaragoza , Zaragoza 50009, Spain
| |
Collapse
|
30
|
Bercea M, Morariu S, Wolf BA. Consequences of linking charged and uncharged monomers to binary copolymers studied in dilute solution. Part I: Viscometric behavior of the homopolymers, the effects of charging, and uncommon salt effects. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Raup A, Wang H, Synatschke CV, Jérôme V, Agarwal S, Pergushov DV, Müller AHE, Freitag R. Compaction and Transmembrane Delivery of pDNA: Differences between l-PEI and Two Types of Amphiphilic Block Copolymers. Biomacromolecules 2017; 18:808-818. [DOI: 10.1021/acs.biomac.6b01678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | - Dmitry V. Pergushov
- Department
of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | |
Collapse
|
32
|
|
33
|
Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars. ACTA ACUST UNITED AC 2016; 11:53-61. [PMID: 28352540 PMCID: PMC5042300 DOI: 10.1016/j.btre.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022]
Abstract
4 cell lines, 4 promoters, and 3 gene products were studied, i.e. 48 combinations. Distinct cell line depended effects were observed. Jurkat cell results tended to differ from that obtained with the other cells. Co-transfection works well in CHO cells, but fails in up to 80% of Jurkat cells. High transfection efficiency in CHO and HEK cells is maintained in spite of pDNA dilution.
Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293) and two rodent (CHO-K1, L929) cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP) was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV), that of ZsYellow1 (yellow fluorescence) and mCherry (red fluorescence) for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections). Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.
Collapse
|
34
|
Raup A, Stahlschmidt U, Jérôme V, Synatschke CV, Müller AHE, Freitag R. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells. Polymers (Basel) 2016; 8:polym8060224. [PMID: 30979314 PMCID: PMC6432395 DOI: 10.3390/polym8060224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic modification (“transfection”) of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino) ethyl methacrylate (DMAEMA) building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293) and non-adherent (Jurkat, primary human T lymphocytes) mammalian cells. The investigated vectors included three structures where the PDMAEMA arms (different arm length and grafting densities) had been grown from a center silsesquioxane or silica-coated γ-Fe2O3-core and one micellar structure self-assembled from poly(1,2-butadiene)-block PDMAEMA polymers. All nano-stars combined high transfection potential with excellent biocompatibility. The micelles slightly outperformed the covalently linked agents. For method development and optimization, the absolute amount of polycation added to the cells was more important than the N/P-ratio (ratio between polycation nitrogen and DNA phosphate), provided a lower limit was passed and enough polycation was present to overcompensate the negative charge of the plasmid DNA. Finally, the matrix (NaCl vs. HEPES-buffered glucose solution), but also the concentrations adjusted during polyplex formation, affected the results.
Collapse
Affiliation(s)
- Alexander Raup
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Christopher V Synatschke
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, 60611 IL, USA.
| | - Axel H E Müller
- Institute of Organic Chemistry, Johannes-Gutenberg-University, 55099 Mainz, Germany.
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
35
|
Cheng Y, Wei H, Tan JKY, Peeler DJ, Maris DO, Sellers DL, Horner PJ, Pun SH. Nano-Sized Sunflower Polycations As Effective Gene Transfer Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2750-8. [PMID: 27061622 PMCID: PMC5052141 DOI: 10.1002/smll.201502930] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/07/2016] [Indexed: 06/05/2023]
Abstract
The architecture of polycations plays an important role in both gene transfection efficiency and cytotoxicity. In this work, a new polymer, sunflower poly(2-dimethyl amino)ethyl methacrylate) (pDMAEMA), is prepared by atom transfer radical polymerization and employed as nucleic acid carriers compared to linear pDMAEMA homopolymer and comb pDMAEMA. The sunflower pDMAEMAs show higher IC50 , greater buffering capacity, and stronger binding capacity toward plasmid DNA than their linear and comb counterparts. In vitro transfection studies demonstrate that sunflower pDMAEMAs exhibit high transfection efficiency as well as relatively low cytotoxicity in complete growth medium. In vivo gene delivery by intraventricular injection to the brain shows that sunflower polymer delivers plasmid DNA more effectively than comb polymer. This study provides a new insight into the relationship between polymeric architecture and gene delivery capability, and as well as a useful means to design potent vectors for successful gene delivery.
Collapse
Affiliation(s)
- Yilong Cheng
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States (USA)
| | - Hua Wei
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - James-Kevin Y. Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States (USA)
| | - David J. Peeler
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States (USA)
| | - Don O. Maris
- Department of Neurological Surgery, University of Washington Seattle, WA 98195, (USA)
| | - Drew L. Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States (USA)
| | - Philip J. Horner
- Department of Neurological Surgery, University of Washington Seattle, WA 98195, (USA)
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States (USA)
| |
Collapse
|
36
|
Liu CK, Dou Q, Liow SS, Kumar JN, Loh XJ. Cationic Micelles Based on Polyhedral Oligomeric Silsesquioxanes for Enhanced Gene Transfection. Aust J Chem 2016. [DOI: 10.1071/ch15636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis and gene transfection efficiency of a series of amphiphilic copolymers, poly(2-(dimethylamino)ethyl methacrylate)-poly (methacrylate isobutyl polyhedral oligomeric silsesquioxane) (PDMAEMA-POSS) copolymers are reported. The hydrophobic POSS interior allows a cell-sensitizing drug such as paclitaxel to be incorporated, whereas the cationic and hydrophilic PDMAEMA corona allows the complexation of anionic DNA to form a nano-sized polyplex. These drug-encapsulated copolymers display excellent gene transfection efficiency compared with polyethylenimine or PDMAEMA homopolymers.
Collapse
|
37
|
Zhang Y, Chan JW, Moretti A, Uhrich KE. Designing polymers with sugar-based advantages for bioactive delivery applications. J Control Release 2015; 219:355-368. [PMID: 26423239 PMCID: PMC4656084 DOI: 10.1016/j.jconrel.2015.09.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Jennifer W Chan
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Alysha Moretti
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
38
|
WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Functional styrenic copolymer based on 2-(dimethylamino)ethyl methacrylate: Reactivity ratios, biological activity thermal properties and semi-conducting properties. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Mendrek B, Sieroń Ł, Żymełka-Miara I, Binkiewicz P, Libera M, Smet M, Trzebicka B, Sieroń AL, Kowalczuk A, Dworak A. Nonviral Plasmid DNA Carriers Based on N,N'-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers. Biomacromolecules 2015; 16:3275-85. [PMID: 26375579 DOI: 10.1021/acs.biomac.5b00948] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Łukasz Sieroń
- Department of General, Molecular Biology and Genetics, Medical University of Silesia , Medykow 18, 40-752 Katowice, Poland
| | - Iwona Żymełka-Miara
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Paulina Binkiewicz
- University of Occupational Safety Management in Katowice , ul. Bankowa 8, 40-007 Katowice, Poland
| | - Marcin Libera
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Mario Smet
- Department of Chemistry, University of Leuven , Celestijnenlaan, 200F, B-3001 Leuven (Heverlee), Belgium
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Aleksander L Sieroń
- Department of General, Molecular Biology and Genetics, Medical University of Silesia , Medykow 18, 40-752 Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
41
|
Flebus L, Lombart F, Martinez-Jothar L, Sevrin C, Delierneux C, Oury C, Grandfils C. In vitro study of the specific interaction between poly(2-dimethylamino ethylmethacrylate) based polymers with platelets and red blood cells. Int J Pharm 2015; 492:55-64. [PMID: 26136199 DOI: 10.1016/j.ijpharm.2015.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 01/24/2023]
Abstract
Poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) is an attractive polycation frequently proposed as a non-viral vector for gene therapy. As expected for other cationic carriers, intravenous administration of PDMAEMA can result in its ionic complexation with various negatively charged domains found within the blood. To gain more insight into this polycation hemoreactivity, we followed the binding kinetics of a free form (FF) of fluorescein labelled PDMAEMA (Mn below 15 kDa) in normal human blood using flow cytometry. This in vitro study highlighted that platelets display higher affinity for this polycation compared to red blood cells (RBCs), with an adsorption isotherm characteristics of a specific saturable binding site. PDMAEMA (1-20 μg/mL) exerted a concentration dependent proaggregant effect with a biphasic aggregation of washed platelets. Activation of platelets was also noticed in whole blood with the expression of P-selectin and fibrinogen on platelet surface. Although additional studies would be needed in order to elucidate the mechanism of PDMAEMA mediated activation of platelets, our manuscript provides important information on the hemoreactivity of FF PDMAEMA.
Collapse
Affiliation(s)
- Luca Flebus
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - François Lombart
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - Lucía Martinez-Jothar
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - Chantal Sevrin
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| | - Céline Delierneux
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Belgium.
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Belgium.
| | - Christian Grandfils
- Interfacultary Research Center of Biomaterials, University of Liège, Institute of Chemistry, Building B6C, Sart-Tilman, Liège 4000, Belgium.
| |
Collapse
|
42
|
Modra K, Dai S, Zhang H, Shi B, Bi J. Polycation-mediated gene delivery: Challenges and considerations for the process of plasmid DNA transfection. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Karl Modra
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Sheng Dai
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Hu Zhang
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Bingyang Shi
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Jingxiu Bi
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
43
|
|
44
|
Bekhradnia S, Diget JS, Zinn T, Zhu K, Sande SA, Nyström B, Lund R. Charged Star Diblock Copolymers in Dilute Solutions: Synthesis, Structure, and Chain Conformations. Macromolecules 2015. [DOI: 10.1021/ma502488u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sara Bekhradnia
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Department
of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | - Jakob Stensgaard Diget
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Thomas Zinn
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Kaizheng Zhu
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Sverre Arne Sande
- Department
of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
45
|
Abstract
We report a facile synthesis of highly uniform poly(styrene sulfonic acid) microgels, which carry a strong polyelectrolyte group at every repeating unit.
Collapse
Affiliation(s)
- Rahul Tiwari
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| | - Andreas Walther
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| |
Collapse
|
46
|
Low molecular weight poly (2-dimethylamino ethylmethacrylate) polymers with controlled positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells. Int J Pharm 2015; 478:278-287. [DOI: 10.1016/j.ijpharm.2014.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 11/23/2022]
|
47
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
48
|
Loh XJ, Wu YL. Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chem Commun (Camb) 2015; 51:10815-8. [DOI: 10.1039/c5cc03686k] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cationic star copolymer with a β-cyclodextrin core was developed for nonviral gene transfer to mouse embryonic stem cells (mESCs).
Collapse
Affiliation(s)
- Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
| | - Yun-Long Wu
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|
49
|
Rinkenauer AC, Tauhardt L, Wendler F, Kempe K, Gottschaldt M, Traeger A, Schubert US. A Cationic Poly(2-oxazoline) with High In Vitro Transfection Efficiency Identified by a Library Approach. Macromol Biosci 2014; 15:414-25. [DOI: 10.1002/mabi.201400334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/04/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Alexandra C. Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Lutz Tauhardt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Felix Wendler
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute (DPI); John F. Kennedylaan 2 5612 AB Eindhoven The Netherlands
| |
Collapse
|
50
|
|