1
|
Bitar M, Mercier C, Bertoletti L, Pourchez J, Forest V. Flavor-induced inflammation and cytotoxicity in human aortic smooth muscle cells: Potential implications for E-cigarette safety. Toxicol Appl Pharmacol 2025; 500:117388. [PMID: 40354984 DOI: 10.1016/j.taap.2025.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Electronic nicotine delivery systems (ENDS), commonly known as e-cigarettes, are considered safer alternatives to tobacco smoking, yet their long-term health effects, particularly on cardiovascular health, remain unclear. The aim of this study was to investigate the cytotoxic and pro-inflammatory effects of device power, nicotine content and flavor molecules on human aortic smooth muscle cells. AoSMCs cells were exposed to e-liquids and e-cigarette aerosol condensates containing different ratios of propylene glycol (PG) and vegetable glycerin (VG), nicotine (0, 10, 20 mg/mL), and flavors (cinnamon, menthol, tobacco), with the devices operated at different power levels (10 W, 15 W, 25 W). After a 24 h incubation, cytotoxicity was evaluated using lactate dehydrogenase (LDH) release, while pro-inflammatory effects were measured by interleukin-8 (IL-8) production. The results showed no significant cytotoxicity or inflammation in cells exposed to PG/VG base or nicotine-containing e-liquids. However, e-liquids as well as aerosol condensates containing flavors induced significant increases in IL-8 production compared to controls without flavor. Moreover, the pro-inflammatory response was more pronounced in response to aerosol condensates than to the corresponding e-liquids. Cinnamon, in particular, produced the highest inflammatory response, and the effect was enhanced at higher power settings (25 W), which also induced cytotoxicity, particularly at high concentrations. These findings demonstrate that flavors, especially cinnamon, and device power levels are key factors influencing the inflammatory potential and cytotoxicity of e-cigarette aerosols. Further studies are needed to explore the long-term cardiovascular risks associated with ENDS use and the role of flavor molecules and of their thermal degradation products.
Collapse
Affiliation(s)
- Mariam Bitar
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Clément Mercier
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Laurent Bertoletti
- Service de Médecine Vasculaire et Thérapeutique, CHU de Saint-Etienne, Saint-Etienne, France; INSERM, UMR1059, Equipe Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, F-42055 Saint-Etienne, France; INSERM, CIC-1408, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
| |
Collapse
|
2
|
Ding C, Yuan M, Cheng J, Wen J. Cross-sectional study on smoking types and stroke risk: development of a predictive model for identifying stroke risk. Front Physiol 2025; 16:1528910. [PMID: 40196720 PMCID: PMC11973365 DOI: 10.3389/fphys.2025.1528910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Background Stroke, a major global health concern, is responsible for high mortality and long-term disabilities. With the aging population and increasing prevalence of risk factors, its incidence is on the rise. Existing risk assessment tools have limitations, and there is a pressing need for more accurate and personalized stroke risk prediction models. Smoking, a significant modifiable risk factor, has not been comprehensively examined in current models regarding different smoking types. Methods Data were sourced from the 2015-2018 National Health and Nutrition Examination Survey (NHANES) and the 2020-2021 Behavioral Risk Factor Surveillance System (BRFSS). Tobacco use (including combustible cigarettes and e-cigarettes) and stroke history were obtained through questionnaires. Participants were divided into four subgroups: non-smokers, exclusive combustible cigarette users, exclusive e-cigarette users, and dual users. Covariates such as age, sex, race, education, and health conditions were also collected. Multivariate logistic regression was used to analyze the relationship between smoking and stroke. Four machine-learning models (XGBoost, logistic regression, Random Forest, and Gaussian Naive Bayes) were evaluated using the area under the receiver-operating characteristic curve (AUC), and Shapley's additive interpretation method was applied for feature importance ranking and model interpretation. Results A total of 273,028 individuals were included in the study. Exclusive combustible cigarette users had an elevated stroke risk (β: 1.36, 95% CI: 1.26-1.47, P < 0.0001). Among the four machine-learning models, the XGBoost model showed the best discriminative ability with an AUC of 0.794 (95% CI = 0.787-0.802). Conclusion This study reveals a significant association between smoking types and stroke risk. An XGBoost-based stroke prediction model was established, which has the potential to improve the accuracy of stroke risk assessment and contribute to personalized interventions for stroke prevention, thus alleviating the healthcare burden related to stroke.
Collapse
Affiliation(s)
- Chao Ding
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minjia Yuan
- Aviation Health Department, Spring Airlines Co.,Ltd, Shanghai, China
| | - Jiwei Cheng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Lupo G, Anfuso CD, Smecca G, Cosentino A, Agafonova A, Prinzi C, Ferrauto RJ, Turzo S, Rapisarda V, Ledda C. Assessing the impact of e-cigarettes on human barrier systems: A systematic review. Transl Res 2025; 277:39-63. [PMID: 39818315 DOI: 10.1016/j.trsl.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The use of e-cigarettes has grown rapidly in recent years, raising concerns about their impact on human health, particularly on critical physiological barriers such as the blood-brain barrier (BBB), alveolar-capillary barrier, and vascular systems. This systematic review evaluates the current literature on the effects of e-cigarette exposure on these barrier systems. E-cigarettes, regardless of nicotine content, have been shown to induce oxidative stress, inflammation, and disruption of tight junction proteins, leading to impaired barrier function. Key findings include compromised pulmonary function, increased vascular stiffness, and neuroinflammation. The review highlights potential long-term health risks associated with e-cigarette use, such as cardiovascular disease, neurodevelopmental disorders, and multi-organ fibrosis, and emphasizes the need for public health interventions to regulate e-cigarette use, especially in vulnerable populations like pregnant women and adolescents.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Smecca
- Prevention and Protection Unit, Provincial Health Agency of Ragusa, 97100 Ragusa, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Rosario Junior Ferrauto
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Stefano Turzo
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
4
|
Sharma S, Zhang Y, Patel D, Akter KA, Bagchi S, Sifat AE, Nozohouri E, Ahn Y, Karamyan VT, Bickel U, Abbruscato TJ. Evaluation of systemic and brain pharmacokinetic parameters for repurposing metformin using intravenous bolus administration. J Pharmacol Exp Ther 2025; 392:100013. [PMID: 39893000 DOI: 10.1124/jpet.124.002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Metformin's potential in treating ischemic stroke and neurodegenerative conditions is of growing interest. Yet, the absence of established systemic and brain pharmacokinetic (PK) parameters at relevant preclinical doses presents a significant knowledge gap. This study highlights these PK parameters and the importance of using pharmacologically relevant preclinical doses to study pharmacodynamics in stroke and related neurodegenerative diseases. A liquid chromatography with tandem mass spectrometry method to measure metformin levels in plasma, brain, and cerebrospinal fluid was developed and validated. In vitro assays examined brain tissue binding and metabolic stability. Intravenous bolus administration of metformin to C57BL6 mice covered a low- to high-dose range maintaining pharmacological relevance. Quantification of metformin in the brain was used to assess brain PK parameters, such as unidirectional blood-to-brain constant (Kin) and unbound brain-to-plasma ratio (Kp, uu, brain). Metformin exhibited no binding in the mouse plasma and brain and remained metabolically stable. It rapidly entered the brain, reaching detectable levels in as little as 5 minutes. A Kin value of 1.87 ± 0.27 μL/g/min was obtained. As the dose increased, Kp, uu, brain showed decreased value, implying saturation, but this did not affect an increase in absolute brain concentrations. Metformin was quantifiable in the cerebrospinal fluid at 30 minutes but decreased over time, with concentrations lower than those in the brain across all doses. Our findings emphasize the importance of metformin dose selection based on PK parameters for preclinical pharmacological studies. We anticipate further investigations focusing on PKs and pharmacodynamics in disease conditions, such as stroke. SIGNIFICANCE STATEMENT: The study establishes crucial pharmacokinetic parameters of metformin for treating ischemic stroke and neurodegenerative diseases, addressing a significant knowledge gap. It further emphasizes the importance of selecting pharmacologically relevant preclinical doses. The findings highlight metformin's rapid brain entry, minimal binding, and metabolic stability. The necessity of considering pharmacokinetic parameters in preclinical studies provides a foundation for future investigations into metformin's efficacy for neurodegenerative disease(s).
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas; Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Vardan T Karamyan
- Department of Foundational Medical Studies and Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas; Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas; Center for Blood-Brain Barrier Research and Brain Drug Discovery, Texas Tech University Health Sciences Center, Amarillo, Texas.
| |
Collapse
|
5
|
Magna A, Polisena N, Polisena L, Bagnato C, Pacella E, Carnevale R, Nocella C, Loffredo L. The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis-A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants (Basel) 2024; 13:1395. [PMID: 39594537 PMCID: PMC11591068 DOI: 10.3390/antiox13111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Electronic cigarettes and heated tobacco products have seen significant growth in sales and usage in recent years. Initially promoted as potentially less harmful alternatives to traditional tobacco, recent scientific evidence has raised serious concerns about the risks they pose, particularly in relation to atherosclerosis. While atherosclerosis has long been associated with conventional tobacco smoking, emerging research suggests that electronic cigarettes and heated tobacco may also contribute to the development of this condition and related cardiovascular complications. In a narrative review, we examined the potential effects of heated tobacco products and electronic cigarettes on oxidative stress and atherosclerosis. Several studies have shown that e-cigarettes and heated tobacco increase oxidative stress through the activation of enzymes such as NADPH oxidase. One of the primary effects of these products is their pro-thrombotic and pro-atherosclerotic impact on endothelial cells and platelets, which promotes inflammatory processes within the arteries. Furthermore, the chemicals found in electronic cigarette liquids may exacerbate inflammation and cause endothelial dysfunction. Furthermore, through a systematic review, we analyzed the effects of chronic exposure to electronic and heated tobacco cigarettes on endothelial function, as assessed by brachial flow-mediated dilation (FMD). Although electronic cigarettes and heated tobacco cigarettes are often perceived as safer alternatives to traditional smoking, they could still present risks to cardiovascular health. It is essential to raise public awareness about the potential dangers associated with these products and implement protective measures, particularly for young people.
Collapse
Affiliation(s)
- Arianna Magna
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Nausica Polisena
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ludovica Polisena
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Chiara Bagnato
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
6
|
Sun Y, Xie A, Fang Y, Chen H, Li L, Tang J, Liao Y. Altered insular functional activity among electronic cigarettes users with nicotine dependence. Transl Psychiatry 2024; 14:293. [PMID: 39019862 PMCID: PMC11255336 DOI: 10.1038/s41398-024-03007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Electronic cigarettes (e-cigs) use, especially among youngsters, has been on the rise in recent years. However, little is known about the long-term effects of the use of e-cigs on brain functional activity. We acquired the resting-state functional magnetic resonance imaging (rs-fMRI) data from 93 e-cigs users with nicotine dependence and 103 health controls (HC). The local synchronization was analyzed via the regional homogeneity (ReHo) method at voxel-wise level. The functional connectivity (FC) between the nucleus accumbens (NAcc), the ventral tegmental area (VTA), and the insula was calculated at ROI-wise level. The support vector machining classification model based on rs-fMRI measures was used to identify e-cigs users from HC. Compared with HC, nicotine-dependent e-cigs users showed increased ReHo in the right rolandic operculum and the right insula (p < 0.05, FDR corrected). At the ROI-wise level, abnormal FCs between the NAcc, the VTA, and the insula were found in e-cigs users compared to HC (p < 0.05, FDR corrected). Correlation analysis found a significant negative correlation between ReHo in the left NAcc and duration of e-cigs use (r = -0.273, p = 0.008, FDR corrected). The following support vector machine model based on significant results of rs-fMRI successfully differentiates chronic e-cigs users from HC with an accuracy of 73.47%, an AUC of 0.781, a sensitivity of 67.74%, and a specificity of 78.64%. Dysregulated spontaneous activity and FC of addiction-related regions were found in e-cigs users with nicotine dependence, which provides crucial insights into the prevention of its initial use and intervention for quitting e-cigs.
Collapse
Affiliation(s)
- Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - An Xie
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, Hunan, PR China
| | - Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Haobo Chen
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, Hunan, PR China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
7
|
Stratford K, Kang JC, Healy SM, Tu Z, Valerio LG. Investigative analysis of blood-brain barrier penetrating potential of electronic nicotine delivery systems (e-cigarettes) chemicals using predictive computational models. Expert Opin Drug Metab Toxicol 2024; 20:647-663. [PMID: 38881199 DOI: 10.1080/17425255.2024.2366385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Seizures are known potential side effects of nicotine toxicity and have been reported in electronic nicotine delivery systems (ENDS, e-cigarettes) users, with the majority involving youth or young adults. AREAS COVERED Using chemoinformatic computational models, chemicals (including flavors) documented to be present in ENDS were compared to known neuroactive compounds to predict the blood-brain barrier (BBB) penetration potential, central nervous system (CNS) activity, and their structural similarities. The literature search used PubMed/Google Scholar, through September 2023, to identify individual chemicals in ENDS and neuroactive compounds.The results show that ENDS chemicals in this study contain >60% structural similarity to neuroactive compounds based on chemical fingerprint similarity analyses. The majority of ENDS chemicals we studied were predicted to cross the BBB, with approximately 60% confidence, and were also predicted to have CNS activity; those not predicted to passively diffuse through the BBB may be actively transported through the BBB to elicit CNS impacts, although it is currently unknown. EXPERT OPINION In lieu of in vitro and in vivo testing, this study screens ENDS chemicals for potential CNS activity and predicts BBB penetration potential using computer-based models, allowing for prioritization for further study and potential early identification of CNS toxicity.
Collapse
Affiliation(s)
- Kimberly Stratford
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, Silver Spring, MD, USA
| | - Jueichuan Connie Kang
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, Silver Spring, MD, USA
- United States Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Sheila M Healy
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, Silver Spring, MD, USA
- United States Environmental Protection Agency, Washington, DC, USA
| | - Zheng Tu
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, Silver Spring, MD, USA
| | - Luis G Valerio
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, Silver Spring, MD, USA
| |
Collapse
|
8
|
Zhao HZ, Guo ZW, Wang ZL, Wang C, Luo XY, Han NN, Li CR, Zheng HD, Hui ZY, Long Y, Zhao YL, Li QJ, Wang SY, Zhang GW. A Comparative Study of the Effects of Electronic Cigarette and Traditional Cigarette on the Pulmonary Functions of C57BL/6 Male Mice. Nicotine Tob Res 2024; 26:474-483. [PMID: 37535700 DOI: 10.1093/ntr/ntad139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Electronic cigarettes (E-cigs) are in a controversial state. Although E-cig aerosol generally contains fewer harmful substances than smoke from burned traditional cigarettes, aerosol along with other compounds of the E-cigs may also affect lung functions and promote the development of lung-related diseases. We investigated the effects of E-cig on the pulmonary functions of male C57BL/6 mice and reveal the potential underlying mechanisms. METHODS A total of 60 male C57BL/6 mice were randomly divided into four groups. They were exposed to fresh-air, traditional cigarette smoke, E-cig vapor with 12 mg/mL of nicotine, and E-cig with no nicotine for 8 weeks. Lung functions were evaluated by using quantitative analysis of the whole body plethysmograph, FlexiVent system, lung tissue histological and morphometric analysis, and RT-PCR analysis of mRNA expression of inflammation-related genes. In addition, the effects of nicotine and acrolein on the survival rate and DNA damage were investigated using cultured human alveolar basal epithelial cells. RESULTS Exposure to E-cig vapor led to significant changes in lung functions and structures including the rupture of the alveolar cavity and enlarged alveolar space. The pathological changes were also accompanied by increased expression of interleukin-6 and tumor necrosis factor-α. CONCLUSIONS The findings of the present study indicate that the safety of E-cig should be further evaluated. IMPLICATIONS Some people currently believe that using nicotine-free E-cigs is a safe way to smoke. However, our research shows that E-cigs can cause lung damage regardless of whether they contain nicotine.
Collapse
Affiliation(s)
- Han-Zhi Zhao
- School of Public Health, Xi'an Medical University, Xi'an, China
- People's Hospital of Shaanxi province, Xi'an, China
- Office of Graduate Student Affairs, Xi'an Medical University, Xi'an, China
| | - Zi-Wei Guo
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Zhang-Li Wang
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chen Wang
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xian-Yu Luo
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ning-Ning Han
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Chen-Rui Li
- Academy of life sciences, northwestern polytechnical university, Xi'an, China
| | - Hua-Dong Zheng
- Department of Gerontology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zi-Yi Hui
- The second clinical medical school of Xi'an Medical University, Xi'an, China
| | - Yang Long
- The second clinical medical school of Xi'an Medical University, Xi'an, China
| | - Yan-Lei Zhao
- The second clinical medical school of Xi'an Medical University, Xi'an, China
| | - Qiu-Jin Li
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Sheng-Yu Wang
- School of Public Health, Xi'an Medical University, Xi'an, China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Guang-Wei Zhang
- School of Public Health, Xi'an Medical University, Xi'an, China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
- Office of Graduate Student Affairs, Xi'an Medical University, Xi'an, China
| |
Collapse
|
9
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Dalibalta S, Makhlouf Z, Rabah L, Samara F, Elsayed Y. A literature review addressing midwakh and e-cigarette use in the Gulf region. J Egypt Public Health Assoc 2023; 98:21. [PMID: 38110669 PMCID: PMC10728422 DOI: 10.1186/s42506-023-00146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
A notable decrease in conventional cigarette smoking has been witnessed on a global scale. However, this decrease has been accompanied by an equally striking global increase in the consumption of alternative tobacco products (ATPs), namely e-cigarettes and midwakh in the Arabian Gulf region. A literature review was used to outline the chemical composition of these two ATPs and review their impacts on health. The study was conducted using databases like PubMed, Google Scholar, MDPI, and WorldCat. The literature search included terms such as "e-cigarettes," "midwakh," "dokha," "heath impacts," "psychological effects," "social influences," and "cigarette smoking" with emphasis on literature from the Arabian Gulf region. Data shows that midwakh contains markedly high levels of tar, nicotine, and various compounds of notable effects on the human body. Similarly, it was found that e-cigarettes contain non-negligible amounts of nicotine and other chemical compounds that may not have been extensively investigated. Alarming reports of system-specific effects brought about by midwakh, and e-cigarette consumption, have been reported, although further research is needed to deduce the mechanism. We also discussed some of the social and psychological factors leading to their consumption within this population. Hence, this review raises questions around the safety of these two types of ATPs and encourages comprehensive studies globally and regionally.
Collapse
Affiliation(s)
- Sarah Dalibalta
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, Sharjah, UAE.
| | - Zinb Makhlouf
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Layal Rabah
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Fatin Samara
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Yehya Elsayed
- Advanced Research and Development, Fiber Media at Donaldson, Donaldson, MN, USA
| |
Collapse
|
11
|
Petrella F, Rizzo S, Masiero M, Marzorati C, Casiraghi M, Bertolaccini L, Mazzella A, Pravettoni G, Spaggiari L. Clinical impact of vaping on cardiopulmonary function and lung cancer development: an update. Eur J Cancer Prev 2023; 32:584-589. [PMID: 36942844 DOI: 10.1097/cej.0000000000000797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The word 'vaping' is used to define the usage of electronic cigarettes or other instruments to inhale a wide variety of heated and aerosolized substances. Although proposed as a less dangerous and oncogenic alternative than standard nicotine products, e-cigarettes and vaping devices are quite far from being considered benign. In fact, although vaping devices do not generate carcinogenic agents as polycyclic aromatic hydrocarbons produced by the combustion of standard cigarettes and their liquids do not present tobacco-related carcinogens like nitrosamines, there is nowadays clear evidence that they produce dangerous products during their use. Several different molecular mechanisms have been proposed for the oncogenic impact of vaping fluids - by means of their direct chemical action or derivative products generated by pyrolysis and combustion ranging from epithelial-mesenchymal transition, redox stress and mitochondrial toxicity to DNA breaks and fragmentation. In this review we focus on vaping devices, their potential impact on lung carcinogenesis, vaping-associated lung injury and other clinical implications on cardiovascular, cerebrovascular and respiratory diseases, as well as on the psychological implication of e-cigarettes both on heavy smokers trying to quit smoking and on younger non-smokers approaching vaping devices because they are considered as a less dangerous alternative to tobacco cigarettes.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Stefania Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland (IIMSI)
- Facoltà di Scienze biomediche, Università della Svizzera italiana (USI), Lugano (CH), Switzerland and
| | - Marianna Masiero
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, IRCCS, Milan, Italy
| | - Chiara Marzorati
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, IRCCS, Milan, Italy
| | - Monica Casiraghi
- Department of Thoracic Surgery, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Luca Bertolaccini
- Department of Thoracic Surgery, European Institute of Oncology, IRCCS
| | - Antonio Mazzella
- Department of Thoracic Surgery, European Institute of Oncology, IRCCS
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Archie SR, Sifat AE, Mara D, Ahn Y, Akter KA, Zhang Y, Cucullo L, Abbruscato TJ. Impact of in-utero electronic cigarette exposure on neonatal neuroinflammation, oxidative stress and mitochondrial function. Front Pharmacol 2023; 14:1227145. [PMID: 37693917 PMCID: PMC10484598 DOI: 10.3389/fphar.2023.1227145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Despite the prevalence of the perception that electronic cigarettes (e-cig) are a safer alternative to tobacco smoke, growing concern about their potential toxic impact warrants adequate investigation focusing on special populations like maternal and pediatric groups. This study evaluated the consequences of maternal e-cig use on neonatal neuroinflammation, oxidative stress, and mitochondrial function in primary cultured neurons and postnatal day (PD) 7 and 90 brain. Methodology: Pregnant CD1 mice were exposed to e-cig vapor (2.4% nicotine) from gestational day 5 (E5) till PD7, and the primary neurons were isolated from pups at E16/17. Cellular total reactive oxygen species (ROS) and mitochondrial superoxide were measured in primary neurons using CM-H2DCFDA and Mitosox red, respectively. Mitochondrial function was assessed by Seahorse XF Cell Mitostress analysis. The level of pro-inflammatory cytokines was measured in primary neurons and PD7 and PD90 brains by RT-PCR and immunobead assay. Western blot analysis evaluated the expression of antioxidative markers (SOD-2, HO-1, NRF2, NQO1) and that of the proinflammatory modulator NF-κB. Results: Significantly higher level of total cellular ROS (p < 0.05) and mitochondrial superoxide (p < 0.01) was observed in prenatally e-cig-exposed primary neurons. We also observed significantly reduced antioxidative marker expression and increased proinflammatory modulator and cytokines expression in primary neurons and PD7 (p < 0.05) but not in PD90 postnatal brain. Conclusion: Our findings suggest that prenatal e-cig exposure induces postnatal neuroinflammation by promoting oxidative stress (OS), increasing cytokines' levels, and disrupting mitochondrial function. These damaging events can alter the fetal brain's immune functions, making such offspring more vulnerable to brain insults.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - David Mara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thomas J. Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| |
Collapse
|
14
|
Rose JJ, Krishnan-Sarin S, Exil VJ, Hamburg NM, Fetterman JL, Ichinose F, Perez-Pinzon MA, Rezk-Hanna M, Williamson E. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement From the American Heart Association. Circulation 2023; 148:703-728. [PMID: 37458106 DOI: 10.1161/cir.0000000000001160] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.
Collapse
|
15
|
Cardenas HL, Evanoff NG, Fandl HK, Berry AR, Wegerson KN, Ostrander EI, Greiner JJ, Dufresne SR, Kotlyar M, Dengel DR, DeSouza CA, Garcia VP. Endothelial-derived extracellular vesicles associated with electronic cigarette use impair cerebral microvascular cell function. J Appl Physiol (1985) 2023; 135:271-278. [PMID: 37348012 PMCID: PMC10393369 DOI: 10.1152/japplphysiol.00243.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
The aim of this study was to determine the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. Circulating EMVs (CD144-PE) were isolated (flow cytometry) from 27 young adults (19-25 yr): 10 nonsmokers (6 M/4 F), 10 e-cigarette users (6 M/4 F), and 7 tobacco cigarette smokers (4 M/3 F). hCMECs were cultured and treated with isolated EMVs for 24 h. EMVs from e-cigarette users and cigarette smokers induced significantly higher expression of p-eNOS (Thr495; 28.4 ± 4.6 vs. 29.1 ± 2.8 vs. 22.9 ± 3.8 AU), Big ET-1 (138.8 ± 19.0 vs. 141.7 ± 19.1 vs. 90.3 ± 18.8 AU) and endothelin converting enzyme (107.6 ± 10.1 and 113.5 ± 11.8 vs. 86.5 ± 13.2 AU), and significantly lower expression of p-eNOS (Ser1177; 7.4 ± 1.7 vs. 6.5 ± 0.5 vs. 9.7 ± 1.6 AU) in hCMECs than EMVs from nonsmokers. NO production was significantly lower and ET-1 production was significantly higher in hCMECs treated with EMVs from e-cigarette (5.7 ± 0.8 µmol/L; 33.1 ± 2.9 pg/mL) and cigarette smokers (6.3 ± 0.7 µmol/L; 32.1 ± 3.9 pg/mL) than EMVs from nonsmokers (7.6 ± 1.2 µmol/L; 27.9 ± 3.1 pg/mL). t-PA release in response to thrombin was significantly lower in hCMECs treated with EMVs from e-cigarette users (from 38.8 ± 6.3 to 37.4 ± 8.3 pg/mL) and cigarette smokers (31.5 ± 5.5 to 34.6 ± 8.4 pg/mL) than EMVs from nonsmokers (38.9 ± 4.3 to 48.4 ± 7.9 pg/mL). There were no significant differences in NO, ET-1, or t-PA protein expression or production in hCMECs treated with EMVs from e-cigarette users and smokers. Circulating EMVs associated with e-cigarette use adversely affects brain microvascular endothelial cells and may contribute to reported cerebrovascular dysfunction with e-cigarette use.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. EMVs from e-cigarette users reduced brain microvascular endothelial cell NO production, enhanced ET-1 production, and impaired endothelial t-PA release. EMVs are a potential mediating factor in the increased risk of stroke associated with e-cigarette use.
Collapse
Affiliation(s)
- Hannah L Cardenas
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nicholas G Evanoff
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Auburn R Berry
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kendra N Wegerson
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Emily I Ostrander
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sheena R Dufresne
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Michael Kotlyar
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
16
|
Ali N, Xavier J, Engur M, Pv M, Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131828. [PMID: 37320902 DOI: 10.1016/j.jhazmat.2023.131828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Joseph Xavier
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | - Melih Engur
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | | |
Collapse
|
17
|
Sharma S, Zhang Y, Akter KA, Nozohouri S, Archie SR, Patel D, Villalba H, Abbruscato T. Permeability of Metformin across an In Vitro Blood-Brain Barrier Model during Normoxia and Oxygen-Glucose Deprivation Conditions: Role of Organic Cation Transporters (Octs). Pharmaceutics 2023; 15:1357. [PMID: 37242599 PMCID: PMC10220878 DOI: 10.3390/pharmaceutics15051357] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
18
|
Sivandzade F, Alqahtani F, Dhaibar H, Cruz-Topete D, Cucullo L. Antidiabetic Drugs Can Reduce the Harmful Impact of Chronic Smoking on Post-Traumatic Brain Injuries. Int J Mol Sci 2023; 24:6219. [PMID: 37047198 PMCID: PMC10093862 DOI: 10.3390/ijms24076219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a primary cause of cerebrovascular and neurological disorders worldwide. The current scientific researchers believe that premorbid conditions such as tobacco smoking (TS) can exacerbate post-TBI brain injury and negatively affect recovery. This is related to vascular endothelial dysfunction resulting from the exposure to TS-released reactive oxygen species (ROS), nicotine, and oxidative stress (OS) stimuli impacting the blood-brain barrier (BBB) endothelium. Interestingly, these pathogenic modulators of BBB impairment are similar to those associated with hyperglycemia. Antidiabetic drugs such as metformin (MF) and rosiglitazone (RSG) were shown to prevent/reduce BBB damage promoted by chronic TS exposure. Thus, using in vivo approaches, we evaluated the effectiveness of post-TBI treatment with MF or RSG to reduce the TS-enhancement of BBB damage and brain injury after TBI. For this purpose, we employed an in vivo weight-drop TBI model using male C57BL/6J mice chronically exposed to TS with and without post-traumatic treatment with MF or RSG. Our results revealed that these antidiabetic drugs counteracted TS-promoted downregulation of nuclear factor erythroid 2-related factor 2 (NRF2) expression and concomitantly dampened TS-enhanced OS, inflammation, and loss of BBB integrity following TBI. In conclusion, our findings suggest that MF and RSG could reduce the harmful impact of chronic smoking on post-traumatic brain injuries.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hemangini Dhaibar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
19
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
20
|
Archie SR, Sifat AE, Zhang Y, Villalba H, Sharma S, Nozohouri S, Abbruscato TJ. Maternal e-cigarette use can disrupt postnatal blood-brain barrier (BBB) integrity and deteriorates motor, learning and memory function: influence of sex and age. Fluids Barriers CNS 2023; 20:17. [PMID: 36899432 PMCID: PMC9999561 DOI: 10.1186/s12987-023-00416-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS), also commonly known as electronic cigarettes (e-cigs) are considered in most cases as a safer alternative to tobacco smoking and therefore have become extremely popular among all age groups and sex. It is estimated that up to 15% of pregnant women are now using e-cigs in the US which keeps increasing at an alarming rate. Harmful effects of tobacco smoking during pregnancy are well documented for both pregnancy and postnatal health, however limited preclinical and clinical studies exist to evaluate the long-term effects of prenatal e-cig exposure on postnatal health. Therefore, the aim of our study is to evaluate the effect of maternal e-cig use on postnatal blood-brain barrier (BBB) integrity and behavioral outcomes of mice of varying age and sex. In this study, pregnant CD1 mice (E5) were exposed to e-Cig vapor (2.4% nicotine) until postnatal day (PD) 7. Weight of the offspring was measured at PD0, PD7, PD15, PD30, PD45, PD60 and PD90. The expression of structural elements of the BBB, tight junction proteins (ZO-1, claudin-5, occludin), astrocytes (GFAP), pericytes (PDGFRβ) and the basement membrane (laminin α1, laminin α4), neuron specific marker (NeuN), water channel protein (AQP4) and glucose transporter (GLUT1) were analyzed in both male and female offspring using western blot and immunofluorescence. Estrous cycle was recorded by vaginal cytology method. Long-term motor and cognitive functions were evaluated using open field test (OFT), novel object recognition test (NORT) and morris water maze test (MWMT) at adolescence (PD 40-45) and adult (PD 90-95) age. In our study, significantly reduced expression of tight junction proteins and astrocyte marker were observed in male and female offspring until PD 90 (P < 0.05). Additionally, prenatally e-cig exposed adolescent and adult offspring showed impaired locomotor, learning, and memory function compared to control offspring (P < 0.05). Our findings suggest that prenatal e-cig exposure induces long-term neurovascular changes of neonates by disrupting postnatal BBB integrity and worsening behavioral outcomes.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
21
|
Mancuso S, Bhalerao A, Cucullo L. Use of Conventional Cigarette Smoking and E-Cigarette Vaping for Experimental Stroke Studies in Mice. Methods Mol Biol 2023; 2616:441-451. [PMID: 36715952 PMCID: PMC10115166 DOI: 10.1007/978-1-0716-2926-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cigarette smoking is a major prodromal factor for the onset of many adverse health effects that may occur in the short run and is the leading cause of preventable disease, disability, and death in the United States. Moreover, it is well established that chronic smoking is associated with vascular endothelial dysfunction in a causative and dose-dependent manner primarily related to the release of reactive oxygen species (ROS), nicotine, and the induction of oxidative stress (OS)-driven inflammation. Preclinical studies have also shown that nicotine (the principal e-liquid ingredient used in e-cigarettes) can also cause OS, exacerbating cerebral ischemia and secondary brain injury. Likewise, chronic e-Cig vaping could be prodromal to cerebrovascular impairment and promote cerebrovascular conditions favoring stroke onset and worsening post-ischemic brain injury. Therefore, using mouse models is crucial to understand how xenobiotics such as those released by conventional and/or e-cigs can impact the onset and severity of stroke as well as post-stroke recovery. To appropriately model human-like smoking/vaping behavior in mice, however, the exposure to these xenobiotics must be standardized and undertaken in a controlled environment. This chapter describes a well-validated protocol to reproduce standardized chronic tobacco smoke or e-cigarette vape exposure in mice in the setting of a mouse transient ischemic stroke model.
Collapse
Affiliation(s)
- Salvatore Mancuso
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI, USA
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University, William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
22
|
Red Cell Microparticles Suppress Hematoma Growth Following Intracerebral Hemorrhage in Chronic Nicotine-Exposed Rats. Int J Mol Sci 2022; 23:ijms232315167. [PMID: 36499494 PMCID: PMC9736308 DOI: 10.3390/ijms232315167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (sICH) is a disabling stroke sub-type, and tobacco use is a prominent risk factor for sICH. We showed that chronic nicotine exposure enhances bleeding post-sICH. Reduction of hematoma growth is a promising effective therapy for sICH in smoking subjects. Red-blood-cell-derived microparticles (RMPs) are hemostatic agents that limit hematoma expansion following sICH in naïve rats. Considering the importance of testing the efficacy of experimental drugs in animal models with a risk factor for a disease, we tested RMP efficacy and the therapeutic time window in limiting hematoma growth post-sICH in rats exposed to nicotine. Young rats were chronically treated with nicotine using osmotic pumps. sICH was induced in rats using an injection of collagenase in the right striatum. Vehicle/RMPs were administered intravenously. Hematoma volume and neurological impairment were quantified ≈24 h after sICH. Hematoma volumes in male and female nicotine-exposed rats that were treated with RMPs at 2 h post-sICH were significantly lower by 26 and 31% when compared to their respective control groups. RMP therapy was able to limit hematoma volume when administered up to 4.5 h post-sICH in animals of both sexes. Therefore, RMPs may limit hematoma growth in sICH patients exposed to tobacco use.
Collapse
|
23
|
Elkin PL, Mullin S, Tetewsky S, Resendez SD, McCray W, Barbi J, Yendamuri S. Identification of patient characteristics associated with survival benefit from metformin treatment in patients with stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 2022; 164:1318-1326.e3. [PMID: 35469597 PMCID: PMC9463413 DOI: 10.1016/j.jtcvs.2022.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) continues to be a major cause of cancer deaths. Previous investigation has suggested that metformin use can contribute to improved outcomes in NSCLC patients. However, this association is not uniform in all analyzed cohorts, implying that patient characteristics might lead to disparate results. Identification of patient characteristics that affect the association of metformin use with clinical benefit might clarify the drug's effect on lung cancer outcomes and lead to more rational design of clinical trials of metformin's utility as an intervention. In this study, we examined the association of metformin use with long-term mortality benefit in patients with NSCLC and the possible modulation of this benefit by body mass index (BMI) and smoking status, controlling for other clinical covariates. METHODS This was a retrospective cohort study in which we analyzed data from the Veterans Affairs (VA) Tumor Registry in the United States. Data from all patients with stage I NSCLC from 2000 to 2016 were extracted from a national database, the Corporate Data Warehouse that captures data from all patients, primarily male, who underwent treatment through the VA health system in the United States. Metformin use was measured according to metformin prescriptions dispensed to patients in the VA health system. The association of metformin use with overall survival (OS) after diagnosis of stage I NSCLC was examined. Patients were further stratified according to BMI and smoking status (previous vs current) to examine the association of metformin use with OS across these strata. RESULTS Metformin use was associated with improved survival in patients with stage I NSCLC (average hazard ratio, 0.82; P < .001). An interaction between the effect of metformin use and BMI on OS was observed (χ2 = 3268.42; P < .001) with a greater benefit of metformin use observed in patients as BMI increased. Similarly, an interaction between smoking status and metformin use on OS was also observed (χ2 = 2997.05; P < .001) with a greater benefit of metformin use observed in previous smokers compared with current smokers. CONCLUSIONS In this large retrospective study, we showed that a survival benefit is enjoyed by users of metformin in a robust stage I NSCLC patient population treated in the VA health system. Metformin use was associated with an 18% improved OS. This association was stronger in patients with a higher BMI and in previous smokers. These observations deserve further mechanistic study and can help rational design of clinical trials with metformin in patients with lung cancer.
Collapse
Affiliation(s)
- Peter L Elkin
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Veterans Affairs, Buffalo, NY; Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
| | - Sarah Mullin
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Sheldon Tetewsky
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Veterans Affairs, Buffalo, NY
| | - Skyler D Resendez
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Wilmon McCray
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Veterans Affairs, Buffalo, NY
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sai Yendamuri
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY.
| |
Collapse
|
24
|
Kim SY, Jeong SH, Joo HJ, Park M, Park EC, Kim JH, Lee J, Shin J. High prevalence of hypertension among smokers of conventional and e-cigarette: Using the nationally representative community dwelling survey. Front Public Health 2022; 10:919585. [PMID: 36324451 PMCID: PMC9618945 DOI: 10.3389/fpubh.2022.919585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 01/22/2023] Open
Abstract
This study aimed to clarify the association between hypertension and conventional cigarette and electronic cigarette (e-cigarette) use, together or individually. A total of 275,762 participants were included, of which 120,766 were men and 154,996 were women. The data were drawn from the Korea Community Health Survey conducted in 2019. A multiple logistic regression model was used to examine the association between hypertension and types of smoking. Hypertension was defined as systolic blood pressure higher than 140 mmHg or diastolic blood pressure higher than 90 mmHg. Based on the types of smoking, participants were grouped as dual smokers of conventional and e-cigarettes, e-cigarette only smokers, conventional cigarette only smokers, past-smokers, and non-smokers. Compared to non-smokers, dual smokers presented the highest odds ratio for hypertension in the male [odds ratio (OR): 1.24, confidence interval (CI): 1.10 to 1.39] and female groups (OR: 1.44 CI: 0.96 to 2.15). According to the Cochran-Mantel-Haenszel test, the two-sided p-value of < 0.001 indicated an overall statistically significant association between types of smoking and hypertension. Use of both cigarette types was statistically significant in the male group, but only the use of conventional cigarettes and past smoking were statistically significant in the female group. Among smokers of the two cigarette types, those who were dual smokers of e-cigarettes and conventional cigarettes were the most likely to have the highest prevalence of hypertension.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Public Health, Yonsei University, Seoul, South Korea,Institute of Health Services Research, Yonsei University, Seoul, South Korea
| | - Sung Hoon Jeong
- Department of Public Health, Yonsei University, Seoul, South Korea,Institute of Health Services Research, Yonsei University, Seoul, South Korea
| | - Hye Jin Joo
- Department of Public Health, Yonsei University, Seoul, South Korea,Institute of Health Services Research, Yonsei University, Seoul, South Korea
| | - Minah Park
- Department of Public Health, Yonsei University, Seoul, South Korea,Institute of Health Services Research, Yonsei University, Seoul, South Korea
| | - Eun-Cheol Park
- Institute of Health Services Research, Yonsei University, Seoul, South Korea,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Hyun Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Junbok Lee
- Health IT Center, Yonsei University Health System, Seoul, South Korea
| | - Jaeyong Shin
- Institute of Health Services Research, Yonsei University, Seoul, South Korea,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Jaeyong Shin
| |
Collapse
|
25
|
Sifat AE, Archie SR, Nozohouri S, Villalba H, Zhang Y, Sharma S, Ghanwatkar Y, Vaidya B, Mara D, Cucullo L, Abbruscato TJ. Short-term exposure to JUUL electronic cigarettes can worsen ischemic stroke outcome. Fluids Barriers CNS 2022; 19:74. [PMID: 36085043 PMCID: PMC9463848 DOI: 10.1186/s12987-022-00371-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The short and long-term health effects of JUUL electronic cigarette (e-Cig) are largely unknown and warrant extensive research. We hypothesized that JUUL exposure could cause cerebrovascular toxicities impacting the progression and outcome of ischemic stroke comparable to tobacco smoke (TS) exposure. METHODS We exposed male C57 mice to TS/JUUL vapor for 14 days. LCMS/MS was used to measure brain and plasma nicotine and cotinine level. Transient middle cerebral artery occlusion (tMCAO) followed by reperfusion was used to mimic ischemic stroke. Plasma levels of IL-6 and thrombomodulin were assessed by enzyme-linked immunosorbent assay. At the same time, western blotting was used to study blood-brain barrier (BBB) tight junction (TJ) proteins expression and key inflammatory and oxidative stress markers. RESULTS tMCAO upregulated IL-6 and decreased plasma thrombomodulin levels. Post-ischemic brain injury following tMCAO was significantly worsened by JUUL/TS pre-exposure. TJ proteins expression was also downregulated by JUUL/TS pre-exposure after tMCAO. Like TS, exposure to JUUL downregulated the expression of the antioxidant Nrf2. ICAM-1 was upregulated in mice subjected to tMCAO following pre-exposure to TS or JUUL, with a greater effect of TS than JUUL. CONCLUSIONS These results suggest that JUUL exposure could negatively impact the cerebrovascular system, although to a lesser extent than TS exposure.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - David Mara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Oakland University William Beaumont School of Medicine, O' Dowd Hall, 586 Pioneer Dr, Room 415, Rochester, MI, 48309, USA.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
26
|
Bhalerao A, Cucullo L. HIV-1 gp120 and tobacco smoke synergistically disrupt the integrity of the blood-brain barrier. Eur J Cell Biol 2022; 101:151271. [PMID: 36030572 PMCID: PMC10120396 DOI: 10.1016/j.ejcb.2022.151271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
In the United States, the Centers for Disease Control and Prevention (CDC) terms HIV and tobacco use among the ten most important public health challenges we face today. In the last decade, there has been a remarkable decrease in the number of deaths due to HIV/AIDS, especially after the widespread availability and use of combination antiretroviral therapy (cART). However, people living with HIV/AIDS have a heightened risk of chronic complications and comorbidities, including neurological disorders. Around 40-60 % of HIV-infected individuals progress to NeuroAIDS, a group of disorders caused primarily by HIV-mediated damage to the central and peripheral nervous systems, despite receiving cART. The detrimental effects of chronic smoking on the cerebrovascular system are also well studied and reported. Addictive behavior, such as smoking, is more common in HIV patients compared to the general population. In this context, given the existing immune suppression, smoking can pose a significant risk for the progression of the disease to NeuroAIDS by disrupting the integrity of the blood-brain barrier (BBB). Here we show that co-treatment with Tobacco Smoke Extract (TSE) and HIV-1 gp120 (HIV envelope glycoprotein) in primary cultures of human brain microvascular endothelial cells promoted heightened cellular stress responses compared to control and individual treatments. Our findings suggest that a potential synergistic effect between smoke exposure and gp120 can worsen the loss of BBB viability, possibly exacerbating NeuroAIDS progression.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA.
| | - Luca Cucullo
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, Rochester, MI 48309, USA.
| |
Collapse
|
27
|
Salem M, Shaheen M, Borjac J. Crocin suppresses inflammation-induced apoptosis in rmTBI mouse model via modulation of Nrf2 transcriptional activity. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Electronic Cigarette and Atherosclerosis: A Comprehensive Literature Review of Latest Evidences. Int J Vasc Med 2022; 2022:4136811. [PMID: 36093338 PMCID: PMC9453087 DOI: 10.1155/2022/4136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary artery diseases (CAD), also known as coronary heart disease (CHD), are the world’s leading cause of death. The basis of coronary artery disease is the narrowing of the heart coronary artery lumen due to atherosclerosis. The use of electronic cigarettes has increased significantly over the years. However, harmful effects of electronic cigarettes are still not firm. The aim of this article is to review the impact of electronic cigarette and its role in the pathogenesis of atherosclerosis from recent studies. The results showed that several chemical compounds, such as nicotine, propylene glycol, particulate matters, heavy metals, and flavorings, in electronic cigarette induce atherosclerosis with each molecular mechanism that lead to atherosclerosis progression by formation of ROS, endothelial dysfunction, and inflammation. Further research is still needed to determine the exact mechanism and provide more clinical evidence.
Collapse
|
29
|
Mills A, Dakhlallah D, Robinson M, Kirk A, Llavina S, Boyd JW, Chantler PD, Olfert IM. Short-term effects of electronic cigarettes on cerebrovascular function: A time course study. Exp Physiol 2022; 107:994-1006. [PMID: 35661445 PMCID: PMC9357197 DOI: 10.1113/ep090341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? Acute exposure to electronic cigarettes (Ecigs) triggers abnormal vascular responses in systemic arteries; however, effects on cerebral vessels are poorly understood and time for recovery is not known. We hypothesized that exposure to cigarettes or Ecigs would trigger rapid (<4 h) impairment of the middle cerebral artery (MCA) but that this would resolve by 24 h. What is the main finding and its importance? Cigarettes and Ecigs caused similar degree and duration of MCA impairment. We find it takes ~72 hours after exposure for MCA function to return to normal. This suggests that Ecig use is likely to produce similar adverse vascular health outcomes to those seen with cigarette smoke. ABSTRACT Temporal influences of electronic cigarettes (Ecigs) on blood vessels are poorly understood. In this study, we evaluated a single episode of cigarette versus Ecig exposure on middle cerebral artery (MCA) reactivity and determined how long after the exposure MCA responses took to return to normal. We hypothesized that cigarette and Ecig exposure would induce rapid (<4 h) reduction in MCA endothelial function and would resolve within 24 h. Sprague-Dawley rats (4 months old) were exposed to either air (n = 5), traditional cigarettes (20 puffs, n = 16) or Ecigs (20-puff group, n = 16; or 60-puff group, n = 12). Thereafter, the cigarette and Ecig groups were randomly assigned for postexposure vessel myography testing on day 0 (D0, 1-4 h postexposure), day 1 (D1, 24-28 h postexposure), day 2 (D2, 48-52 h postexposure) and day 3 (72-76 h postexposure). The greatest effect on endothelium-dependent dilatation was observed within 24 h of exposure (∼50% decline between D0 and D1) for both cigarette and Ecig groups, and impairment persisted with all groups for up to 3 days. Changes in endothelium-independent dilatation responses were less severe (∼27%) and shorter lived (recovering by D2) compared with endothelium-dependent dilatation responses. Vasoconstriction in response to serotonin (5-HT) was similar to endothelium-independent dilatation, with greatest impairment (∼45% for all exposure groups) at D0-D1, returning to normal by D2. These data show that exposure to cigarettes and Ecigs triggers a similar level/duration of cerebrovascular dysfunction after a single exposure. The finding that Ecig (without nicotine) and cigarette (with nicotine) exposure produce the same effects suggesting that nicotine is not likely to be triggering MCA dysfunction, and that vaping (with/without nicotine) has potential to produce the same vascular harm and/or disease as smoking.
Collapse
Affiliation(s)
- Amber Mills
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Duaa Dakhlallah
- Dept. of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506,Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Egypt
| | - Madison Robinson
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Ally Kirk
- Alderson Broaddus University, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Sam Llavina
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jonathan W. Boyd
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Orthopedics, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
| | - I. Mark Olfert
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506,Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
30
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
31
|
Mekala N, Gheewala N, Rom S, Sriram U, Persidsky Y. Blocking of P2X7r Reduces Mitochondrial Stress Induced by Alcohol and Electronic Cigarette Exposure in Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:1328. [PMID: 35883819 PMCID: PMC9311929 DOI: 10.3390/antiox11071328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
Studies in both humans and animal models demonstrated that chronic alcohol/e-cigarette (e-Cig) exposure affects mitochondrial function and impairs barrier function in brain microvascular endothelial cells (BMVECs). Identification of the signaling pathways by which chronic alcohol/e-Cig exposure induces mitochondrial damage in BMVEC is vital for protection of the blood-brain barrier (BBB). To address the issue, we treated human BMVEC [hBMVECs (D3 cell-line)] with ethanol (ETH) [100 mM], acetaldehyde (ALD) [100 μM], or e-cigarette (e-Cig) [35 ng/mL of 1.8% or 0% nicotine] conditioned medium and showed reduced mitochondrial oxidative phosphorylation (OXPHOS) measured by a Seahorse analyzer. Seahorse data were further complemented with the expression of mitochondrial OXPHOS proteins detected by Western blots. We also observed cytosolic escape of ATP and its extracellular release due to the disruption of mitochondrial membrane potential caused by ETH, ALD, or 1.8% e-Cig exposure. Moreover ETH, ALD, or 1.8% e-Cig treatment resulted in elevated purinergic P2X7r and TRPV1 channel gene expression, measured using qPCR. We also demonstrated the protective role of P2X7r antagonist A804598 (10 μM) in restoring mitochondrial oxidative phosphorylation levels and preventing extracellular ATP release. In a BBB functional assay using trans-endothelial electrical resistance, we showed that blocking the P2X7r channel enhanced barrier function. In summary, we identified the potential common pathways of mitochondrial injury caused by ETH, ALD, and 1.8% e-Cig which allow new protective interventions. We are further investigating the potential link between P2X7 regulatory pathways and mitochondrial health.
Collapse
Affiliation(s)
| | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (N.G.); (S.R.); (U.S.)
| |
Collapse
|
32
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
33
|
Esteban-Lopez M, Perry MD, Garbinski LD, Manevski M, Andre M, Ceyhan Y, Caobi A, Paul P, Lau LS, Ramelow J, Owens F, Souchak J, Ales E, El-Hage N. Health effects and known pathology associated with the use of E-cigarettes. Toxicol Rep 2022; 9:1357-1368. [PMID: 36561957 PMCID: PMC9764206 DOI: 10.1016/j.toxrep.2022.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022] Open
Abstract
In recent years, new nicotine delivery methods have emerged, and many users are choosing electronic cigarettes (e-cigarettes) over traditional tobacco cigarettes. E-cigarette use is very popular among adolescents, with more than 3.5 million currently using these products in the US. Despite the increased prevalence of e-cigarette use, there is limited knowledge regarding the health impact of e-cigarettes on the general population. Based on published findings by others, E-cigarette is associated with lung injury outbreak, which increased health and safety concerns related to consuming this product. Different components of e-cigarettes, including food-safe liquid solvents and flavorings, can cause health issues related to pneumonia, pulmonary injury, and bronchiolitis. In addition, e-cigarettes contain alarmingly high levels of carcinogens and toxicants that may have long-lasting effects on other organ systems, including the development of neurological manifestations, lung cancer, cardiovascular disorders, and tooth decay. Despite the well- documented potential for harm, e-cigarettes do not appear to increase susceptibility to SARS-CoV- 2 infection. Furthermore, some studies have found that e-cigarette users experience improvements in lung health and minimal adverse effects. Therefore, more studies are needed to provide a definitive conclusion on the long-term safety of e-cigarettes. The purpose of this review is to inform the readers about the possible health-risks associated with the use of e-cigarettes, especially among the group of young and young-adults, from a molecular biology point of view.
Collapse
Key Words
- AEC, airway epithelial cells
- AM, alveolar macrophages
- BAL, bronchial alveolar lavage
- CC16, Clara cell protein 16
- CM, cardiomyocyte
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- CSC, Cancer Stem Cell
- CYP, cytochrome P450
- E-cigarettes
- E2F1, E2F transcription factor 1
- EMT, epithelial-to-mesenchymal transition
- ENDS, electronic nicotine delivery system
- EVALI
- EVALI, e-cigarette or vaping product use-associated lung injury
- FDA, Food and Drug Administration
- FOXO3, forkhead box O3
- HNSCC, head and neck squamous cancer cells
- HUVEC, human umbilical vein endothelial cells
- Health risks
- IL, interleukin
- LDL, low-density lipoprotein
- MCP-1, monocyte chemoattractant protein-1
- MMP9, matrix metallopeptidase 9
- MPP, Mycoplasma pneumoniae pneumonia
- NET, neutrophil extracellular traps
- NK, natural killer
- NOX, NADPH oxidase
- NQO-1, NAD(P)H quinone dehydrogenase 1
- Nicotine
- Nrf2, nuclear factor erythroid 2-related factor 2
- OGG1/2, 8-oxoguanine glycosylase
- OS, oxidative stress
- Oct4,, Octamer-binding transcription factor 4
- PAFR, platelet-activating factor receptor
- PAHs, polycyclic aromatic hydrocarbons
- PG, propylene glycol
- ROS, reactive oxygen species
- Sox2,, SRY (sex determining region Y)-box 2
- THC, Tetrahydrocannabinol
- TNF‐α, tumor necrosis factor alpha
- VAPI, vaping-associated pulmonary injury
- VG, vegetable glycerin
- Vaping
- XPC, xeroderma pigmentosum complementation group C
- Yap1, Yes associated protein 1
- ZEB, zinc finger E-box binding homeobox
- ZO-1, zonula occludens-1
- e-cigarettes, electronic cigarettes
- e-liquid, e-cigarette liquid
- e-vapor, e-cigarette vapor
- iPSC-EC, induced pluripotent stem cell-derived endothelial cells
- pAMPK, phospho-AMP-activated protein kinase
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Departments of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Marissa D. Perry
- Immunology and Nano-medicine, Florida International University, Miami, FL 33199, USA
| | - Luis D. Garbinski
- Cell Biology and Pharmacology and Florida International University, Miami, FL 33199, USA
| | - Marko Manevski
- Immunology and Nano-medicine, Florida International University, Miami, FL 33199, USA
| | - Mickensone Andre
- Immunology and Nano-medicine, Florida International University, Miami, FL 33199, USA
| | - Yasemin Ceyhan
- Departments of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Allen Caobi
- Immunology and Nano-medicine, Florida International University, Miami, FL 33199, USA
| | - Patience Paul
- Translational Glycobiology, Florida International University, Miami, FL 33199, USA
| | - Lee Seng Lau
- Translational Glycobiology, Florida International University, Miami, FL 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Biological Sciences in the College of Arts, Science and Education and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Florida Owens
- Immunology and Nano-medicine, Florida International University, Miami, FL 33199, USA
| | - Joseph Souchak
- Translational Glycobiology, Florida International University, Miami, FL 33199, USA
| | - Evan Ales
- Translational Glycobiology, Florida International University, Miami, FL 33199, USA
| | - Nazira El-Hage
- Immunology and Nano-medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
34
|
Virgili F, Nenna R, Ben David S, Mancino E, Di Mattia G, Matera L, Petrarca L, Midulla F. E-cigarettes and youth: an unresolved Public Health concern. Ital J Pediatr 2022; 48:97. [PMID: 35701844 PMCID: PMC9194784 DOI: 10.1186/s13052-022-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
The use of electronic cigarettes (e-cigarette) and vaping devices started as a potential aid for cessation and reducing the harmful consequences of cigarette smoking, mainly in the adult population. Today e-cigarette use is highly increasing in vulnerable populations, especially young and pregnant women, due to the misconception of its harmless use. Despite the growing acknowledgment in e-cigarette as a potential harmful device, and due to mixed information found concerning its beneficial aid for smokers, along with an insufficient clinical study done in human models, it is important to further evaluate the possible benefits and risks of non-combusting, vaping nicotine or non-nicotine delivery devices. In this review we tried to summarize the latest updated information found in the literature, concentrating mainly in the variety of adverse effects of e-cigarette use and its contribution for recent and future health concerns.
Collapse
Affiliation(s)
- Fabrizio Virgili
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Raffaella Nenna
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | - Shira Ben David
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrica Mancino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Greta Di Mattia
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Luigi Matera
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Laura Petrarca
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| |
Collapse
|
35
|
Zhang Y, Archie SR, Ghanwatkar Y, Sharma S, Nozohouri S, Burks E, Mdzinarishvili A, Liu Z, Abbruscato TJ. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS 2022; 19:46. [PMID: 35672716 PMCID: PMC9171490 DOI: 10.1186/s12987-022-00339-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Alexander Mdzinarishvili
- Imaging Core at Office of Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Zijuan Liu
- Imaging Core at Office of Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA.
| |
Collapse
|
36
|
Effect Comparison of E-Cigarette and Traditional Smoking and Association with Stroke-A Cross-Sectional Study of NHANES. Neurol Int 2022; 14:441-452. [PMID: 35736618 PMCID: PMC9227824 DOI: 10.3390/neurolint14020037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction: Tobacco use is one of the most significant risk factors for stroke. Besides traditional cigarettes and combustible products, the use of e-cigarettes and electronic nicotine delivery products has been widespread among young adults in the recent era. Furthermore, the trend of vaping has increased over the last decade. However, the relationship between e-cigarettes and stroke is largely unknown. The aim of this study was to evaluate the prevalence and identify the relationship between e-cigarette smoking and stroke. Methods: A cross-sectional study was performed using the NHANES database of the US population. Adults with a history of smoking were considered in our study and divided into three groups, e-cigarette users, traditional, and dual smokers. The Chi-squared test, Wilcoxon rank-sum test, and multivariable logistic regression analysis were used to identify the prevalence and association of e-cigarette consumption and stroke. Results: Out of a total of 266,058 respondents from 2015 to 2018, we found 79,825 respondents who smoked e-cigarettes (9.72%) or traditional (29.37%) or dual smoking (60.91%). Stroke prevalence among e-cigarette smokers was 1.57%. Stroke was more prevalent among traditional smokers than among e-cigarette smokers. (6.75% vs. 1.09%; p < 0.0001) E-cigarette smokers had early onset of stroke in comparison with traditional smokers. (median age: 48 vs. 59 years; p < 0.0001). Among females with stroke, the prevalence of e-cigarette use was higher in comparison with traditional smoking (36.36% vs. 33.91%; p < 0.0001). Among the stroke population, the prevalence of e-cigarette use was higher among Mexican-Americans (21.21% vs. 6.02%) and other Hispanics (24.24% vs. 7.70%) compared with traditional smoking (p < 0.0001). The regression analysis found higher odds of stroke history among e-cigarette users than traditional smokers [aOR: 1.15; 95% CI: 1.15−1.16)]. Conclusion: Though stroke was more prevalent in traditional smokers, the incidence of stroke was early-in-onset and was strongly associated with e-cigarette use compared to traditional smokers. We have also identified vascular effects of e-cigarettes components as possible triggers for the stroke.
Collapse
|
37
|
Chronic Nicotine Exposure Increases Hematoma Expansion Following Collagenase-Induced Intracerebral Hemorrhage in Rats. Biomolecules 2022; 12:biom12050621. [PMID: 35625548 PMCID: PMC9138464 DOI: 10.3390/biom12050621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (sICH) is a deadly stroke subtype, and tobacco use increases sICH risk. However epidemiological studies show that, there are no confirmatory studies showing the effect of tobacco use on sICH outcome. Therefore, we evaluated the effect of chronic nicotine exposure (as a surrogate for tobacco use) on outcomes following sICH. Young male and female rats were randomly assigned to either nicotine (4.5 mg/kg b.w. per day) or vehicle (saline) treatment (2–3 weeks) groups. sICH was induced by injecting collagenase into the right striatum. Neurological score and hematoma volume were determined 24 h post-sICH. The hematoma volumes in nicotine-treated male and female rats were significantly higher by 42% and 48% when compared to vehicle-treated male and female rats, respectively. Neurological deficits measured in terms of neurological score for the nicotine-treated male and female groups were significantly higher when compared to the respective vehicle-treated male and female groups. Our results show that chronic nicotine exposure increases hematoma volume post-sICH in rats of both sexes. Identifying the mechanism of nicotine-dependent increase in hematoma growth post-sICH will be crucial to understanding the detrimental effect of tobacco use on the severity of bleeding following intracerebral hemorrhage.
Collapse
|
38
|
Espinoza-Derout J, Shao XM, Lao CJ, Hasan KM, Rivera JC, Jordan MC, Echeverria V, Roos KP, Sinha-Hikim AP, Friedman TC. Electronic Cigarette Use and the Risk of Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:879726. [PMID: 35463745 PMCID: PMC9021536 DOI: 10.3389/fcvm.2022.879726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesi M. Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Maria C. Jordan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Valentina Echeverria
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Kenneth P. Roos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
39
|
Xu Z, Tian Y, Li AX, Tang J, Jing XY, Deng C, Mo Z, Wang J, Lai J, Liu X, Guo X, Li T, Li S, Wang L, Lu Z, Chen Z, Liu XA. Menthol Flavor in E-Cigarette Vapor Modulates Social Behavior Correlated With Central and Peripheral Changes of Immunometabolic Signalings. Front Mol Neurosci 2022; 15:800406. [PMID: 35359576 PMCID: PMC8960730 DOI: 10.3389/fnmol.2022.800406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The use of electronic cigarette (e-cigarette) has been increasing dramatically worldwide. More than 8,000 flavors of e-cigarettes are currently marketed and menthol is one of the most popular flavor additives in the electronic nicotine delivery systems (ENDS). There is a controversy over the roles of e-cigarettes in social behavior, and little is known about the potential impacts of flavorings in the ENDS. In our study, we aimed to investigate the effects of menthol flavor in ENDS on the social behavior of long-term vapor-exposed mice with a daily intake limit, and the underlying immunometabolic changes in the central and peripheral systems. We found that the addition of menthol flavor in nicotine vapor enhanced the social activity compared with the nicotine alone. The dramatically reduced activation of cellular energy measured by adenosine 5′ monophosphate-activated protein kinase (AMPK) signaling in the hippocampus were observed after the chronic exposure of menthol-flavored ENDS. Multiple sera cytokines including C5, TIMP-1, and CXCL13 were decreased accordingly as per their peripheral immunometabolic responses to menthol flavor in the nicotine vapor. The serum level of C5 was positively correlated with the alteration activity of the AMPK-ERK signaling in the hippocampus. Our current findings provide evidence for the enhancement of menthol flavor in ENDS on social functioning, which is correlated with the central and peripheral immunometabolic disruptions; this raises the vigilance of the cautious addition of various flavorings in e-cigarettes and the urgency of further investigations on the complex interplay and health effects of flavoring additives with nicotine in e-cigarettes.
Collapse
Affiliation(s)
- Zhibin Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - A.-Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Forensic Medicine, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jiahang Tang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiao-Yuan Jing
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunshan Deng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhizhun Mo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxuan Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juan Lai
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuemei Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Zuxin Chen,
| | - Xin-an Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zuxin Chen,
| |
Collapse
|
40
|
Archie SR, Sharma S, Burks E, Abbruscato T. Biological determinants impact the neurovascular toxicity of nicotine and tobacco smoke: A pharmacokinetic and pharmacodynamics perspective. Neurotoxicology 2022; 89:140-160. [PMID: 35150755 PMCID: PMC8958572 DOI: 10.1016/j.neuro.2022.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests that the detrimental effect of nicotine and tobacco smoke on the central nervous system (CNS) is caused by the neurotoxic role of nicotine on blood-brain barrier (BBB) permeability, nicotinic acetylcholine receptor expression, and the dopaminergic system. The ultimate consequence of these nicotine associated neurotoxicities can lead to cerebrovascular dysfunction, altered behavioral outcomes (hyperactivity and cognitive dysfunction) as well as future drug abuse and addiction. The severity of these detrimental effects can be associated with several biological determinants. Sex and age are two important biological determinants which can affect the pharmacokinetics and pharmacodynamics of several systemically available substances, including nicotine. With regard to sex, the availability of gonadal hormone is impacted by the pregnancy status and menstrual cycle resulting in altered metabolism rate of nicotine. Additionally, the observed lower smoking cessation rate in females compared to males is a consequence of differential effects of sex on pharmacokinetics and pharmacodynamics of nicotine. Similarly, age-dependent alterations in the pharmacokinetics and pharmacodynamics of nicotine have also been observed. One such example is related to severe vulnerability of adolescence towards addiction and long-term behavioral changes which may continue through adulthood. Considering the possible neurotoxic effects of nicotine on the central nervous system and the deterministic role of sex as well as age on these neurotoxic effects of smoking, it has become important to consider sex and age to study nicotine induced neurotoxicity and development of treatment strategies for combating possible harmful effects of nicotine. In the future, understanding the role of sex and age on the neurotoxic actions of nicotine can facilitate the individualization and optimization of treatment(s) to mitigate nicotine induced neurotoxicity as well as smoking cessation therapy. Unfortunately, however, no such comprehensive study is available which has considered both the sex- and age-dependent neurotoxicity of nicotine, as of today. Hence, the overreaching goal of this review article is to analyze and summarize the impact of sex and age on pharmacokinetics and pharmacodynamics of nicotine and possible neurotoxic consequences associated with nicotine in order to emphasize the importance of including these biological factors for such studies.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
41
|
Alarabi AB, Lozano PA, Khasawneh FT, Alshbool FZ. The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci 2022; 290:120255. [PMID: 34953893 PMCID: PMC9118784 DOI: 10.1016/j.lfs.2021.120255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Although conventional cigarette smoking is declining, emerging tobacco related products (ETRPs) are currently gaining ground, especially among the youth. These products include electronic cigarettes, waterpipes/hookah, cigars/cigarillo, smokeless tobacco, and heat-not-burn cigarettes. The observed increase in the use of ETRPs is multifactorial and complex but appears to be mainly driven by efforts from the major tobacco companies to reinvent themselves, and present more appealing and allegedly safe(r) tobacco products. However, it is becoming apparent that these products produce substantial amounts of toxic chemicals, many of which have been shown to exert negative health effects, including in the context of the cardiovascular system. Thus, there has been research efforts, albeit limited in general, to characterize the health impact of these products on occlusive/thrombotic cardiovascular diseases (CVD). In this review, we will discuss the potential impact of ETRPs on thrombosis-based CVD. Specifically, we will review how these products and the major chemicals they produce and/or emit can trigger key players in the process of thrombosis, namely inflammation, oxidative stress, platelets, coagulation, and the vascular endothelium, and the relationship between these effects.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|
42
|
Arrieta F, Pedro-Botet J, Iglesias P, Obaya JC, Montanez L, Maldonado GF, Becerra A, Navarro J, Perez JC, Petrecca R, Pardo JL, Ribalta J, Sánchez-Margalet V, Duran S, Tébar FJ, Aguilar M. Diabetes mellitus and cardiovascular risk: an update of the recommendations of the Diabetes and Cardiovascular Disease Working Group of the Spanish Society of Diabetes (SED, 2021). CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2022; 34:36-55. [PMID: 34330545 DOI: 10.1016/j.arteri.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
This document is an update to the clinical practice recommendations for the management of cardiovascular risk factors (CVRF) in diabetes mellitus. The consensus has been developed by a multidisciplinary team made up of members of the Cardiovascular Risk Group of the Spanish Diabetes Society (SED). The work is a necessary update as, since the last review three years ago, there have been many clinical trials that have studied the cardiovascular outcomes of numerous drugs in the diabetic population. We believe that this guideline update may be of interest to all clinicians treating patients with diabetes.
Collapse
Affiliation(s)
- Francisco Arrieta
- Servicio de Endocrinología y Nutrición, Hospital Ramón y Cajal, Madrid, España.
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Hospital del Mar, Barcelona, España
| | - Pedro Iglesias
- Servicio de Endocrinología y Nutrición, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, España
| | - Juan Carlos Obaya
- Centro de Salud CHOPERA, Atención Primaria Alcobendas, Gdt Enfermedades Cardiovasculares Semfyc, Madrid, España
| | - Laura Montanez
- Servicio de Endocrinología y Nutrición, Hospital Ramón y Cajal, Madrid, España
| | | | - Antonio Becerra
- Servicio de Endocrinología y Nutrición, Hospital Ramón y Cajal, Madrid, España
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia, Gdt Diabetes Semfyc, Valencia, España
| | - J C Perez
- Centro de Salud Rincón de la Victoria, Atención Primaria, Málaga, España
| | - Romina Petrecca
- Unidad de Nutrición y dietética, Hospital de la Princesa, Madrid, España
| | - José Luis Pardo
- Centro de Salud Orihuela I. Médico de Familia, Atención Primaria Alicante, Alicante, España
| | - Josep Ribalta
- Universidad Rovira i Vigili, IISPV, CIBERDEM, Tarragona, España
| | | | - Santiago Duran
- Servicio de Endocrinología y Nutrición, Hospital Virgen de Valme, Sevilla, España
| | - Francisco Javier Tébar
- Servicio de Endocrinología y Nutrición, Hospital Universitario Virgen de la Arrixaca, Murcia, España
| | - Manuel Aguilar
- Servicio de Endocrinología y Nutrición, Hospital Puerta del Mar, Cádiz, España
| |
Collapse
|
43
|
Snoderly HT, Nurkiewicz TR, Bowdridge EC, Bennewitz MF. E-Cigarette Use: Device Market, Study Design, and Emerging Evidence of Biological Consequences. Int J Mol Sci 2021; 22:12452. [PMID: 34830344 PMCID: PMC8619996 DOI: 10.3390/ijms222212452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Electronic cigarettes are frequently viewed as a safer alternative to conventional cigarettes; however, evidence to support this perspective has not materialized. Indeed, the current literature reports that electronic cigarette use is associated with both acute lung injury and subclinical dysfunction to the lung and vasculature that may result in pathology following chronic use. E-cigarettes can alter vascular dynamics, polarize innate immune populations towards a proinflammatory state, compromise barrier function in the pulmonary endothelium and epithelium, and promote pre-oncogenic phenomena. This review will summarize the variety of e-cigarette products available to users, discuss current challenges in e-cigarette study design, outline the range of pathologies occurring in cases of e-cigarette associated acute lung injury, highlight disease supporting tissue- and cellular-level changes resulting from e-cigarette exposure, and briefly examine how these changes may promote tumorigenesis. Continued research of the mechanisms by which e-cigarettes induce pathology benefit users and clinicians by resulting in increased regulation of vaping devices, informing treatments for emerging diseases e-cigarettes produce, and increasing public awareness to reduce e-cigarette use and the onset of preventable disease.
Collapse
Affiliation(s)
- Hunter T. Snoderly
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth C. Bowdridge
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
| |
Collapse
|
44
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
45
|
Kaiser AJ, Salem C, Alvarenga BJ, Pagliaro A, Smith KP, Valerio LG, Benam KH. A robotic system for real-time analysis of inhaled submicron and microparticles. iScience 2021; 24:103091. [PMID: 34755082 PMCID: PMC8560831 DOI: 10.1016/j.isci.2021.103091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Vitamin E acetate (VEA) has been strongly linked to outbreak of electronic cigarette (EC) or vaping product use-associated lung injury. How VEA leads to such an unexpected morbidity and mortality is currently unknown. To understand whether VEA impacts the disposition profile of inhaled particles, we created a biologically inspired robotic system that quantitatively analyzes submicron and microparticles generated from ECs in real-time while mimicking clinically relevant breathing and vaping topography exactly as happens in humans. We observed addition of even small quantities of VEA was sufficient to alter size distribution and significantly enhance total particles inhaled from ECs. Moreover, we demonstrated utility of our biomimetic robot for studying influence of nicotine and breathing profiles from obstructive and restrictive lung disorders. We anticipate our system will serve as a novel preclinical scientific research, decision-support tool when insight into toxicological impact of modifications in electronic nicotine delivery systems is desired. Vitamin E acetate (VEA) has been strongly linked to outbreak of EVALI A bio-inspired robot was created for real-time analysis of inhaled particles from ENDS VEA in e-liquid, even at small doses, was sufficient to enhance total inhaled particles This robotic system enables preclinical toxicity evaluation of ENDS and tobacco products
Collapse
Affiliation(s)
- Alexander J. Kaiser
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Cassie Salem
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Bob J. Alvarenga
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anthony Pagliaro
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kelly P. Smith
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Luis G. Valerio
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kambez H. Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Corresponding author
| |
Collapse
|
46
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
47
|
Bonner E, Chang Y, Christie E, Colvin V, Cunningham B, Elson D, Ghetu C, Huizenga J, Hutton SJ, Kolluri SK, Maggio S, Moran I, Parker B, Rericha Y, Rivera BN, Samon S, Schwichtenberg T, Shankar P, Simonich MT, Wilson LB, Tanguay RL. The chemistry and toxicology of vaping. Pharmacol Ther 2021; 225:107837. [PMID: 33753133 PMCID: PMC8263470 DOI: 10.1016/j.pharmthera.2021.107837] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.
Collapse
Affiliation(s)
- Emily Bonner
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Chang
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Emerson Christie
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Victoria Colvin
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Daniel Elson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Christine Ghetu
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Juliana Huizenga
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Stephanie Maggio
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Ian Moran
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Bethany Parker
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Samantha Samon
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Trever Schwichtenberg
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Lindsay B Wilson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
48
|
Smoking and Neuropsychiatric Disease-Associations and Underlying Mechanisms. Int J Mol Sci 2021; 22:ijms22147272. [PMID: 34298890 PMCID: PMC8304236 DOI: 10.3390/ijms22147272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Despite extensive efforts to combat cigarette smoking/tobacco use, it still remains a leading cause of global morbidity and mortality, killing more than eight million people each year. While tobacco smoking is a major risk factor for non-communicable diseases related to the four main groups—cardiovascular disease, cancer, chronic lung disease, and diabetes—its impact on neuropsychiatric risk is rather elusive. The aim of this review article is to emphasize the importance of smoking as a potential risk factor for neuropsychiatric disease and to identify central pathophysiological mechanisms that may contribute to this relationship. There is strong evidence from epidemiological and experimental studies indicating that smoking may increase the risk of various neuropsychiatric diseases, such as dementia/cognitive decline, schizophrenia/psychosis, depression, anxiety disorder, and suicidal behavior induced by structural and functional alterations of the central nervous system, mainly centered on inflammatory and oxidative stress pathways. From a public health perspective, preventive measures and policies designed to counteract the global epidemic of smoking should necessarily include warnings and actions that address the risk of neuropsychiatric disease.
Collapse
|
49
|
Sivandzade F, Alqahtani F, Cucullo L. Impact of chronic smoking on traumatic brain microvascular injury: An in vitro study. J Cell Mol Med 2021; 25:7122-7134. [PMID: 34160882 PMCID: PMC8335687 DOI: 10.1111/jcmm.16741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a major reason of cerebrovascular and neurological damage. Premorbid conditions such as tobacco smoking (TS) can worsen post‐TBI injuries by promoting vascular endothelial impairments. Indeed, TS‐induced oxidative stress (OS) and inflammation can hamper the blood‐brain barrier (BBB) endothelium. This study evaluated the subsequence of chronic TS exposure on BBB endothelial cells in an established in vitro model of traumatic cell injury. Experiments were conducted on confluent TS‐exposed mouse brain microvascular endothelial cells (mBMEC‐P5) following scratch injury. The expression of BBB integrity–associated tight junction (TJ) proteins was assessed by immunofluorescence imaging (IF), Western blotting (WB) and quantitative RT‐PCR. We evaluated reactive oxygen species (ROS) generation, the nuclear factor 2–related (Nrf2) with its downstream effectors and several inflammatory markers. Thrombomodulin expression was used to assess the endothelial haemostatic response to injury and TS exposure. Our results show that TS significantly decreased Nrf2, thrombomodulin and TJ expression in the BBB endothelium injury models while increased OS and inflammation compared to parallel TS‐free cultures. These data suggest that chronic TS exposure exacerbates traumatic endothelial injury and abrogates the protective antioxidative cell responses. The downstream effect was a more significant decline of BBB endothelial viability, which could aggravate subsequent neurological impairments.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
50
|
Kadry H, Noorani B, Bickel U, Abbruscato TJ, Cucullo L. Comparative assessment of in vitro BBB tight junction integrity following exposure to cigarette smoke and e-cigarette vapor: a quantitative evaluation of the protective effects of metformin using small-molecular-weight paracellular markers. Fluids Barriers CNS 2021; 18:28. [PMID: 34158083 PMCID: PMC8220771 DOI: 10.1186/s12987-021-00261-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background The blood–brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) from blood-borne agents and potentially harmful xenobiotics. Our group’s previous data has shown that tobacco smoke (TS) and electronic cigarettes (EC) affect the BBB integrity, increase stroke incidence, and are considered a risk factor for multiple CNS disorders. Metformin was also found to abrogate the adverse effects of TS and EC. Methods We used sucrose and mannitol as paracellular markers to quantitatively assess TS and EC’s impact on the BBB in-vitro. Specifically, we used a quantitative platform to determine the harmful effects of smoking on the BBB and study the protective effect of metformin. Using a transwell system and iPSCs-derived BMECs, we assessed TS and EC’s effect on sucrose and mannitol permeability with and without metformin pre-treatment at different time points. Concurrently, using immunofluorescence (IF) and Western blot (WB) techniques, we evaluated the expression and distribution of tight junction proteins, including ZO-1, occludin, and claudin-5. Results Our data showed that TS and EC negatively affect sucrose and mannitol permeability starting after 6 h and up to 24 h. The loss of barrier integrity was associated with a reduction of TEER values. While the overall expression level of ZO-1 and occludin was not significantly downregulated, the distribution of ZO-1 was altered, and discontinuation patterns were evident through IF imaging. In contrast to occludin, claudin-5 expression was significantly decreased by TS and EC, as demonstrated by WB and IF data. Conclusion In agreement with previous studies, our data showed the metformin could counteract the negative impact of TS and EC on BBB integrity, thus suggesting the possibility of repurposing this drug to afford cerebrovascular protection.
Collapse
Affiliation(s)
- Hossam Kadry
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University, William Beaumont School of Medicine586 Pioneer Dr, 460 O'Dowd Hall, Office 415, Rochester, MI, 48309, USA.
| |
Collapse
|