1
|
Kaur M, Rahman T.K. S, Dolma S, Kaur R, Kapoor HS, Goyal LD, Khetarpal P. Xenobiotic metabolizing gene variants and the risk of male infertility - A systematic review, meta-analysis and in silico analysis. Toxicol Rep 2025; 14:102019. [PMID: 40271533 PMCID: PMC12017983 DOI: 10.1016/j.toxrep.2025.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Many studies have been performed to explore the role of xenobiotic metabolizing gene variants and male infertility risk. However, the results remain inconclusive and contradictory. Therefore, the objective of the present study was to investigate the association among 16 genes and its 24 variants (CAT rs1001179, rs7943316, SOD2 rs4880, GPX1 rs1050450, CYP1A1 rs1048943, rs4646903, GSTP1 rs1695, MTHFR rs1801133, rs1801131, rs2274976, rs2066472, MTHFD1 rs2236225, MTRR rs1801394, CYP2D6 rs3892097, PON1 rs854560, rs662, PON2 rs7493, NAT2 rs1799930, NRF2 rs6721961, AHR rs2066853, rs1476080, rs6960165, null GSTM1, null GSTT1) involved in xenobiotic metabolism and their correlation with male infertility. A literature search was done using PubMed, Google Scholar, and Science Direct. Meta-analysis was conducted using Review Manager 5.3 software. Genotype-tissue expression (GTEx) portal and RegulomDB were used to determine genotype and tissue expression. Pathogenicity of significant gene variants was determined using I-Mutant 2.0, PolyPhen 2, SNP & GO, SIFT, and CADD tools. A total of 106 studies were selected for the present study to analyze 16 genes and their variants. SOD2 rs4880, CYP1A1 rs4646903, MTHFR rs1801133, rs1801131, rs2274976, PON1 rs854560, NRF2 rs6721961, and null GSTM1 gene variants are associated with increased risk of male infertility. SOD2 rs4880 and MTHFR rs1801133, rs1801131, rs2274976 are found to decrease the stability of the protein. However, no significant association was observed between CAT rs1001179, rs7943316, GPX1 rs1050450, CYP1A1 rs1048943,GSTP1 rs1695,MTHFR rs2066472, MTHFD1 rs2236225, MTRR rs1801394, CYP2D6 rs3892097, PON1 rs662, PON2 rs7493, NAT2 rs1799930, AHR rs2066853, rs1476080, rs6960165, null GSTT1 gene polymorphisms and the risk of male infertility.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics, Punjabi University Patiala, 147002, India
| | - Shahil Rahman T.K.
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151001, India
| | - Sangay Dolma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151001, India
| | - Rajinder Kaur
- Department of Human Genetics, Punjabi University Patiala, 147002, India
| | | | - Lajya Devi Goyal
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Bathinda 151001, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151001, India
| |
Collapse
|
2
|
Li A, Zhao L, Liu C, Xu X, Jia J. Gray Frequency-Based Methodology for Assessing Cell Damage. ACS OMEGA 2025; 10:14084-14093. [PMID: 40256511 PMCID: PMC12004167 DOI: 10.1021/acsomega.4c11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Cell biology techniques offer a solid foundation for evaluating and forecasting the danger of pollutants in the investigations of environmental toxicology. Studies on ecological toxicity, medication development, and illness diagnosis depend on evaluating cellular damage. The morphology of stimulated cells can alter the light scattering and reflection, and the brightness of microscopic images of the cells. This study demonstrated that stimulation-damaged and normal cells had distinct gray value distributions which led to the proposal of a novel theory to measure cellular damage by image brightness. Second, various cell types were used to confirm the method's applicability. Additionally, an evaluation technique based on gray frequency analysis can be created to determine the extent of cellular damage. This approach provides an effective and helpful tool for cellular damage visualization and quantitative evaluation in environmental toxicity assessment.
Collapse
Affiliation(s)
- Anqi Li
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
| | - Linying Zhao
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
| | - Changyu Liu
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| | - Xiaolong Xu
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| | - Jianbo Jia
- Jiangmen
Key Laboratory of Synthetic Chemistry and Cleaner Production, School
of Environmental and Chemical Engineering; Carbon Neutrality Innovation
Center, Wuyi University, Jiangmen 529020, China
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Industry Jieyang
Center, Jieyang 515200, China
| |
Collapse
|
3
|
Chu CS, Chen YT, Sun WC, Liang WZ. Investigate the protective effects of eicosapentaenoic acid in human astrocytes of oxidative stress damage and explore its underlying mechanisms. Mol Biol Rep 2025; 52:391. [PMID: 40232525 DOI: 10.1007/s11033-025-10481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND The importance of fatty acids in human health and their potential in treating various brain diseases is increasingly acknowledged. Research indicates that ultra-long-chain fatty acids adversely affect dietary habits, while omega (ω)-3 polyunsaturated fatty acids confer health benefits. Eicosapentaenoic acid (EPA), an ω-3 polyunsaturated fatty acid, manifests diverse protective activities, including anti-oxidative effects and the attenuation of brain diseases. Previous studies have suggested that EPA can alleviate oxidative stress and forestall diseases stemming from oxidative damage. Nevertheless, EPA's precise antioxidant mechanism and signaling pathway in human astrocytes remain elusive. To address this knowledge gap, we established an H2O2-induced oxidative damage model in Gibco® Human Astrocytes (GHA cells) and elucidated the underlying mechanisms and signaling pathways. METHODS AND RESULTS Our assessments included cell viability through the CCK-8 assay, morphological examination via microscopy, ROS quantification using the DCFH-DA fluorescent probe, GSH content evaluation with the CMF-DA fluorescent probe, and protein expression analysis for antioxidant and apoptotic markers through Western blotting. The results showed that pretreatment with 3 µM of EPA countered the cytotoxicity, ROS production, and GSH depletion caused by H2O2 (250 µM) in GHA cells. Additionally, EPA pretreatment effectively reduced the cytotoxicity and oxidative stress resulting from H2O2 by modulating the Nrf2/HO-1/NQO1 and Bax/Bcl-2/caspase-9/caspase-3 signaling pathways in GHA cells. CONCLUSION These findings enhance our understanding of EPA's antioxidant mechanisms in the oxidative stress model of human astrocytes, illuminate the interplay between antioxidant and apoptotic signals, and offer promise for exploring potential preventive and therapeutic interventions for brain diseases.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Ying-Tso Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan.
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan.
| |
Collapse
|
4
|
Khan MM, Wang J, Gao Y, Wu D, Qiu B, Zhu Z. Impact of long-term cadmium exposure on insecticidal cross-resistance and biological traits of Brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138203. [PMID: 40209407 DOI: 10.1016/j.jhazmat.2025.138203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Cadmium (Cd) pollution threatens ecosystems and agricultural productivity, especially in rice-growing regions. This study examines the effects of long-term Cd exposure on the brown planthopper (Nilaparvata lugens), a major rice pest, focusing on biological traits, physiological responses, and insecticide cross-resistance. Cd bioaccumulation occurred across the soil-plant-insect chain, with higher concentrations in advanced N. lugens stages. Cd exposure prolonged development, reduced fecundity, and altered life table parameters, impairing population fitness. Physiological analyses showed increased activities of antioxidant (SOD, CAT, POD) and detoxification enzymes (GST and P450) and neurotransmission-regulating enzyme AChE in Cd-exposed insects, indicating adaptive stress responses. Prolonged Cd exposure also induced cross-resistance to insecticides like triflumezopyrim, dinotefuran, and sulfoxaflor, evidenced by higher LC50 values. Energy reserves, including glycogen, triglycerides, and total cholesterol, were significantly reduced in Cd-exposed N. lugens, further affecting reproduction. These findings reveal the complex link between heavy metal stress and insecticide resistance, highlighting challenges for pest management in Cd-contaminated areas. The study emphasizes the need for integrated pest management and soil remediation to mitigate heavy metal pollution's ecological and agricultural impacts. Future research should explore molecular mechanisms of Cd-induced cross-resistance and their implications for sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Musa Khan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China.
| | - Jin Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Yang Gao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Dongming Wu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Baoli Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China.
| | - Zengrong Zhu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China.
| |
Collapse
|
5
|
Xu M, Li W, Xu R, Liu L, Wu Z, Li W, Ma C, Xue L. Gp93 safeguards tissue homeostasis by preventing ROS-JNK-mediated apoptosis. Redox Biol 2025; 81:103537. [PMID: 39965405 PMCID: PMC11875814 DOI: 10.1016/j.redox.2025.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in maintaining tissue homeostasis, yet their overabundance can impair normal cellular functions, induce cell death, and potentially lead to neurodegenerative disorders. This study identifies Drosophila Glycoprotein 93 (Gp93) as a crucial factor that safeguards tissue homeostasis and preserves normal neuronal functions by preventing ROS-induced, JNK-dependent apoptotic cell death. Firstly, loss of Gp93 induces JNK-dependent apoptosis primarily through the induction of ROS. Secondary, neuro-specific depletion of Gp93 results in ROS-JNK-mediated neurodegeneration. Thirdly, overexpression of Gp93 effectively curtails oxidative stress and neurodegeneration caused by paraquat exposure or the aging process. Furthermore, these functions of Gp93 can be substituted by its human ortholog, HSP90B1. Lastly, depletion of HSP90B1 in cultured human cells triggers ROS production, JNK activation, and apoptosis. Thus, this study not only unveils a novel physiological function of Gp93, but also provides valuable insights for understanding the physiological and pathological functions of human HSP90B1.
Collapse
Affiliation(s)
- Meng Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wanzhen Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruihong Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lixia Liu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhihan Wu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chao Ma
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 10th People's Hospital, 200072, Shanghai, China.
| |
Collapse
|
6
|
Kim M, Park W, Lim W, Song G, Park S. Amisulbrom induces mitochondrial dysfunction, leading apoptosis and cell cycle arrest in human trophoblast and endometrial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106347. [PMID: 40082038 DOI: 10.1016/j.pestbp.2025.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Amisulbrom, a triazole-based fungicide, is utilized in agriculture to increase agricultural production by controlling fungal infections. The long disappearance time of 50 % (DT50) and potential toxic effects of amisulbrom on nontarget organisms have been reported. However, the toxic effects on the pregnancy process remain unclear. This study aims to determine the cytotoxic responses of human trophoblast cells (HTR-8/SVneo) and human endometrial cells (T HESCs), which are associated with implantation upon amisulbrom exposure. Mitochondrial dysfunction and intracellular Ca2+ overload were determined in both cells that are exposed to amisulbrom. Additionally, amisulbrom arrested the cell cycle progression in the G2/M phase, causing apoptosis and reduced survival. Excessive reactive oxygen species (ROS) accumulation and dephosphorylation of PI3K/AKT signaling proteins by amisulbrom exposure mediated these toxic effects. Additionally, spheroid formation was inhibited by amisulbrom treatment in the three-dimensional hanging drop culture model. These results indicate that amisulbrom may pose an adverse effect on the implantation process. Further research is required to identify the toxicity of amisulbrom in vivo. This is the first study to raise concerns about possible toxicity mechanisms of amisulbrom in the implantation process.
Collapse
Affiliation(s)
- Miji Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Sunwoo Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
7
|
Godbole AM, Chen A, Vuong AM. Associations between neonicotinoids and inflammation in US adults using hematological indices: NHANES 2015-2016. Environ Epidemiol 2025; 9:e358. [PMID: 39726632 PMCID: PMC11671084 DOI: 10.1097/ee9.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background Toxicological studies suggest neonicotinoids increase oxidative stress and inflammation, but few epidemiological studies have explored these effects. Methods National Health and Nutrition Examination Survey (NHANES) 2015-2016 data were used to estimate associations between neonicotinoid exposure and inflammatory markers, including the C-reactive protein-to-lymphocyte count ratio (CLR), monocyte-to-high-density lipoprotein ratio (MHR), monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), lymphocyte-to-monocyte ratio, platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) using linear and multinomial logistic regression models. Sex was evaluated as a potential modifier. Results Detection of any parent neonicotinoid (β = -0.62, 95% confidence interval [CI] = -0.98, -0.26) and imidacloprid (β = -0.48, 95% CI = -0.87, -0.10) was associated with decreased CLR. Clothianidin was linked to reduced MLR (β = -0.04, 95% CI = -0.07, -0.02), but increased lymphocyte-to-monocyte ratio (β = 0.52, 95% CI = 0.27, 0.77). Higher dNLR (β = 0.85; 95% CI = 0.26, 1.43) was noted with detection of any neonicotinoid metabolite. Moderately high PLR was observed with detection of any neonicotinoid metabolite (relative risk ratio [RRR] = 1.63, 95% CI = 1.27, 2.09) or 5-hydroxy-imidacloprid (RRR = 2.19, 95% CI = 1.40, 3.41). Sex-modified analyses showed positive associations in males and inverse associations in females for MHR (P int = 0.099, clothianidin), PLR (P int = 0.026, clothianidin), and SII (P int = 0.056, any parent neonicotinoid; P int = 0.002, clothianidin), while the opposite pattern was noted with CLR (P int = 0.073, any parent neonicotinoid) and NLR (P int = 0.084, clothianidin). Conclusion Neonicotinoids may be associated with inflammatory changes, with potential sexual dimorphism. Further studies are required to explore these findings.
Collapse
Affiliation(s)
- Amruta M. Godbole
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| |
Collapse
|
8
|
Xiao J, Hu Y, Wang H, Zhang L, Meng T, Liu Y, Shi Y, Cao H. Inhalation Exposure to Airborne Prothioconazole Caused by Unmanned Aerial Vehicles Application and Potential Lung Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2499-2509. [PMID: 39750061 DOI: 10.1021/acs.jafc.4c08157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The use of unmanned aerial vehicle (UAV) has greatly improved pesticide effectiveness and control efficiency; however, the risk of inhalation exposure to pesticides caused by spray drift requires urgent attention. This study is the first to investigate residue distribution and inhalation exposure risk of airborne prothioconazole and its metabolite prothioconazole-desthio during UAV application. The maximum detected unit exposure of prothioconazole and prothioconazole-desthio in airborne particulate matter was 0.40 and 20.09 ng/m3, respectively. For exposure risk assessment, in vivo inhalation bioavailability (BAin vivo) was incorporated to adjust the inhalation exposure level, and the corresponding values measured were 37.58 and 73.99%, respectively. Moreover, we observed pesticide accumulation in rat lungs and its cause of histological damage via oxidative stress following 10-day exposure. The margin of exposure for propiconazole and prothioconazole-desthio was calculated to be within an acceptable level; however, the values might be overestimated by 40 and 70% without considering inhalation bioavailability.
Collapse
Affiliation(s)
- Jinjing Xiao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Yingmei Hu
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Han Wang
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Li Zhang
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Tingting Meng
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Yuying Liu
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Yanhong Shi
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haiqun Cao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| |
Collapse
|
9
|
Santhi JJ, Guru A, Shaik MR, Hussain SA, Issac PK. Understanding the effects of perfluorobutane sulfonate in zebrafish larvae model (Danio rerio): Insights into potential ecotoxicological risks and human health. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110069. [PMID: 39510332 DOI: 10.1016/j.cbpc.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Perfluorobutane sulfonate (PFBS) is a synthetic organic molecule that belongs to the per and polyfluoroalkyl substances family. Due to its unique physicochemical characteristics, PFBS has been extensively used in consumer products and industries. However, its increasing usage and chemical stability cause environmental pollution and bioaccumulation. The toxicological effects of PFBS were not well studied. In this study, the impact of PFBS on zebrafish embryos was evaluated. PFBS (1000-1500 μM) exposure exhibited increased mortality and malformation in a concentration-dependent manner. After 96 hour post-fertilization of PFBS exposure, the LC50 was estimated to be 1378 μM. Furthermore, PFBS (1.4, 14, 140, 1400 μM) exposure significantly increases oxidative stress by suppressing antioxidant levels. Locomotor behavior analysis revealed that PFBS exposure caused locomotor changes in zebrafish larvae. Acetylcholine esterase activity was also reduced in the PFBS-exposed groups. Gene expression study showed that PFBS exposure downregulated the antioxidant gene expression in zebrafish larvae. Overall, the current study reveals that PFBS can trigger oxidative stress-induced apoptosis by reducing antioxidant activity in zebrafish larvae.
Collapse
Affiliation(s)
- Jenila John Santhi
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
10
|
Zhou L, Li R, Wang F, Zhou R, Xia Y, Jiang X, Cheng S, Wang F, Li D, Zhang J, Mao L, Cai X, Zhang H, Qiu J, Tian X, Zou Z, Chen C. N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135736. [PMID: 39265400 DOI: 10.1016/j.jhazmat.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Excessive exposure to metals in daily life has been proposed as an environmental risk factor for neurological disorders. Oxidative stress is an inevitable stage involved in the neurotoxic effects induced by metals, nevertheless, the underlying mechanisms are still unclear. In this study, we used arsenic as a representative environmental heavy metal to induce neuronal oxidative stress and demonstrated that both in vitro and in vivo exposure to arsenic significantly increased the level of N6-methyladenosine (m6A) by down-regulating its demethylase FTO. Importantly, the results obtained from FTO transgenic mice and FTO overexpressed/knockout cells indicated that FTO likely regulated neuronal oxidative stress by modulating activating transcription factor 3 (ATF3) in a m6A-dependent manner. We also identified the specific m6A reader protein, YTHDC1, which interacted with ATF3 and thereby affecting its regulatory effects on oxidative stress. To further explore potential intervention strategies, cerebral metabolomics was conducted and we newly identified myo-inositol as a metabolite that exhibited potential in protecting against arsenic-induced oxidative stress and cognitive dysfunction. Overall, these findings provide new insights into the importance of the FTO-ATF3 signaling axis in neuronal oxidative stress from an m6A perspective, and highlight a beneficial metabolite that can counteract the oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Renjie Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruiqi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Cai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024; 225:894-909. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC, 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
12
|
Lin J, Wang L, Huang M, Xu G, Yang M. Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117078. [PMID: 39305777 DOI: 10.1016/j.ecoenv.2024.117078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024]
Abstract
Copper (Cu) is a common heavy metal and a hazardous environmental pollutant. Emerging epidemiological evidence suggests that Cu exposure is associated with female infertility, especially ovarian dysfunction. However, the mechanisms underlying ovarian toxicity remain poorly understood. Granulosa cells play crucial roles in follicle development and are the main target cells of environmental pollutants for ovarian toxicity. In this study, we investigated the effects of Cu exposure on human granulosa (KGN) cells by using cell biology and metabolomics methods, and explored the molecular mechanisms of Cu-induced cytotoxicity. We found that Cu reduced cell viability in a dose- and time-dependent manner. Then, metabolomic analyses led to the identification of 279, 368 and 466 differentially expressed metabolites (DEMs) in KGN cells exposed to 10, 60 and 240 μM Cu, respectively. Pathway enrichment analysis revealed that high Cu led to disturbances of glutathione metabolism, nucleotide metabolism, glycerophospholipid and ether lipid metabolism. Using cell biological assays, we found that exposure to high Cu significantly decreased the GSH/GSSG ratio and altered the activities of the antioxidant enzymes SOD and CAT. Exposure to high Cu significantly increased the level of mitochondrial ROS. These findings further supported the results revealed by metabolomic analysis and provided clues for elucidating the mechanism by which Cu interferes with the development of ovarian follicles.
Collapse
Affiliation(s)
- Jiaru Lin
- Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
13
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
14
|
Summer M, Ashraf R, Ali S, Bach H, Noor S, Noor Q, Riaz S, Khan RRM. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation. CHEMOSPHERE 2024; 363:142826. [PMID: 39002651 DOI: 10.1016/j.chemosphere.2024.142826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Numerous nano-dimensioned materials have been generated as a result of several advancements in nanoscale science such as metallic nanoparticles (mNPs) which have aided in the advancement of related research. As a result, several significant nanoscale materials are being produced commercially. It is expected that in the future, products that are nanoscale, like mNPs, will be useful in daily life. Despite certain benefits, widespread use of metallic nanoparticles and nanotechnology has negative effects and puts human health at risk because of their continual accumulation in closed biological systems, along with their complex and diverse migratory and transformation pathways. Once within the human body, nanoparticles (NPs) disrupt the body's natural biological processes and trigger inflammatory responses. These NPs can also affect the immune system by activating separate pathways that either function independently or interact with one another. Cytotoxic effects, inflammatory response, genetic material damage, and mitochondrial dysfunction are among the consequences of mNPs. Oxidative stress and reactive oxygen species (ROS) generation caused by mNPs depend upon a multitude of factors that allow NPs to get inside cells and interact with biological macromolecules and cell organelles. This review focuses on how mNPs cause inflammation and oxidative stress, as well as disrupt cellular signaling pathways that support these effects. In addition, possibilities and problems to be reduced are addressed to improve future research on the creation of safer and more environmentally friendly metal-based nanoparticles for commercial acceptance and sustainable use in medicine and drug delivery.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Pakistan
| |
Collapse
|
15
|
Su Q, Wu L, Zheng C, Ji X, Lin X, Zhang Y, Zheng F, Guo Z, Shao W, Hu H, Zhou J, Jiang Y, Tang Y, Wu S, Aschner M, Li H, Yu G. ALKBH5-mediated N6-methyladenosine modification of HO-1 mRNA regulates ferroptosis in cobalt-induced neurodegenerative damage. ENVIRONMENT INTERNATIONAL 2024; 190:108897. [PMID: 39047545 DOI: 10.1016/j.envint.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The utilization of Cobalt (Co) has surged due to it is critical role in renewable energy technologies and other high-tech applications. Concurrently, the potential health risks associated with Co exposure have raised concerns. Previous studies, including our own, have shown that Co can impair learn and memory functions as an epigenetic hazard, even at low concentrations. In this study, we explore the mechanisms of Co-induced ferroptosis in neurodegenerative damage both in vivo and in vitro, focusing on the epigenetic regulation by N6-methyladenosine (m6A) demethylase alkB homolog 5 (ALKBH5). We identify heme oxygenase-1 (HO-1) as a direct target gene of ALKBH5, playing a crucial role in mitigating Co-induced ferroptosis. ALKBH5 deficiency affects the post-transcriptional regulation of HO-1 through m6A modification, which in turn influences mRNA's stability, intracellular distribution, and alternative splicing, thereby enhancing susceptibility to Co-induced ferroptosis. Additionally, we discuss the potential involvement of heterogeneous nuclear ribonucleoprotein M (hnRNPM) in regulating alternative splicing of HO-1 mRNA, potentially mediated by m6A modifications. This study provides new epigenetic insights into the post-transcriptional regulatory mechanisms involved in Co-induced ferroptosis and highlights the broader implications of environmental hazards in neurodegenerative damage.
Collapse
Affiliation(s)
- Qianqian Su
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chunyan Zheng
- Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Xianqi Ji
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Yu Jiang
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Huangyuan Li
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guangxia Yu
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
16
|
Wang M, Yang N, Guo W, Yang Y, Bao B, Zhang X, Zhang D. RNAi-mediated glucose transporter 4 (Glut4) silencing inhibits ovarian development and enhances deltamethrin-treated energy depletion in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106014. [PMID: 39084805 DOI: 10.1016/j.pestbp.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.
Collapse
Affiliation(s)
- Mingjun Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ningxin Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenhui Guo
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yong Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bowen Bao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaohong Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Daochuan Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
17
|
Yang Z, Liu H, Wei J, Liu R, Zhang J, Sun M, Shen C, Liu J, Men K, Chen Y, Yang X, Yu P, Chen L, Tang NJ. Bisphenol mixtures, metal mixtures and type 2 diabetes mellitus: Insights from metabolite profiling. ENVIRONMENT INTERNATIONAL 2024; 190:108921. [PMID: 39098088 DOI: 10.1016/j.envint.2024.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Little is known about the combined effect of bisphenol mixtures and metal mixtures on type 2 diabetes mellitus (T2DM) risk, and the mediating roles of metabolites. METHODS The study included 606 pairs of T2DM cases and controls matched by age and sex, and information of participants was collected through questionnaires and laboratory tests. Serum bisphenol and plasma metal concentrations were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Widely targeted metabolomics was employed to obtain the serum metabolomic profiles. Conditional logistic regression models were used to assess the single associations of bisphenols and metals with T2DM risk after multivariable adjustment. Additionally, the joint effects of bisphenol mixtures and metal mixtures were examined using quantile-based g-computation (QG-C) models. Furthermore, differential metabolites associated with T2DM were identified, and mediation analyses were performed to explore the role of metabolites in the associations of bisphenols and metals with T2DM risk. RESULTS The results showed bisphenol mixtures were associated with an increased T2DM risk, with bisphenol A (BPA) identified as the primary contributor. While the association between metal mixtures and T2DM remained inconclusive, cobalt (Co), iron (Fe), and zinc (Zn) showed the highest weight indices for T2DM risk. A total of 154 differential metabolites were screened between the T2DM cases and controls. Mediation analyses indicated that 9 metabolites mediated the association between BPA and T2DM, while L-valine mediated the association between Zn and T2DM risk. CONCLUSIONS The study indicated that BPA, Co, Fe, and Zn were the primary contributors to increased T2DM risk, and metabolites played a mediating role in the associations of BPA and Zn with the risk of T2DM. Our findings contribute to a better understanding of the mechanisms underlying the associations of bisphenols and metals with T2DM.
Collapse
Affiliation(s)
- Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China; Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Changkun Shen
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Kun Men
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300202, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin 300202, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
18
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
19
|
Lei M, Tan Y, Tu H, Tan W. Neuronal basis and diverse mechanisms of pathogen avoidance in Caenorhabditis elegans. Front Immunol 2024; 15:1353747. [PMID: 38751431 PMCID: PMC11094273 DOI: 10.3389/fimmu.2024.1353747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Silva CS, Tonelli FMP, Delgado VMS, Lourenço VDO, Pinto GDC, Azevedo LS, Lima LARDS, Furtado CA, Ferreira DRC, Tonelli FCP, Parreira AG. Nanoremediation and Antioxidant Potential of Biogenic Silver Nanoparticles Synthesized Using Leucena's Leaves, Stem, and Fruits. Int J Mol Sci 2024; 25:3993. [PMID: 38612800 PMCID: PMC11012344 DOI: 10.3390/ijms25073993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Synthetic dyes are persistent organic environmental pollutants that can cause extensive damage to living beings and to the ecosystem as a whole. Cost-effective, sustainable, and efficient strategies to deal with this type of pollution are necessary as it commonly resists conventional water treatment methods. Silver nanoparticles (AgNPs) synthesized using the aqueous extract from the leaves, stem, and fruits of Leucaena leucocephala (Leucena) were produced and characterized through UV-vis, TEM, EDS, SDL, XPS, XRD, and zeta potential, and they proved to be able to promote adsorption to remediate methylene blue and tartrazine pollution in water. The nanoremediation was performed and did not require direct exposure to sunlight or any special lamp or a specific reduction agent. The AgNPs produced using the extract from the leaves exhibited the best performance in nanoremediation and also presented antioxidant activity that surpassed the one from butylated hydroxytoluene (BHT). Consequently, it is an interesting nanotool to use in dye nanoremediation and/or as an antioxidant nanostructure.
Collapse
Affiliation(s)
- Christopher Santos Silva
- Biotechnological Processes Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (C.S.S.); (V.M.S.D.); (V.d.O.L.); (G.d.C.P.); (F.C.P.T.)
| | - Fernanda Maria Policarpo Tonelli
- Biotechnological Processes Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (C.S.S.); (V.M.S.D.); (V.d.O.L.); (G.d.C.P.); (F.C.P.T.)
| | - Vinicius Marx Silva Delgado
- Biotechnological Processes Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (C.S.S.); (V.M.S.D.); (V.d.O.L.); (G.d.C.P.); (F.C.P.T.)
| | - Vitória de Oliveira Lourenço
- Biotechnological Processes Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (C.S.S.); (V.M.S.D.); (V.d.O.L.); (G.d.C.P.); (F.C.P.T.)
| | - Geicielly da Costa Pinto
- Biotechnological Processes Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (C.S.S.); (V.M.S.D.); (V.d.O.L.); (G.d.C.P.); (F.C.P.T.)
| | - Lucas Santos Azevedo
- Phytochemistry Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (L.S.A.); (L.A.R.d.S.L.)
| | | | - Clascídia Aparecida Furtado
- Carbon Nanostructure Chemistry Laboratory, Nuclear Technology Development Center (CDTN), Belo Horizonte 31270-901, MG, Brazil; (C.A.F.); (D.R.C.F.)
| | - Danilo Roberto Carvalho Ferreira
- Carbon Nanostructure Chemistry Laboratory, Nuclear Technology Development Center (CDTN), Belo Horizonte 31270-901, MG, Brazil; (C.A.F.); (D.R.C.F.)
| | - Flávia Cristina Policarpo Tonelli
- Biotechnological Processes Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil; (C.S.S.); (V.M.S.D.); (V.d.O.L.); (G.d.C.P.); (F.C.P.T.)
| | - Adriano Guimarães Parreira
- Protein Chemistry Laboratory, Centro-Oeste Campus, Federal University of São João del-Rei, Divinópolis 35501-296, MG, Brazil;
| |
Collapse
|
21
|
Gandhi D, Bhandari S, Mishra S, Rudrashetti AP, Vetrivel U, Thimmulappa RK, Rajasekaran S. Forced expression of microRNA-221-3p exerts protective effects against manganese-induced cytotoxicity in human lung epithelial cells. Toxicol Appl Pharmacol 2024; 485:116904. [PMID: 38503349 DOI: 10.1016/j.taap.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 μM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.
Collapse
Affiliation(s)
- Deepa Gandhi
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sneha Bhandari
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Umashankar Vetrivel
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh K Thimmulappa
- Centre for Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education, Mysuru, India
| | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
22
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
23
|
Yan S, Tan M, Zhang A, Jiang D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170274. [PMID: 38262537 DOI: 10.1016/j.scitotenv.2024.170274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Heavy metal (HM) pollution is a severe global environmental issue. HMs in the environment can transfer along the food chain, which aggravates their ecotoxicological effect and exposes the insects to heavy metal stress. In addition to their growth-toxic effects, HMs have been reported as abiotic environmental factors that influence the implementation of integrated pest management strategies, including microbial control, enemy insect control, and chemical control. This will bring new challenges to pest control and further highlight the ecotoxicological impact of HM pollution. In this review, the relationship between HM pollution and insecticide tolerance in pests was analyzed. Our focus is on the risks of HM exposure to pests, pests tolerance to insecticides under HM exposure, and the mechanisms underlying the effect of HM exposure on pests tolerance to insecticides. We infer that HM exposure, as an initial stressor, induces cross-tolerance in pests to subsequent insecticide stress. Additionally, the priming effect of HM exposure on enzymes associated with insecticide metabolism underlies cross-tolerance formation. This is a new interdisciplinary field between pollution ecology and pest control, with an important guidance value for optimizing pest control strategies in HM polluted areas.
Collapse
Affiliation(s)
- Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
24
|
Nahla E, Arya P, Maneesha P, Chitra KC. Exposure to the plasticizer dibutyl phthalate causes oxidative stress and neurotoxicity in brain tissue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21399-21414. [PMID: 38393557 DOI: 10.1007/s11356-024-32604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The phthalate ester, dibutyl phthalate (DBP), is one of the endocrine-disrupting chemicals detected in various aquatic environments. Previous research has found multiple toxic effects of DBP in aquatic organisms; however, the neurotoxic effects of the compound are surprisingly scanty. The purpose of this study was aimed to evaluate the role of oxidative stress in the induction of neurotoxicity in the brain tissue of the fish Pseudetroplus maculatus. The fish were exposed to the sublethal concentration of DBP (200 µg L-1) for 1, 4, 7, and 15 days along with control and vehicle control groups. The induction of oxidative stress in the brain subcellular fractions was proved by alterations in the activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase along with the reduction in the total antioxidant capacity. Meanwhile, the levels of hydrogen peroxide and lipid peroxidation were increased. Neurotransmitters such as acetylcholine, dopamine, adrenaline, noradrenaline, and serotonin were altered in all subcellular fractions suggesting the disruption of the neurotransmitter system in the fish brain. These results indicate that DBP induces oxidative stress, which correlates with neurotoxicity in Pseudetroplus maculatus brain tissue.
Collapse
Affiliation(s)
- Ebrahim Nahla
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Pankajakshan Arya
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Pootheri Maneesha
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Kumari Chidambaran Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
25
|
Rahmatinia M, Mohseni-Bandpei A, Khodagholi F, Abdollahifar MA, Amouei Torkmahalleh M, Hassani Moghaddam M, Hopke PK, Ghavimehr E, Bazzazpour S, Shahsavani A. Exposure to different PM 2.5 extracts induces gliosis and changes behavior in male rats similar to autism spectrum disorders features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122804. [PMID: 37907193 DOI: 10.1016/j.envpol.2023.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Epidemiological studies have documented that exposure to fine particulate matter (PM2.5) could affect neurodevelopment, thereby leading to autism spectrum disorders (ASD). Nevertheless, there is little laboratory data to support this epidemiological evidence. In the current study, we carried out a series of experiments to assess whether developmental exposures to different extracts of PM2.5 can result in ASD-like behavioral, biochemical, and immunohistochemical characteristics in male rat offspring. PM2.5 samples were collected daily for a year, and monthly composites were extracted with an acetone-hexane mixture. The extracts were analyzed for their chemical constituents. Three groups of rats were exposed to the different PM2.5 extracts during pre- and postnatal periods. All exposed groups of rats exhibited typical behavioral features of ASD, including increased repetitive and depression-related behaviors. We also found microglia and astrocytes activation and decreased concentrations of oxytocin (OXT) in the brain regions of exposed rats compared with control rats. Comparing the current results with a prior study, the induced biological effects followed a sequence of whole particles of PM2.5 > organic extract > inorganic extract. These findings indicated that exposure to PM2.5 can elicit ASD-like features in rats and raise concerns about particulate matter as a possible trigger for the induction of ASD in humans; therefore, mitigating the contents of the PAHs and metals could reduce the PM2.5 neurotoxicity.
Collapse
Affiliation(s)
- Masoumeh Rahmatinia
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ehsan Ghavimehr
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahriyar Bazzazpour
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
de Lagarde VM, Chevalier L, Méausoone C, Cazier F, Dewaele D, Cazier-Dennin F, Janona M, Logie C, Achard S, André V, Rogez-Florent T, Monteil C, Corbiere C. Acute and repeated exposures of normal human bronchial epithelial (NHBE) cells culture to particles from a coloured pyrotechnic smoke. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104327. [PMID: 38006978 DOI: 10.1016/j.etap.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Coloured pyrotechnic smokes are frequently used in the military field and occasionally by civilians, but their health hazards have been little studied. The main concern could rise from inhalation of smoke particles. Our previous study showed that acute exposure to particles from a red signalling smoke (RSS) induced an antioxidant and inflammatory responses in small airway epithelial cells. The aim of this study was to further explore the toxicity of RSS particles at a more proximal level of the respiratory tract, using normal human bronchial epithelial cells grown at the Air-Liquid Interface. Acute exposure (24 h) induced an oxidative stress that persisted 24 h post-exposure, associated with particle internalization and epithelium morphological changes (cuboidal appearance and loss of cilia). Repeated exposures (4×16h) to RSS particles did not trigger oxidative stress but cell morphological changes occurred. Overall, this study provides a better overview of the toxic effects of coloured smoke particles.
Collapse
Affiliation(s)
| | - Laurence Chevalier
- Université de Rouen Normandie, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - Clémence Méausoone
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Fabrice Cazier
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Dorothée Dewaele
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Francine Cazier-Dennin
- Université du Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 417, 59 375 Dunkerque, France
| | - Marion Janona
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cathy Logie
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Sophie Achard
- Université de Paris, Faculté de Pharmacie, Inserm UMR1153 - CRESS, HERA " Health Environmental Risk Assessment ", 75005 Paris, France
| | - Véronique André
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Tiphaine Rogez-Florent
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Christelle Monteil
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cécile Corbiere
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France.
| |
Collapse
|
27
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
29
|
Lim HS, Lee SH, Seo H, Park G. Changes in RBM47 expression based on the timing of melatonin administration and its effects on Nrf2 activity in the hippocampus. Free Radic Biol Med 2023; 208:794-806. [PMID: 37751802 DOI: 10.1016/j.freeradbiomed.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Melatonin is an endogenous indoleamine that plays a significant role in various physiological processes, including the sleep-wake cycle, anxiety, immunity, and circadian rhythms. However, it is important to clarify that melatonin does not directly control circadian rhythms. Circadian rhythms are primarily synchronized by light, which acts on the suprachiasmatic nucleus (SCN) and subsequently regulates melatonin production. This light-mediated synchronization of circadian rhythms is essential for maintaining the alignment of the body with the light-dark cycle. In this study, we investigated the efficacy of melatonin administration during different times of the day or night and explored its neuroprotective effects. Furthermore, we aimed to apply these findings to rodent models of dementia, aging, and neuro-inflammation for potential therapeutic applications. Our study uncovered novel evidence suggesting the involvement of RNA-binding motif protein (RBM)-47 and Nrf2 in the signaling pathways associated with melatonin administration during both day and night. We examined the role of RBM47 in Nrf2 activity through siRNA or CRISPR-mediated knockdown experiments using hippocampal neuronal cells and lentivirus injections in mice. In 5xFAD/aging/neuroinflammatory mouse models, antioxidant effects were enhanced when melatonin was administered during the day compared to nighttime administration. Furthermore, mRNA analysis and molecular biology experiments revealed the differential expression of RBM47 depending on the timing of melatonin administration. These findings suggest that a decrease in RBM47 expression may improve the antioxidant defense system in the hippocampus. Consequently, administering melatonin during the day rather than at night may present a plausible therapeutic strategy as an antioxidant.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Seung Hoon Lee
- Department of Biochemistry, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major, Campus of Korea Institute of Oriental Medicine, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
30
|
Chen C, Chen J, Lin X, Yang J, Qu H, Li L, Zhang D, Wang W, Chang X, Guo Z, Cai P, Yu G, Shao W, Hu H, Wu S, Li H, Bornhorst J, Aschner M, Zheng F. Evaluation of neurotoxicity and the role of oxidative stress of cobalt nanoparticles, titanium dioxide nanoparticles, and multiwall carbon nanotubes in Caenorhabditis elegans. Toxicol Sci 2023; 196:85-98. [PMID: 37584706 PMCID: PMC10614054 DOI: 10.1093/toxsci/kfad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The widespread use of nanomaterials in daily life has led to increased concern about their potential neurotoxicity. Therefore, it is particularly important to establish a simple and reproducible assessment system. Representative nanomaterials, including cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2-NPs), and multiwall carbon nanotubes (MWCNTs), were compared in terms of their neurotoxicity and underlying mechanisms. In 0, 25, 50, and 75 μg/ml of these nanomaterials, the survival, locomotion behaviors, acetylcholinesterase (AchE) activity, reactive oxygen species production, and glutathione-S transferase 4 (Gst-4) activation in wildtype and transgenic Caenorhabditis elegans (C. elegans) were evaluated. All nanomaterials induced an imbalance in oxidative stress, decreased the ratio of survival, impaired locomotion behaviors, as well as reduced the activity of AchE in C. elegans. Interestingly, CoNPs and MWCNTs activated Gst-4, but not TiO2-NPs. The reactive oxygen species scavenger, N-acetyl-l-cysteine, alleviated oxidative stress and Gst-4 upregulation upon exposure to CoNPs and MWCNTs, and rescued the locomotion behaviors. MWCNTs caused the most severe damage, followed by CoNPs and TiO2-NPs. Furthermore, oxidative stress and subsequent activation of Gst-4 were involved in nanomaterials-induced neurotoxicity. Our study provides a comprehensive comparison of the neurotoxicity and mechanisms of typical nanomaterials, which could serve as a model for hazard assessment of environmental pollutants using C. elegans as an experimental model system.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiafu Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huimin Qu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Lisong Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Duanyan Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wei Wang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge—DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, 42119 Wuppertal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
31
|
Kato Y, Sakanishi A, Matsuda K, Hattori M, Kaneko I, Nishikawa M, Ikushiro S. Covalent adduction of serotonin-derived quinones to the SARS-CoV-2 main protease expressed in a cultured cell. Free Radic Biol Med 2023; 206:74-82. [PMID: 37391098 PMCID: PMC10300202 DOI: 10.1016/j.freeradbiomed.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
The SARS-CoV-2 main protease is an essential molecule for viral replication and is often targeted by medications to treat the infection. In this study, we investigated the possible inhibitory action of endogenous quinones on the enzyme. Recombinant SARS-CoV-2 main protease was exposed to tryptamine-4,5-dione (TD) or quinone from 5-hydroxyindoleacetic acid (Q5HIAA). As a result, the protease activity was considerably decreased in a dose-dependent manner. The IC50 values of the quinones toward the enzyme were approximately 0.28 μM (TD) and 0.49 μM (Q5HIAA). Blot analyses using specific antibodies to quinone-modified proteins revealed that quinones were adducted to the enzyme at concentrations as low as 0.12 μM. Intact mass analyses showed that one or two quinone molecules were covalently adducted onto the main protease. Chymotrypsin-digested main protease analyses revealed that the quinones bind to thiol residues at the enzyme's active site. When TD or Q5HIAA were exposed to cultured cells expressing the viral enzyme, quinone-modified enzyme was identified in the cell lysate, suggesting that even extracellularly generated quinones could react with the viral enzyme expressed in an infected cell. Thus, these endogenous quinones could act as inhibitors of the viral enzyme.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan.
| | - Asahi Sakanishi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Kaoru Matsuda
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Mai Hattori
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Ichiro Kaneko
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
32
|
Inesta-Vaquera F, Miyashita L, Grigg J, Henderson CJ, Wolf CR. Defining the in vivo mechanism of air pollutant toxicity using murine stress response biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 888:164211. [PMID: 37196967 DOI: 10.1016/j.scitotenv.2023.164211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Air pollution can cause a wide range of serious human diseases. For the informed instigation of interventions which prevent these outcomes there is an urgent need to develop robust in vivo biomarkers which provide insights into mechanisms of toxicity and relate pollutants to specific adverse outcomes. We exemplify for a first time the application of in vivo stress response reporters in establishing mechanisms of air pollution toxicity and the application of this knowledge in epidemiological studies. We first demonstrated the utility of reporter mice to understand toxicity mechanisms of air pollutants using diesel exhaust particles compounds. We observed that nitro-PAHs induced Hmox1 and CYP1a1 reporters in a time- and dose-dependent, cell- and tissue-specific manner. Using in vivo genetic and pharmacological approaches we confirmed that the NRF2 pathway mediated this Hmox1-reporter induction stress reporter activity. We then correlated the activation of stress-reporter models (oxidative stress/inflammation, DNA damage and Ah receptor -AhR- activity) with responses in primary human nasal cells exposed to chemicals present in particulate matter (PM; PM2.5-SRM2975, PM10-SRM1648b) or fresh roadside PM10. To exemplify their use in clinical studies, Pneumococcal adhesion was assessed in exposed primary human nasal epithelial cells (HPNEpC). The combined use of HPNEpC and in vivo reporters demonstrated that London roadside PM10 particles induced pneumococcal infection in HPNEpC mediated by oxidative stress responses. The combined use of in vivo reporter models with human data thus provides a robust approach to define the relationship between air pollutant exposure and health risks. Moreover, these models can be used in epidemiological studies to hazard ranking environmental pollutants by considering the complexity of mechanisms of toxicity. These data will facilitate the relationship between toxic potential and the level of pollutant exposure in populations to be established and potentially extremely valuable tools for intervention studies for disease prevention.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK
| | | | | | - Colin J Henderson
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK.
| |
Collapse
|
33
|
Martins GR, Bronzel Junior JL, Granero FO, Figueiredo CCM, Silva LP, Silva RMGDA. Phytoconstituents, antioxidant and antiglycation activity of Chrysophyllum cainito L., Hancornia speciosa Gomes and Plinia glomerata Berg. fruits. AN ACAD BRAS CIENC 2023; 95:e20201853. [PMID: 37556705 DOI: 10.1590/0001-3765202320201853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/12/2021] [Indexed: 08/11/2023] Open
Abstract
The present study verified the presence of phytoconstituents and evaluated antioxidant (DPPH, FRAP, NO and TBARS tests) and antiglycation (REM test) activities of unconventional wild edible fruits Chrysophyllum cainito, Hancornia speciosa and Plinia glomerata. It was verified the presence of phenolic compounds for all fruits and flavonoids were observed only for C. cainito, which presented in its peel the highest total phenols (90.34 μg GAE mg-1) and flavonoids (30.4 μg RE mg-1) content. Sugar concentration was significant for all fruits, where H. speciosa showed the highest reducing sugar content (576.12 mg g-1) and C. cainito pulp showed the highest total sugar content (858.67 mg g-1). All fruits presented vitamin C and carotenoids, highlighting P. glomerata with the best results for ascorbic acid (2260.94 mg 100 g-1) and carotenoids (59.62 µg g-1). Extracts presented antioxidant activity, highlighting C. cainito peel that presented 65.64% (DPPH), 231.34 µM TE L-1 (FRAP), 49.34% (NO) and 22.56% (TBARS), while in antiglycation evaluation, P. glomerata showed evident activity. Therefore, it was possible to determine different phytoconstituents, and antioxidant and antiglycation activities of the fruits. These data provide subsidies for application of these fruits in new studies, to increase knowledge and preservation of these species.
Collapse
Affiliation(s)
- Gustavo R Martins
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
- Fundação Educacional do Município de Assis/FEMA, Av. Getúlio Vargas, 1200, Vila Nova Santana, 19807-130 Assis, SP, Brazil
| | - João Luiz Bronzel Junior
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Filipe O Granero
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Célia Cristina M Figueiredo
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Luciana P Silva
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Regildo Márcio G DA Silva
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Letras de Assis, Departamento de Biotecnologia, Laboratório de Plantas Medicinais e Produtos Naturais, Av. Dom Antônio, 2100, Parque Universitário, 19806-900 Assis, SP, Brazil
| |
Collapse
|
34
|
Buga AM, Padureanu V, Riza AL, Oancea CN, Albu CV, Nica AD. The Gut-Brain Axis as a Therapeutic Target in Multiple Sclerosis. Cells 2023; 12:1872. [PMID: 37508537 PMCID: PMC10378521 DOI: 10.3390/cells12141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The CNS is very susceptible to oxidative stress; the gut microbiota plays an important role as a trigger of oxidative damage that promotes mitochondrial dysfunction, neuroinflammation, and neurodegeneration. In the current review, we discuss recent findings on oxidative-stress-related inflammation mediated by the gut-brain axis in multiple sclerosis (MS). Growing evidence suggests targeting gut microbiota can be a promising strategy for MS management. Intricate interaction between multiple factors leads to increased intra- and inter-individual heterogeneity, frequently painting a different picture in vivo from that obtained under controlled conditions. Following an evidence-based approach, all proposed interventions should be validated in clinical trials with cohorts large enough to reach significance. Our review summarizes existing clinical trials focused on identifying suitable interventions, the suitable combinations, and appropriate timings to target microbiota-related oxidative stress. Most studies assessed relapsing-remitting MS (RRMS); only a few studies with very limited cohorts were carried out in other MS stages (e.g., secondary progressive MS-SPMS). Future trials must consider an extended time frame, perhaps starting with the perinatal period and lasting until the young adult period, aiming to capture as many complex intersystem interactions as possible.
Collapse
Affiliation(s)
- Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.B.); (C.N.O.)
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
- Regional Center for Medical Genetics Dolj, Emergency County Hospital Craiova, 200638 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.B.); (C.N.O.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru Dan Nica
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.B.); (C.N.O.)
| |
Collapse
|
35
|
Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol 2023:1-37. [PMID: 37366107 DOI: 10.1080/10408444.2023.2218887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
This article addresses issues of importance for occupational exposure limits (OELs) and chemical carcinogens with a focus on non-threshold carcinogens. It comprises scientific as well as regulatory issues. It is an overview, not a comprehensive review. A central topic is mechanistic research and insights, and its implications for cancer risk assessment. Alongside scientific advancements, the approaches of hazard identification and qualitative and quantitative risk assessment have developed over the years. The key steps in a quantitative risk assessment are outlined, with special attention given to the dose-response assessment and the derivation of an OEL using risk calculations or default assessment factors. The work procedures of several bodies performing cancer hazard identifications and quantitative risk assessments, as well as regulatory procedures to derive OELs for non-threshold carcinogens, are presented. Non-threshold carcinogens for which the European Union (EU) introduced binding OELs in 2017-2019 serve as illustrations together with some currently used strategies in the EU and elsewhere. Available knowledge supports the derivation of health-based OELs (Hb-OELs) for non-threshold carcinogens, and the use of a risk-based approach with low-dose linear extrapolation (linear non-threshold, LNT) as the default for non-threshold carcinogens. However, there is a need to develop methods that allow recent years' advances in cancer research to be used for improving risk estimates. It is recommended that defined risk levels (terminology and numerical values) are harmonised, and that both collective and individual risks are considered and clearly communicated. Socioeconomic aspects should be dealt with transparently and separated from the scientific health risk assessment.
Collapse
Affiliation(s)
- Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
36
|
Jurčacková Z, Ciglanová D, Mudroňová D, Tumová L, Bárcenas-Pérez D, Kopecký J, Koščová J, Cheel J, Hrčková G. Astaxanthin Extract from Haematococcus pluvialis and Its Fractions of Astaxanthin Mono- and Diesters Obtained by CCC Show Differential Antioxidant and Cytoprotective Effects on Naïve-Mouse Spleen Cells. Antioxidants (Basel) 2023; 12:1144. [PMID: 37371874 DOI: 10.3390/antiox12061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Carotenoids are the most abundant lipid-soluble phytochemicals and are used as dietary supplements to protect against diseases caused by oxidative stress. Astaxanthin, a xanthophyll carotenoid, is a very potent antioxidant with numerous beneficial effects on cellular functions and signaling pathways. In this study, using spleen cells from healthy Balb/c mice, we report the bio-functional effects of an astaxanthin-rich extract (EXT) prepared from the microalga Haematococcus pluvialis and its astaxanthin monoesters-rich fraction (ME) and astaxanthin diesters-rich fraction (DE) obtained by fractionation of EXT using countercurrent chromatography (CCC). After incubation under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen), the viability of untreated splenocytes, as determined by the trypan blue exclusion assay, the MTT assay, and the neutral red assay, decreases to approximately 75% after 24 h compared with naïve splenocytes. This effect correlated with the decrease in mitochondrial membrane potential and the transition of ~59% of cells to the early stage of apoptosis, as well as with the decreased ROS production, indicating that hyperoxia in cell-culture deteriorates cell functions. They are restored or stimulated by co-cultivation with EXT, ME, and DE up to 10 µg/mL in the order EXT > DE > ME, suggesting that esterification increases bioavailability to cells in vitro. ROS and H2O2 concentrations reflect mRNA transcriptional activity of Nrf2, superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1, as well as SOD-mediated ROS conversion, whereas they inversely correlate with iNOS-mediated NO production. The highest-tested concentration of EXT, ME, and DE (40 µg/mL) is detrimental to cells, probably because of the overwhelming scavenging activity of astaxanthin and its esters for the reactive oxygen/nitrogen species required for cellular functions and signal transduction at low physiological concentrations. In this study, we demonstrate that differential activities of ME and DE contribute to the final antioxidant and cytoprotective effects of astaxanthin extract, which is beneficial in preventing a wide range of ROS-induced adverse effects, with DE being more effective. In addition, the selection of physioxia-like conditions for pharmacological research is highlighted.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181 Košice, Slovakia
| | - Denisa Ciglanová
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181 Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181 Košice, Slovakia
| | - Lenka Tumová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy Hradec Králové, Charles University, Heyrovského 1203, 50165 Hradec Králové, Czech Republic
| | - Daniela Bárcenas-Pérez
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Jana Koščová
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - José Cheel
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Gabriela Hrčková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| |
Collapse
|
37
|
Bernardino CAR, Mahler CF, Fernandes JO, Lopes CSC, Braz BF, Archanjo BS, Santelli RE, Cincotto FH. Evaluation of microplastic contamination by metals in a controlled environment: A risk to be considered. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:691. [PMID: 37204496 DOI: 10.1007/s10661-023-11389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
The metal contamination and the degradation of polyethylene terephthalate (PET) due to human activities have contributed to the worsening of environmental problems in aquatic systems. Therefore, the study aimed to evaluate PET microplastic adsorption levels when exposed to high amounts of Ni, Cu and Co. The PET microplastic was characterized by scanning electron microscopy, Brunner-Emmet-Teller, porosimetry system, Barrett-Joyner-Halenda and Fourier transform infrared spectroscopy with attenuated total reflectance for evaluation of surface morphology, surface area, porosity, pore size and functional groups, respectively. The results showed that the surface area, the presence of macro and mesopores, and the functional groups influence the adsorption of metals on the surface of PET microplastic. The adsorption isotherms confirmed the presence of mesoporosity and macroporosity on the PET microplastic surface. The Freundlich and Langmuir models were used to study the adsorption capacity. The kinetics of adsorptions were interpreted using pseudo-first order and pseudo-second order models. The results indicated that the Langmuir isotherm and the pseudo-second order adequately described the adsorption of metals by the PET microplastic. The removal rates by the PET microplastic varied from 8 to 34% for Ni, 5 to 40% for Cu and 7 to 27% for Co after a period of 5 days. Furthermore, the adsorption was predominantly chemical and extremely fast, indicating that the presence of microplastics in the environment can lead to a rapid metal accumulation which elevates the hazards potential of microplastic in living beings.
Collapse
Affiliation(s)
| | - Claudio Fernando Mahler
- Civil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Oliveira Fernandes
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bernardo Ferreira Braz
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Braulio Soares Archanjo
- Inmetro-Xerém, Instituto Nacional Metrologia, Qualidade E Tecnologia, Duque de Caxias, Brazil
| | - Ricardo Erthal Santelli
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil
| | - Fernando Henrique Cincotto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil.
| |
Collapse
|
38
|
Martínez MA, Aedo H, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Anadón A, Martínez M, Peteiro C, Cueto M, Rubiño S, Hortos M, Ares I. Bifurcaria bifurcata extract exerts antioxidant effects on human Caco-2 cells. ENVIRONMENTAL RESEARCH 2023; 231:116141. [PMID: 37187306 DOI: 10.1016/j.envres.2023.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Hugo Aedo
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Cesar Peteiro
- Planta de Algas, Unidad de Cultivos Marinos "El Bocal", Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO, CSIC), 39012, Santander, Spain
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Spain
| | - Susana Rubiño
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - María Hortos
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
39
|
Li K, Pang S, Li Z, Ding X, Gan Y, Gan Q, Fang S. House ammonia exposure causes alterations in microbiota, transcriptome, and metabolome of rabbits. Front Microbiol 2023; 14:1125195. [PMID: 37250049 PMCID: PMC10213413 DOI: 10.3389/fmicb.2023.1125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Pollutant gas emissions in the current production system of the livestock industry have negative influences on environment as well as the health of farm staffs and animals. Although ammonia (NH3) is considered as the primary and harmful gas pollutant in the rabbit farm, less investigation has performed to determine the toxic effects of house ammonia exposure on rabbit in the commercial confined barn. Methods In this study, we performed multi-omics analysis on rabbits exposed to high and low concentration of house ammonia under similar environmental conditions to unravel the alterations in nasal and colonic microbiota, pulmonary and colonic gene expression, and muscular metabolic profile. Results and discussion The results showed that house ammonia exposure notably affected microbial structure, composition, and functional capacity in both nasal and colon, which may impact on local immune responses and inflammatory processes. Transcriptome analysis indicated that genes related to cell death (MCL1, TMBIM6, HSPB1, and CD74) and immune response (CDC42, LAMTOR5, VAMP8, and CTSB) were differentially expressed in the lung, and colonic genes associated with redox state (CAT, SELENBP1, GLUD1, and ALDH1A1) were significantly up-regulated. Several key differentially abundant metabolites such as L-glutamic acid, L-glutamine, L-ornithine, oxoglutaric acid, and isocitric acid were identified in muscle metabolome, which could denote house ammonia exposure perturbed amino acids, nucleotides, and energy metabolism. In addition, the widespread and strong inter-system interplay were uncovered in the integrative correlation network, and central features were confirmed by in vitro experiments. Our findings disclose the comprehensive evidence for the deleterious effects of house ammonia exposure on rabbit and provide valuable information for understanding the underlying impairment mechanisms.
Collapse
|
40
|
Veltman CHJ, Pennings JLA, van de Water B, Luijten M. An Adverse Outcome Pathway Network for Chemically Induced Oxidative Stress Leading to (Non)genotoxic Carcinogenesis. Chem Res Toxicol 2023. [PMID: 37156502 DOI: 10.1021/acs.chemrestox.2c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenotoxic (NGTX) carcinogens induce cancer via other mechanisms than direct DNA damage. A recognized mode of action for NGTX carcinogens is induction of oxidative stress, a state in which the amount of oxidants in a cell exceeds its antioxidant capacity, leading to regenerative proliferation. Currently, carcinogenicity assessment of environmental chemicals primarily relies on genetic toxicity end points. Since NGTX carcinogens lack genotoxic potential, these chemicals may remain undetected in such evaluations. To enhance the predictivity of test strategies for carcinogenicity assessment, a shift toward mechanism-based approaches is required. Here, we present an adverse outcome pathway (AOP) network for chemically induced oxidative stress leading to (NGTX) carcinogenesis. To develop this AOP network, we first investigated the role of oxidative stress in the various cancer hallmarks. Next, possible mechanisms for chemical induction of oxidative stress and the biological effects of oxidative damage to macromolecules were considered. This resulted in an AOP network, of which associated uncertainties were explored. Ultimately, development of AOP networks relevant for carcinogenesis in humans will aid the transition to a mechanism-based, human relevant carcinogenicity assessment that involves a substantially lower number of laboratory animals.
Collapse
Affiliation(s)
- Christina H J Veltman
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
41
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
42
|
Tang Y, Chen K, Xiao Z, Hong G, Hu L, Cai J, Lu Z. A novel mechanism of Dimethyl ester of Alpha-ketoglutarate in suppressing Paraquat-induced BEAS-2B cell injury by alleviating GSDME dependent pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154698. [PMID: 36773430 DOI: 10.1016/j.phymed.2023.154698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Acute lung injury (ALI) induced by paraquat (PQ) progresses rapidly, leading to high mortality; however, there is no specific antidote. Our limited knowledge of the pathogenic toxicological mechanisms of PQ has hindered the development of treatments against PQ exposure. PURPOSE Pyroptosis is a form of programmed cell death recently identified as a novel molecular mechanism adopted by chemotherapeutic drugs for cancer therapy. However, the involvement of pyroptosis in PQ-induced lung injury has not been reported. Therefore, we investigated the effects of PQ on the lung tissues to elucidate the molecular mechanisms underlying its toxicity, especially its ability to induce pyroptosis. METHODS To observe the morphological changes of BEAS-2B cells exposed to PQ, the plasma membrane damage of the cells was detected by LDH release assay, mitochondrial function and cell metabolism were detected by energy metabolism analysis. Western blotting was used to detect the protein levels of GSDMD, C-GSDMD, GSDME and N-GSDME in BEAS-2B cells. Metabolites of TCA cycle were detected by metabolomics, and the changes of TCA cycle metabolic enzymes in cells were detected by Western blotting. RESULTS We observed that PQ induced proteolytic cleavage of gasdermin E (GSDME) with concomitant cleavage of caspase 3 in BEAS-2B cells. Knockout of GSDME attenuated PQ-induced cell death. Additionally, PQ induced ROS accumulation, mitochondrial depolarisation, and mitochondrial dysfunction in these cells. PQ activated the caspase 3/GSDME pathway and damaged the cytoplasmic membrane in cells, leading to pyroptosis. We demonstrated that DMK suppressed PQ-induced pyroptosis by blocking PQ-induced caspase 3/GSDME pathway activation, reducing cellular ROS levels, and improving mitochondrial function. CONCLUSION These findings provide novel insights into the previously unrecognized mechanism of GSDME-dependent pyroptosis in PQ poisoning.
Collapse
Affiliation(s)
- Yahui Tang
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| | - Kaiyuan Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Zhong Xiao
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Guangliang Hong
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Lufeng Hu
- Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China; Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianping Cai
- Ministry of Health Key Laboratory of Geriatrics (J.-P.C.), Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
43
|
1,2,4,5-Tetrazine-tethered probes for fluorogenically imaging superoxide in live cells with ultrahigh specificity. Nat Commun 2023; 14:1401. [PMID: 36918556 PMCID: PMC10014963 DOI: 10.1038/s41467-023-37121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Superoxide (O2·-) is the primary reactive oxygen species in mammal cells. Detecting superoxide is crucial for understanding redox signaling but remains challenging. Herein, we introduce a class of activity-based sensing probes. The probes utilize 1,2,4,5-tetrazine as a superoxide-responsive trigger, which can be modularly tethered to various fluorophores to tune probe sensitivity and emission color. These probes afford ultra-specific and ultra-fluorogenic responses towards superoxide, and enable multiplexed imaging of various cellular superoxide levels in an organelle-resolved way. Notably, the probes reveal the aberrant superoxide generation in the pathology of myocardial ischemia/reperfusion injury, and facilitate the establishment of a high-content screening pipeline for mediators of superoxide homeostasis. One such identified mediator, coprostanone, is shown to effectively ameliorating oxidative stress-induced injury in mice with myocardial ischemia/reperfusion injury. Collectively, these results showcase the potential of 1,2,4,5-tetrazine-tethered probes as versatile tools to monitor superoxide in a range of pathophysiological settings.
Collapse
|
44
|
Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030703. [PMID: 36978951 PMCID: PMC10044810 DOI: 10.3390/antiox12030703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today’s advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | | | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil 626126, India
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
45
|
Jiang H, Meng X, Zhang N, Ge H, Wei J, Qian K, Zheng Y, Park Y, Reddy Palli S, Wang J. The pleiotropic AMPK-CncC signaling pathway regulates the trade-off between detoxification and reproduction. Proc Natl Acad Sci U S A 2023; 120:e2214038120. [PMID: 36853946 PMCID: PMC10013871 DOI: 10.1073/pnas.2214038120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 03/01/2023] Open
Abstract
The association of decreased fecundity with insecticide resistance and the negative sublethal effects of insecticides on insect reproduction indicates the typical trade-off between two highly energy-demanding processes, detoxification and reproduction. However, the underlying mechanisms are poorly understood. The energy sensor adenosine monophosphate-activated protein kinase (AMPK) and the transcription factor Cap "n" collar isoform C (CncC) are important regulators of energy metabolism and xenobiotic response, respectively. In this study, using the beetle Tribolium castaneum as a model organism, we found that deltamethrin-induced oxidative stress activated AMPK, which promoted the nuclear translocation of CncC through its phosphorylation. The CncC not only acts as a transcription activator of cytochrome P450 genes but also regulates the expression of genes coding for ecdysteroid biosynthesis and juvenile hormone (JH) degradation enzymes, resulting in increased ecdysteroid levels as well as decreased JH titer and vitellogenin (Vg) gene expression. These data show that in response to xenobiotic stress, the pleiotropic AMPK-CncC signaling pathway mediates the trade-off between detoxification and reproduction by up-regulating detoxification genes and disturbing hormonal homeostasis.
Collapse
Affiliation(s)
- Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS66506
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY40546
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou225009, China
| |
Collapse
|
46
|
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373:110376. [PMID: 36736874 DOI: 10.1016/j.cbi.2023.110376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
A wide variety of chemicals are ubiquitous in the environment and thus exposure to these environmental chemicals poses a serious threat to public health. Particularly, environmental factors such as air pollution, heavy metals, and endocrine-disrupting chemicals (EDCs) can lead to diseases in various organ systems. Recent research in environmental epigenetics has demonstrated that N6-methyladenosine (m6A) modification is a key mechanism of environment-related diseases. m6A modification is the most abundant chemical modification in mRNAs, which can specifically regulate gene expression by affecting RNA translation, stability, processing, and nuclear export. In this review, we discussed how environmental chemicals affected m6A modification and mediated environment-related disease occurrence by classifying the diseases of various systems. Here, we conclude that environmental chemicals alter the levels of m6A and its modulators, which then participate in the occurrence of diseases in various systems by regulating gene expression and downstream signaling pathways such as METTL3/m6A ZBTB4/YTHDF2/EZH2, Foxo3a/FTO/m6A ephrin-B2/YTHDF2, and HIF1A/METTL3/m6A BIRC5/IGF2BP3/VEGFA. Considering the significant role of m6A and its modulators in response to environmental chemicals, they are expected to be used as biomarkers of environment-related diseases. Additionally, targeting m6A modulators using small molecule inhibitors and activators is expected to be a new method for the treatment of environment-related diseases. This review systematically and comprehensively clarifies the important role of m6A in diseases caused by environmental chemicals, thus establishing a scientific basis for the treatment of diseases in various organ systems.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
47
|
Man Y, Liu Y, Xiong C, Zhang Y, Zhang L. Non-Lethal Concentrations of CdCl 2 Cause Marked Alternations in Cellular Stress Responses within Exposed Sertoli Cell Line. TOXICS 2023; 11:167. [PMID: 36851042 PMCID: PMC9962571 DOI: 10.3390/toxics11020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Cadmium is a component of ambient metal pollution, which is linked to diverse health issues globally, including male reproductive impairment. Assessments of the acute effects of cadmium on male reproduction systems, such as testes, tend to be based on frank adverse effects, with particular molecular pathways also involved. The relationship between cytotoxicity potential and cellular stress response has been suggested to be one of the many possible drivers of the acute effects of cadmium, but the link remains uncertain. In consequence, there is still much to be learned about the cellular stress response induced by a non-lethal concentration of cadmium in male reproductive cells. The present study used temporal assays to evaluate cellular stress response upon exposure to non-lethal concentrations of Cadmium chloride (CdCl2) in the Sertoli cell line (TM4). The data showed alternations in the expression of genes intimated involved in various cellular stress responses, including endoplasmic reticulum (ER) stress, endoplasmic unfolded protein stress (UPRmt), endoplasmic dynamics, Nrf2-related antioxidative response, autophagy, and metallothionein (MT) expression. Furthermore, these cellular responses interacted and were tightly related to oxidative stress. Thus, the non-lethal concentration of cadmium perturbed the homeostasis of the Sertoli cell line by inducing pleiotropic cellular stresses.
Collapse
Affiliation(s)
- Yonghong Man
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
- Center of Scientific Research and Experiment, Nanyang Medical College, Nanyang 473006, China
| | - Yunhao Liu
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Chuanzhen Xiong
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Yang Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Ling Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| |
Collapse
|
48
|
Matsuo K, Abiko Y, Yamano S, Matsusue K, Kumagai Y. Activation of HSP90/HSF1 Signaling as an Adaptive Response to an Electrophilic Metabolite of Morphine. Biol Pharm Bull 2023; 46:334-337. [PMID: 36724961 DOI: 10.1248/bpb.b22-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphinone (MO) is an electrophilic metabolite of morphine that covalently binds to protein thiols, resulting in toxicity in vitro and in vivo. We have previously identified a variety of redox signaling pathways that are activated during electrophilic stress. However, the role of MO in such activation remains unknown. In this study, we examined whether MO could activate heat shock protein (HSP) 90/heat shock factor (HSF) 1 signaling in HepG2 cells. MO exposure caused S-modification of HSP90 (determined using biotin-PEAC5-maleimide labeling) and nuclear translocation of transcription factor HSF1, thereby up-regulating its downstream genes encoding B-cell lymphoma 2-associated anthanogene 3 and heat shock 70 kDa protein 1. However, dihydromorphinone, a non-electrophilic metabolite of morphine, had little effect on HSF1 activation or upregulation of these genes, suggesting that covalent modification plays a role in this process and that the HSP90/HSF1 pathway is a redox-signaled adaptive response to morphine metabolism.
Collapse
Affiliation(s)
- Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University
| | - Yumi Abiko
- Faculty of Medicine, University of Tsukuba.,Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | | |
Collapse
|
49
|
Wang SY, Cai L, Yang N, Xu FF, Wu YS, Liu B. Chemical composition of the Kaempferia galanga L. essential oil and its in vitro and in vivo antioxidant activities. Front Nutr 2023; 10:1080487. [PMID: 36819689 PMCID: PMC9932537 DOI: 10.3389/fnut.2023.1080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Oxidative stress is closely related to the development of many diseases. Essential oils (EOs) show potent antioxidant activity from natural sources. Kaempferia galanga L. is an important medicine rich in high-value essential oil (KGEO). However, the antioxidant activity of KGEO remains to be fully studied. Methods Chemical composition of KGEO was analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity was determined using the DPPH, ABTS, hydroxyl radical scavenging assays and reducing power assay in vitro. A zebrafish model was used to evaluate the protective effect of KGEO against H2O2-induced oxidative stress damage in vivo. Results The major components of KGEO were found to be trans ethyl p-methoxycinnamate (32.01%), n-pentadecane (29.14%) and trans ethyl cinnamate (19.50%). In vitro pharmacological results showed that KGEO had good free radical scavenging capacity in DPPH, ABTS, and hydroxyl radical scavenging assays (IC50 values: 19.77 ± 1.28, 1.41 ± 0.01, and 3.09 ± 0.34 mg/mL, respectively) and weak reducing capacity in the reducing power assay (EC50 value: 389.38 ± 4.07 mg/mL). In vivo zebrafish experiments results indicated that the survival rate and heart rate increased, and ROS generation, cell death, and lipid peroxidation were attenuated after KGEO treatment. In addition, a decrease in malondialdehyde (MDA) levels and increases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were observed in the KGEO-treated groups. Discussion This study validated the in vitro and in vivo antioxidant activities of KGEO, which provides a theoretical basis for a profound study of KGEO and its application in the pharmaceutical, food and cosmetic industries.
Collapse
Affiliation(s)
- Si-Yu Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Cai
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Fang Xu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Yun-Shan Wu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China,*Correspondence: Bo Liu,
| |
Collapse
|
50
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|