1
|
Batinic D, Djuranovic A, Maletic M, Stankovic S, Zivkovic V, Stanojevic D, Bolevich S, Savic M, Jakovljevic V. The Effects of Consuming Mineral Water from the "Topla Voda" Spring on the Body Composition and Functional and Biochemical Parameters of Professional Male Handball Athletes: A Pilot Study. Sports (Basel) 2025; 13:100. [PMID: 40278726 PMCID: PMC12031458 DOI: 10.3390/sports13040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Adequate hydration is crucial to an athlete's health and performance. There is some evidence that the different compositions of various mineral water types may improve exercise performance and affect different biomarkers. The aim was to investigate the consumption of mineral water from the "Topla voda" spring in terms of its safety profile and its effect on body composition and functional and biochemical parameters in professional athletes. During the preparation phase of their mesocycle, 14 male professional handball players underwent a complete sports medical screening exam with a cardiopulmonary exercise test (CPET), blood gas analysis, and oxidative stress marker dynamics taken at four points during the CPET. The athletes were then randomized into two equal groups; the first group consumed mineral water, and the second group consumed tap water. After four weeks, the biochemical analysis and CPET were repeated. Routine analyses showed that the "mineral water" group had increased their mean corpuscular hemoglobin (ANCOVA = 0.050) and mean corpuscular hemoglobin concentration (ANCOVA = 0.001) and had a greater metabolic equivalent of task (MET) value at the end of the test (ANCOVA = 0.049), with no significant changes in the other measured parameters. Consuming "mineral water" appears to be safe, with some potential positive effects compared with tap water, mostly in terms of hemoglobin parameters and exercise tolerance.
Collapse
Affiliation(s)
- Djordje Batinic
- Medical Department, Serbian Institute of Sports and Sports Medicine, 11030 Belgrade, Serbia; (D.B.); (M.M.); (V.J.)
| | - Andrija Djuranovic
- Medical Department, Serbian Institute of Sports and Sports Medicine, 11030 Belgrade, Serbia; (D.B.); (M.M.); (V.J.)
| | - Milos Maletic
- Medical Department, Serbian Institute of Sports and Sports Medicine, 11030 Belgrade, Serbia; (D.B.); (M.M.); (V.J.)
| | - Sanja Stankovic
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11030 Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University, 119435 Moscow, Russia
| | | | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University, 119435 Moscow, Russia;
| | - Milan Savic
- Medical Department, Serbian Institute of Sports and Sports Medicine, 11030 Belgrade, Serbia; (D.B.); (M.M.); (V.J.)
| | - Vladimir Jakovljevic
- Medical Department, Serbian Institute of Sports and Sports Medicine, 11030 Belgrade, Serbia; (D.B.); (M.M.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
2
|
Reinert C, Gabiatti MP, Pillmann-Ramos H, Silva DAS, de Fragas Hinnig P, de Carvalho J, Panza VSP, da Silva EL, Hansen F. Dietary antioxidant capacity is inversely associated with F2- isoprostane and body fat percentage in elite soccer referees. Sci Rep 2024; 14:30121. [PMID: 39627398 PMCID: PMC11615358 DOI: 10.1038/s41598-024-80963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Background Dietary antioxidant Capacity (DaC) has been used as a tool for predicting plasma and dietary antioxidant concentrations. However, the DaC association with oxidative stress (OS) and body composition parameters is an unexplored area, mainly in physically active individuals. Given the potential for increased OS in physically active individuals, it becomes crucial to investigate this association. The aim of this study was to analyze the association between DaC, OS biomarkers, and body composition in healthy and physically active individuals. Methods This Cross-sectional study included 20 male soccer referees. Body composition measurements (body mass, fat mass, lean mass, and waist circumference), OS biomarkers (F2-isoprostane, total antioxidant state, total oxidative status, reduced glutathione, oxidized glutathione, superoxide dismutase, glutathione peroxidase (GPx) and catalase), and DaC were evaluated. Linear regression models were used to determine the association between DaC and the dependent variables. The study was approved by the Human Research Ethics Committee of the Federal University of Santa Catarina (UFSC), CAAE 82584318.0.0000.0121, and file no. 2.572.301. Results DaC was inversely associated with F2-isoprostane (p = 0.044), GPx activity (p = 0.048), and body fat percentage (p = 0.025). Conclusions Increased DaC in physically active individuals may bring benefits related to biomarkers of OS, such as decreasing F2-isoprostane and increasing GPx activity. The increase in DaC also showed an improvement in body composition, demonstrated by the lower percentage of body fat in the study subjects.
Collapse
Affiliation(s)
- Camile Reinert
- Graduate Student in Nutrition, Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Mariana Papini Gabiatti
- Graduate Student in Nutrition, Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Hanna Pillmann-Ramos
- Undergraduate Student in Pharmaceutical Sciences, Department of Clinical Analyses, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Diego Augusto Santos Silva
- Sports Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Patrícia de Fragas Hinnig
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Jolmerson de Carvalho
- Sports Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Vilma Simões Pereira Panza
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Edson Luiz da Silva
- Graduate Programs in Pharmaceutical Sciences and Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Zuo J, Zeng X, Ma H, Chen P, Cai X, Fan Z, Qu J. Musculoskeletal Ultrasound Assessment of the Clinical Efficacy of the Combination of Acupressure and "Three Methods of Neck Movement (TCM)" Therapy in the Treatment of Cervical Spondylosis: A Study Protocol for a Randomized Controlled Trial. J Pain Res 2024; 17:3651-3665. [PMID: 39534754 PMCID: PMC11556232 DOI: 10.2147/jpr.s469511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Neck-type cervical spondylopathy (NTCS), a common degenerative disorder affecting the spine, poses challenges for patients and society. Research has demonstrated the effectiveness of traditional tuina techniques in treating NTCS, although some limitations still exist. Our study aimed to evaluate the effectiveness of combining regular massage techniques with three methods of neck movement (TCM) therapy for managing NTCS, utilizing musculoskeletal ultrasound measurements. Patients and Methods In this study, 70 eligible patients with non-traumatic cervical spondylosis will be randomly assigned in a 1:1 ratio to either the experimental group, which will receive Tuina combined with a three-method neck movement treatment, or the control group, which will receive standard Tui Na manipulation. All participants will receive treatment for four weeks. Assessments will be conducted using musculoskeletal ultrasound, the McGill Pain Scale, and the Neck Disability Index (NDI) at three-time points: before treatment, at the end of treatment, and after 12 and 16 weeks of treatment. Conclusion This paper investigates the utility of musculoskeletal ultrasound as a tool for evaluating the therapeutic efficacy of an integrated Traditional Chinese Medicine (TCM) strategy in alleviating pain and enhancing functional outcomes for patients with NTCS. The objective is to present a clinically viable and long-term treatment option. Trial Registration Chinese Clinical Trial Registry, ChiCTR2300072648. Registered on June 20, 2023.
Collapse
Affiliation(s)
- Jinhong Zuo
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| | - Xiayang Zeng
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| | - Hongyi Ma
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| | - Peng Chen
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| | - Xinlei Cai
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| | - Zhenyu Fan
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| | - Jianpeng Qu
- Massage Department, Zhejiang Hospital, Hangzhou City, People’s Republic of China
| |
Collapse
|
4
|
Bian X, Wang L, Ma Y, Yu Y, Guo C, Gao W. A Flavonoid Concentrate from Moringa Oleifera Lam. Leaves Extends Exhaustive Swimming Time by Improving Energy Metabolism and Antioxidant Capacity in Mice. J Med Food 2024; 27:887-894. [PMID: 39052664 DOI: 10.1089/jmf.2023.k.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.
Collapse
Affiliation(s)
- Xiangyu Bian
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Wang
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuying Ma
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yijing Yu
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
5
|
Zhong S, Jia N, Qu Y, Zhang X, Xu Q, Yang Y, Wang Z, Wang Z. Analysis and study on biomarkers of local muscle fatigue caused by repetitive lifting task. BMC Musculoskelet Disord 2024; 25:660. [PMID: 39174942 PMCID: PMC11342632 DOI: 10.1186/s12891-024-07783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Work-related musculoskeletal disorders (WMSDs) show a rapid growth trend. It has brought a huge economic burden to the society and become a serious occupational health problem that needs to be solved urgently. This study aimed to analyze the local muscle response under continuous ergonomic load, screen sensitive fatigue-related biomarkers and provide data support for the early prevention of local muscle damage and the exploration of early warning indicators. METHODS Thirteen male college student volunteers were recruited to perform simulated repetitive manual lifting tasks in the laboratory. The lifting task was designed for 4 periods which lasted for 12 min in each, and then paused for 3 min for sampling. Local muscle fatigue is assesed by the Rating of perceived exertion (RPE) and the Joint analysis of sEMG spectrum and amplitude (JASA). Elbow venous blood was collected and 14 kinds of biomarkers were analyzed, which included Metabolic markers Ammonia (AMM), Lactic acid (LAC), Creatine kinase (CK), Lactate dehydrogenase (LDH), Cartilage oligomeric matrix protein (COMP), C-telopeptide of collagen I and II (CTX-I, CTX-II) and Calcium ion (Ca2+); Oxidative stress marker Glutathione (GSH); Inflammatory markers C-reaction protein (CRP), Prostaglandin E2 (PG-E2), Interleukin-6 (IL-6) and Tumor necrosis factor α (TNF-α); Pain marker Neuropeptide Y (NPY). Repeated measures analysis of variance (Repeated ANOVA), linear regression analysis, t-test and spearman correlation analysis were used to analyze the data. RESULTS Both subjective and objective fatigue appeared at the same period. Serum AMM, LAC, CK, LDH, COMP, CTX-II, Ca2+ and NPY after fatigue were significantly higher than those before fatigue (p < 0.05). There was a certain degree of correlation between the markers with statistical differences before and after fatigue. CONCLUSIONS Metabolic markers (serum AMM, LAC, CK, LDH, COMP, CTX-II, Ca2+) and pain markers (serum NPY) can reflect local muscle fatigue to a certain extent in repetitive manual lifting tasks. It is necessary to further expand the research on fatigue-related biomarkers in different types of subjects and jobs in the future.
Collapse
Affiliation(s)
- Siwu Zhong
- Occupational Health Surveillance Center, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Ning Jia
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ying Qu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xueyan Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qing Xu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yan Yang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China.
| | - Zhongxu Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
6
|
Ceci R, Maldini M, La Rosa P, Sgrò P, Sharma G, Dimauro I, Olson ME, Duranti G. Comparative Metabolomic Analysis of Moringa oleifera Leaves of Different Geographical Origins and Their Antioxidant Effects on C2C12 Myotubes. Int J Mol Sci 2024; 25:8109. [PMID: 39125678 PMCID: PMC11311983 DOI: 10.3390/ijms25158109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.
Collapse
Affiliation(s)
- Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy;
| | | | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy;
| | - Paolo Sgrò
- Laboratory of Endocrinology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy;
| | - Garima Sharma
- Department of Botany, University of Delhi, Delhi 110007, India;
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetics, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy;
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de CU S/N, Ciudad de México 04510, Mexico;
| | - Guglielmo Duranti
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy;
| |
Collapse
|
7
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
8
|
Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants (Basel) 2024; 13:437. [PMID: 38671884 PMCID: PMC11047508 DOI: 10.3390/antiox13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
9
|
Huang S, Sun H, Lin D, Huang X, Chen R, Li M, Huang J, Guo F. Camellia oil exhibits anti-fatigue property by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. J Food Sci 2024; 89:2465-2481. [PMID: 38380680 DOI: 10.1111/1750-3841.16983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
- The Affiliated Quanzhou Center for Disease Control and Prevention of Fujian Medical University, Quanzhou, China
| | - Huiyu Sun
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Dai Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinjue Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ruiran Chen
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Minli Li
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jialing Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Patel H, Vanguri P, Kumar D, Levin D. The Impact of Inadequate Sleep on Overtraining Syndrome in 18-22-Year-Old Male and Female College Athletes: A Literature Review. Cureus 2024; 16:e56186. [PMID: 38618318 PMCID: PMC11015874 DOI: 10.7759/cureus.56186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Both male and female athletes experience acute fatigue and decreased performance from intense training sessions and training cycles with inadequate recovery. The concept of training with insufficient recovery time is known as overtraining syndrome (OTS). Primary stressors leading to OTS include excessive training, environmental factors, and inadequate levels of sleep. Sleep is a critical component of rest, recovery, memory, and cognitive function in collegiate athletes, known as male and female athletes between 18 and 22 years old. Collegiate athletes are more prone to inadequate levels of sleep, which can lead to elevated levels of fatigue, a lack of energy, motivation, alertness, and a weakened immune system. Additionally, inadequate levels of sleep lead to decreased glycogen stores in the body, affecting the functioning of physiological pathways. The processes of removing toxins and the release of growth hormones (GHs) are also impacted. GH is secreted as the rapid eye movement (REM) phase alternates with the non-REM phase and continues to rise until it peaks in the REM sleep stage, which is important for physical recovery, memory formation, and emotional regulation. This literature review aims to summarize current research on overtraining and the physiological changes that are present in both males and females from inadequate levels of sleep, emphasizing its importance in body homeostasis.
Collapse
Affiliation(s)
- Hemangi Patel
- Sports Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Pradeep Vanguri
- Health and Human Performance, Nova Southeastern University, Fort Lauderdale, USA
| | - Divya Kumar
- Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Dianna Levin
- Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| |
Collapse
|
11
|
Prieto Martínez A, Coutiño Diaz M, Anaya Romero L, Ali Redha A, Zare R, Ventura Hernandez S, Prokopidis K, Clifford T. Effects of Vaccinium berries (blueberries, cranberries and bilberries) on oxidative stress, inflammation, exercise performance, and recovery - a systematic review. Food Funct 2024; 15:444-459. [PMID: 38165220 DOI: 10.1039/d3fo04435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Exercise-induced muscle damage is common in athletes and recreational exercisers and can lead to muscle soreness, weakness, and impaired muscle function. The precise mechanisms are unclear but oxidative stress and inflammation are thought to play a role. (Poly)phenols are substances abundant in Vaccinium berries that have been suggested to possess antioxidant and anti-inflammatory effects that could help improve exercise performance and/or recovery from exercise. The objective of this systematic review was to evaluate the benefits of Vaccinium berry supplementation on exercise performance and recovery, as well as on exercise-induced oxidative and inflammatory biomarkers in healthy individuals. A comprehensive search was conducted in PubMed, ProQuest Medline, Web of Science, Cochrane Library, and Scopus. Studies were included if the participants were healthy individuals who were supplemented with any Vaccinium berry or Vaccinium berry-based products in comparison to a control group. Of the 13 articles included in this review, no significant differences in the exercise performance were found and only one study reported benefits for markers of recovery. Interleukins and c-reactive protein were the most frequently reported biomarkers, but there was limited evidence that Vaccinium berry supplementation impacted them post-exercise. Most studies were of high quality and showed a low risk of bias. Vaccinium berry supplementation is not effective in modulating markers of exercise-induced inflammation and oxidative distress in healthy individuals; nevertheless, more studies are required to evaluate their effects on exercise performance and recovery in this population.
Collapse
Affiliation(s)
- Arnold Prieto Martínez
- School of Medicine and Health Sciences, Tecnológico de Monterrey Campus Guadalajara, Jalisco, Mexico
| | - Michelle Coutiño Diaz
- School of Medicine and Health Sciences, Tecnológico de Monterrey Campus Guadalajara, Jalisco, Mexico
| | - Lizette Anaya Romero
- School of Medicine and Health Sciences, Tecnológico de Monterrey Campus Guadalajara, Jalisco, Mexico
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reza Zare
- Meshkat Sports Complex, Karaj, Alborz Province, Iran
- Arses Sports Complex, Karaj, Alborz Province, Iran
| | | | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Society of meta-Research and Biomedical Innovation, London, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
12
|
Spanakis M, Fragkiadaki P, Renieri E, Vakonaki E, Fragkiadoulaki I, Alegakis A, Kiriakakis M, Panagiotou N, Ntoumou E, Gratsias I, Zoubaneas E, Morozova GD, Ovchinnikova MA, Tsitsimpikou C, Tsarouhas K, Drakoulis N, Skalny AV, Tsatsakis A. Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights. Front Sports Act Living 2024; 5:1327792. [PMID: 38260814 PMCID: PMC10801261 DOI: 10.3389/fspor.2023.1327792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In modern athlete assessment, the integration of conventional biochemical and ergophysiologic monitoring with innovative methods like telomere analysis, genotyping/phenotypic profiling, and metabolomics has the potential to offer a comprehensive understanding of athletes' performance and potential longevity. Telomeres provide insights into cellular functioning, aging, and adaptation and elucidate the effects of training on cellular health. Genotype/phenotype analysis explores genetic variations associated with athletic performance, injury predisposition, and recovery needs, enabling personalization of training plans and interventions. Metabolomics especially focusing on low-molecular weight metabolites, reveal metabolic pathways and responses to exercise. Biochemical tests assess key biomarkers related to energy metabolism, inflammation, and recovery. Essential elements depict the micronutrient status of the individual, which is critical for optimal performance. Echocardiography provides detailed monitoring of cardiac structure and function, while burnout testing evaluates psychological stress, fatigue, and readiness for optimal performance. By integrating this scientific testing battery, a multidimensional understanding of athlete health status can be achieved, leading to personalized interventions in training, nutrition, supplementation, injury prevention, and mental wellness support. This scientifically rigorous approach hereby presented holds significant potential for improving athletic performance and longevity through evidence-based, individualized interventions, contributing to advances in the field of sports performance optimization.
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Elisavet Renieri
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Irene Fragkiadoulaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Athanasios Alegakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Mixalis Kiriakakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | | | | | - Ioannis Gratsias
- Check Up Medicus Biopathology & Ultrasound Diagnostic Center – Polyclinic, Athens, Greece
| | | | - Galina Dmitrievna Morozova
- Bioelementology and Human Ecology Center, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina Alekseevna Ovchinnikova
- Department of Sport Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University (Sechenov Univercity), Moscow, Russia
| | | | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Anatoly Viktorovich Skalny
- Bioelementology and Human Ecology Center, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Medical Elementology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| |
Collapse
|
13
|
Thorley J, Thomas C, Thon N, Nuttall H, Martin NRW, Bishop N, Bailey SJ, Clifford T. Combined effects of green tea supplementation and eccentric exercise on nuclear factor erythroid 2-related factor 2 activity. Eur J Appl Physiol 2024; 124:245-256. [PMID: 37439906 PMCID: PMC10786739 DOI: 10.1007/s00421-023-05271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE This study investigated whether combining eccentric exercise and green tea supplementation synergistically increased nuclear factor erythroid 2-related factor 2 (NRF2) activity, a transcription factor responsible for coordinating endogenous antioxidant expression. METHODS In a double-blinded, randomized, between-subjects design, 24 males (mean [SD]; 23 [3] years, 179.6 [6.1] cm, 78.8 [10.6] kg) performed 100 drop jumps following a 6 days supplementation period with either green tea (poly)phenols (n = 12; 500 mg·d-1) or a placebo (n = 12; inulin). NRF2/antioxidant response element (ARE) binding in peripheral blood mononuclear cells (PBMCs), catalase (CAT) and glutathione reductase (GR) activity, 8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, and differential leukocyte counts were measured pre-, post-, 1 h and 24 h post-exercise. RESULTS Exercise did not increase NRF2/ARE binding (p = 0.12) (fold change vs rest: green tea = [post] 0.78 ± 0.45, [1 h] 1.17 ± 0.54, [24 h] 1.06 ± 0.56; placebo = [post] 1.40 ± 1.50, [1 h] 2.98 ± 3.70, [24 h] 1.04 ± 0.45). Furthermore, CAT activity (p = 0.12) and 8-OHdG excretion (p = 0.42) were unchanged in response to exercise and were not augmented by green tea supplementation (p > 0.05 for all). Exercise increased GR activity by 30% (p = 0.01), however no differences were found between supplement groups (p = 0.51). Leukocyte and neutrophil concentrations were only elevated post-exercise (p < 0.001 for all). CONCLUSION Eccentric exercise, either performed alone or in conjunction with green tea supplementation, did not significantly increase NRF2 activity in PBMCs. TRIAL REGISTRATION NUMBER osf.io/kz37g (registered: 15/09/21).
Collapse
Affiliation(s)
- Josh Thorley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Craig Thomas
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Nicolas Thon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Hannah Nuttall
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Nicolette Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
14
|
Dahleh MMM, Araujo SM, Bortolotto VC, Torres SP, Machado FR, Meichtry LB, Musachio EAS, Guerra GP, Prigol M. The implications of exercise in Drosophila melanogaster: insights into Akt/p38 MAPK/Nrf2 pathway associated with Hsp70 regulation in redox balance maintenance. J Comp Physiol B 2023; 193:479-493. [PMID: 37500966 DOI: 10.1007/s00360-023-01505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory Human and Animal Bio Health, Federal University of Fronteira Sul, Realeza, PR, CEP 85770-000, Brazil
| | | | - Stéphanie Perreira Torres
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| |
Collapse
|
15
|
Almuraikhy S, Anwardeen N, Doudin A, Sellami M, Domling A, Agouni A, Althani AA, Elrayess MA. Antioxidative Stress Metabolic Pathways in Moderately Active Individuals. Metabolites 2023; 13:973. [PMID: 37755253 PMCID: PMC10535328 DOI: 10.3390/metabo13090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity (PA) is known to have beneficial effects on health, primarily through its antioxidative stress properties. However, the specific metabolic pathways that underlie these effects are not fully understood. This study aimed to investigate the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. Data on 305 young, non-obese participants were obtained from the Qatar Biobank. The participants were classified as active or sedentary based on their self-reported PA levels. Plasma metabolomics data were collected and analyzed to identify differences in metabolic pathways between the two groups. The results showed that active participants had increased activation of antioxidative, stress-related pathways, including lysoplasmalogen, plasmalogen, phosphatidylcholine, vitamin A, and glutathione. Additionally, there were significant associations between glutathione metabolites and certain clinical traits, including bilirubin, uric acid, hemoglobin, and iron. This study provides new insights into the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. The findings may have implications for the development of new therapeutic strategies that target these pathways.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmma Doudin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alexander Domling
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Abdelali Agouni
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Althani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
16
|
Abate M, Pellegrino R, Di Iorio A, Salini V. Oxidative Stress and Performance after Training in Professional Soccer (European Football) Players. Antioxidants (Basel) 2023; 12:1470. [PMID: 37508008 PMCID: PMC10376101 DOI: 10.3390/antiox12071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Vitamins, hormones, free radicals, and antioxidant substances significantly influence athletic performance. The aim of this study was to evaluate whether these biological mediators changed during the season and if this was associated with the rate of improvement in performance after training, assessed by means of a standardized test. Professional male soccer players took part in the study. Two evaluations were performed: the first in the pre-season period and the second at the mid-point of the official season, after about 6 months of intensive training and weekly matches. Blood levels of vitamins D, B12, and folic acid, testosterone and cortisol, free radicals, and antioxidant substances were measured. Two hours after breakfast, a Yo-Yo test was performed. The relationships between the biological mediators and the rate of improvement after training (i.e., the increase in meters run in the Yo-Yo test between the pre-season and mid-season periods) were evaluated by means of a linear mixed models analysis. Results: Eighty-two paired tests were performed. The athletes showed better performance after training, with an increase in the meters run of about 20%. No significant relationships between the vitamin and hormone values and the gain in the performance test were observed. Plasmatic levels of free radicals increased significantly, as did the blood antioxidant potential. An indirect relationship between oxidative stress and the improvement in performance was observed (free radicals β ± SE: = -0.33 ± 0.10; p-value = 0.001), with lower levels of oxidative stress being associated with higher levels of performance in the Yo-Yo test. Monitoring the measures of oxidative stress could be a useful additional tool for coaches in training and/or recovery programs tailored to each player.
Collapse
Affiliation(s)
- Michele Abate
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaello Pellegrino
- Department of Scientific Research, Campus Ludes, Off-Campus Semmelweis University, Pazzallo, 6912 Lugano, Switzerland
| | - Angelo Di Iorio
- Department of Innovative Technologies in Medicine & Dentistry, Gabriele D'Annunzio University, 66100 Chieti, Italy
| | | |
Collapse
|
17
|
Gonciarz W, Piątczak E, Chmiela M. The influence of Salvia cadmica Boiss. extracts on the M1/M2 polarization of macrophages primed with Helicobacter pylori lipopolysaccharide in conjunction with NF-kappa B activation, production of cytokines, phagocytic activity and total DNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116386. [PMID: 36921911 DOI: 10.1016/j.jep.2023.116386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1 St., 90-151, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| |
Collapse
|
18
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Pérez-Castillo ÍM, Rueda R, Bouzamondo H, López-Chicharro J, Mihic N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front Physiol 2023; 14:1167449. [PMID: 37113691 PMCID: PMC10126523 DOI: 10.3389/fphys.2023.1167449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
High-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.
Collapse
Affiliation(s)
| | | | | | - José López-Chicharro
- Real Madrid, Medical Services, Madrid, Spain
- *Correspondence: José López-Chicharro,
| | - Niko Mihic
- Real Madrid, Medical Services, Madrid, Spain
| |
Collapse
|
20
|
Weigert H, Stuckenschneider T, Pickert L, Rossi A, Meyer AM, Nelles G, Schulz RJ, Stahl W, Schneider S, Polidori MC, on behalf of the NeuroExercise Study Group. Influence of a 12-Month Structured Exercise Program on the Micronutrient-Cognitive Fitness-Physical Association Profiles in Mild Cognitive Impairment. J Alzheimers Dis Rep 2022; 6:711-722. [PMID: 36606208 PMCID: PMC9741747 DOI: 10.3233/adr-220039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Preventive lifestyle strategies have shown promise to slow down or prevent age-related cognitive decline. However, evidence on the reciprocal longitudinal relationships between nutrition biomarkers and cognitive and physical performance is lacking. Studying nutritional, cognitive, and physical profiles over time may help to overcome this knowledge gap. Objective To investigate the relationship of plasma levels of the robust nutritional- and antioxidant defense-related biomarkers carotenoids and tocopherols with both indicators of cognitive and physical performance in persons with mild cognitive impairment (MCI) participating in a structured exercise program. Methods Data from 40 participants with MCI of the NeuroExercise study were analyzed. Participants had undergone a blood withdrawal for the analysis of plasma concentrations of six carotenoids, two tocopherols and retinol prior to and after one-year of structured exercise. All participants had undergone a broad spectrum of cognitive and physical performance tests. Results Significant associations between lipophilic micronutrients and cognitive/physical measures were observed that were previously found to play a role in cognitive and physical frailty. In particular, lutein, zeaxanthin, and lycopene are confirmed as robust, reliable, and stable indicators of nutritional defense. Importantly, these micronutrients were associated with cognitive measures prior to the physical training program and to a more prominent extent with indicators of motoric function after the physical exercise program. Conclusion Specific profiles of lipophilic micronutrients are associated to cognitive performance measures and, especially after a structured exercise program, to indicators of physical performance.
Collapse
Affiliation(s)
- Hannah Weigert
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tim Stuckenschneider
- Geriatric Medicine, Department for Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany,Institute of Movement and Neuroscience, German Sport University, Cologne, Germany,VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Lena Pickert
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andrea Rossi
- Geriatric Care Unit, Central Hospital Bolzano, Bolzano, Italy
| | - Anna M. Meyer
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gereon Nelles
- Outpatient Clinic NeuroMedCampus Hohenlind, Cologne, Germany
| | | | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Schneider
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany,VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - M. Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress- Responses in Aging- Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany,Correspondence to: M. Cristina Polidori, Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany. Tel.: +49 221 47832753; E-mail:
| | | |
Collapse
|
21
|
Fenk S, Melnikova EV, Anashkina AA, Poluektov YM, Zaripov PI, Mitkevich VA, Tkachev YV, Kaestner L, Minetti G, Mairbäurl H, Goede JS, Makarov AA, Petrushanko IY, Bogdanova A. Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Redox Biol 2022; 58:102535. [PMID: 36413919 PMCID: PMC9679038 DOI: 10.1016/j.redox.2022.102535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Fast changes in environmental oxygen availability translate into shifts in mitochondrial free radical production. An increase in intraerythrocytic reduced glutathione (GSH) during deoxygenation would support the detoxification of exogenous oxidants released into the circulation from hypoxic peripheral tissues. Although reported, the mechanism behind this acute oxygen-dependent regulation of GSH in red blood cells remains unknown. This study explores the role of hemoglobin (Hb) in the oxygen-dependent modulation of GSH levels in red blood cells. We have demonstrated that a decrease in Hb O2 saturation to 50% or less observed in healthy humans while at high altitude, or in red blood cell suspensions results in rising of the intraerythrocytic GSH level that is proportional to the reduction in Hb O2 saturation. This effect was not caused by the stimulation of GSH de novo synthesis or its release during deglutathionylation of Hb's cysteines. Using isothermal titration calorimetry and in silico modeling, we observed the non-covalent binding of four molecules of GSH to oxy-Hb and the release of two of them upon deoxygenation. Localization of the GSH binding sites within the Hb molecule was identified. Oxygen-dependent binding of GSH to oxy-Hb and its release upon deoxygenation occurred reciprocally to the binding and release of 2,3-bisphosphoglycerate. Furthermore, noncovalent binding of GSH to Hb moderately increased Hb oxygen affinity. Taken together, our findings have identified an adaptive mechanism by which red blood cells may provide an advanced antioxidant defense to respond to oxidative challenges immediately upon deoxygenation.
Collapse
Affiliation(s)
- Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, and Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elizaveta V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri M Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel I Zaripov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lars Kaestner
- Theoretical Medicine and Biosciences and Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarland and Homburg, Germany
| | - Giampaolo Minetti
- Department of Biology and Biotechnology "L Spallanzani", Laboratories of Biochemistry, University of Pavia, Italy
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jeroen S Goede
- Department of Internal Medicine, Division of Oncology and Hematology, Cantonal Hospital Winterthur, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Switzerland
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, and Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Switzerland.
| |
Collapse
|
22
|
Kong F, Li Y, Zhang Y, Zeng Q, Guo X. Elucidation of the potential antioxidant compound and mechanism of mung bean using network pharmacology and in vitro anti-oxidative activity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mung bean is rich in bioactive components, but the main compound and pharmacological mechanism in reducing oxidative and free radical damage are unclear. Network pharmacology and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging activities were employed to uncover the antioxidant mechanism of potentially active compounds, considering the interactions between mung bean targets and oxidative and free radical damage. These key targets were analyzed by protein–protein interactions (PPIs), and key genes were used to find the biological pathway and therapeutic mechanism by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that five antioxidant components and 18 mung bean targets were screened. β-carotene and vitexin both played a crucial role in mung bean against oxidative and free radical damage, and the ABTS radical scavenging activities of β-carotene and vitexin were 94.84 and 87.79%, which were equivalent to those of vitamin C. Key targets may be AR, HSP90AA1, MYC, and CASP3 for mung bean to exert antioxidant activity. GO and KEGG indicated that mung bean may mainly act on thyroid hormone signaling pathway, estrogen signaling pathway, p53 signaling pathway, etc. In vitro antioxidant activity tests showed that the bioactive ingredients of mung beans had great antioxidant activity. Network pharmacology analysis also revealed the underlying molecular mechanisms of oxidative and free radical damage. This study provides new insights and evidence to explore the bioactive compounds and biological functions of food cereals and legumes, as well as a reference for the functional evaluation of food ingredients and the development of functional foods.
Collapse
|
23
|
Li S, Fasipe B, Laher I. Potential harms of supplementation with high doses of antioxidants in athletes. J Exerc Sci Fit 2022; 20:269-275. [PMID: 35812825 PMCID: PMC9241084 DOI: 10.1016/j.jesf.2022.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
| | | | - Ismail Laher
- University of British Columbia, Canada
- Corresponding author.
| |
Collapse
|
24
|
De Marchi T, Ferlito JV, Ferlito MV, Salvador M, Leal-Junior ECP. Can Photobiomodulation Therapy (PBMT) Minimize Exercise-Induced Oxidative Stress? A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11091671. [PMID: 36139746 PMCID: PMC9495825 DOI: 10.3390/antiox11091671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress induced by exercise has been a research field in constant growth, due to its relationship with the processes of fatigue, decreased production of muscle strength, and its ability to cause damage to the cell. In this context, photobiomodulation therapy (PBMT) has emerged as a resource capable of improving performance, while reducing muscle fatigue and muscle damage. To analyze the effects of PBMT about exercise-induced oxidative stress and compare with placebo therapy. Data Sources: Databases such as PubMed, EMBASE, CINAHL, CENTRAL, PeDro, and Virtual Health Library, which include Lilacs, Medline, and SciELO, were searched to find published studies. Study Selection: There was no year or language restriction; randomized clinical trials with healthy subjects that compared the application (before or after exercise) of PBMT to placebo therapy were included. Study Design: Systematic review with meta-analysis. Level of Evidence: 1. Data Extraction: Data on the characteristics of the volunteers, study design, intervention parameters, exercise protocol and oxidative stress biomarkers were extracted. The risk of bias and the certainty of the evidence were assessed using the PEDro scale and the GRADE system, respectively. Results: Eight studies (n = 140 participants) were eligible for this review, with moderate to excellent methodological quality. In particular, PBMT was able to reduce damage to lipids post exercise (SMD = −0.72, CI 95% −1.42 to −0.02, I2 = 77%, p = 0.04) and proteins (SMD = −0.41, CI 95% −0.65 to −0.16, I2 = 0%, p = 0.001) until 72 h and 96 h, respectively. In addition, it increased the activity of SOD enzymes (SMD = 0.54, CI 95% 0.07 to 1.02, I2 = 42%, p = 0.02) post exercise, 48 and 96 h after irradiation. However, PBMT did not increase CAT activity (MD = 0.18 CI 95% −0.56 to 0.91, I2 = 79%, p = 0.64) post exercise. We did not find any difference in TAC or GPx biomarkers. Conclusion: Low to moderate certainty evidence shows that PBMT is a resource that can reduce oxidative damage and increase enzymatic antioxidant activity post exercise. We found evidence to support that one session of PBMT can modulate the redox metabolism.
Collapse
Affiliation(s)
- Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo 03155-000, Brazil
- Correspondence:
| | - João Vitor Ferlito
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Marcos Vinicius Ferlito
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Mirian Salvador
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo 03155-000, Brazil
- ELJ Consultancy, Scientific Consultants, São Paulo 01153-000, Brazil
| |
Collapse
|
25
|
Moringa oleifera Leaf Extract Protects C2C12 Myotubes against H2O2-Induced Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11081435. [PMID: 35892637 PMCID: PMC9330721 DOI: 10.3390/antiox11081435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. In the present study, the antioxidant effect of Moringa oleifera leaf extract (MOLE) was evaluated in C2C12 myotubes exposed to an elevated hydrogen peroxide (H2O2) insult. The capacity of the extract to influence the myotube redox status was evaluated through an analysis of the total antioxidant capacity (TAC), glutathione homeostasis (GSH and GSSG), total free thiols (TFT), and thioredoxin (Trx) activity, as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and transferase (GST). Moreover, the ability of MOLE to mitigate the stress-induced peroxidation of lipids and oxidative damage (TBARS and protein carbonyls) was also evaluated. Our data demonstrate that MOLE pre-treatment mitigates the highly stressful effects of H2O2 in myotubes (1 mM) by restoring the redox status (TFT, Trx, and GSH/GSSG ratio) and increasing the antioxidant enzymatic system (CAT, SOD, GPx, GST), thereby significantly reducing the TBARs and PrCAR levels. Our study provides evidence that MOLE supplementation has antioxidant potential, allowing myotubes better able to cope with an oxidative insult and, therefore, could represent a useful nutritional strategy for the preservation of muscle well-being.
Collapse
|
26
|
Wu Y, Guo X, Peng Y, Fang Z, Zhang X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front Physiol 2022; 13:879430. [PMID: 35845992 PMCID: PMC9277456 DOI: 10.3389/fphys.2022.879430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve physical fitness. Physical exercise has been widely used as a non-pharmacological approach to preventing and improving a wide range of diseases, including cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease. However, the effects of physical exercise on sepsis have not been summarized until now. In this review, we discuss the effects of physical exercise on multiple organ functions and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms underlying the protective effects of physical exercise on sepsis are discussed. In conclusion, we consider that physical exercise may be a beneficial and non-pharmacological alternative for the treatment of sepsis.
Collapse
Affiliation(s)
- You Wu
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Guo
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Yuliang Peng
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zongping Fang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
27
|
di Corcia M, Tartaglia N, Polito R, Ambrosi A, Messina G, Francavilla VC, Cincione RI, della Malva A, Ciliberti MG, Sevi A, Messina G, Albenzio M. Functional Properties of Meat in Athletes' Performance and Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5145. [PMID: 35564540 PMCID: PMC9102337 DOI: 10.3390/ijerph19095145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Physical activity (PA) and sport play an essential role in promoting body development and maintaining optimal health status both in the short and long term. Despite the benefits, a long-lasting heavy training can promote several detrimental physiological changes, including transitory immune system malfunction, increased inflammation, and oxidative stress, which manifest as exercise-induced muscle damages (EIMDs). Meat and derived products represent a very good source of bioactive molecules such as proteins, lipids, amino acids, vitamins, and minerals. Bioactive molecules represent dietary compounds that can interact with one or more components of live tissue, resulting in a wide range of possible health consequences such as immune-modulating, antihypertensive, antimicrobial, and antioxidative activities. The health benefits of meat have been well established and have been extensively reviewed elsewhere, although a growing number of studies found a significant positive effect of meat molecules on exercise performance and recovery of muscle function. Based on the limited research, meat could be an effective post-exercise food that results in favorable muscle protein synthesis and metabolic performance.
Collapse
Affiliation(s)
- Martina di Corcia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Gaetana Messina
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | | | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonella della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| |
Collapse
|
28
|
Effect of 10 km run on lower limb skin temperature and thermal response after a cold-stress test over the following 24 h. J Therm Biol 2022; 105:103225. [DOI: 10.1016/j.jtherbio.2022.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
29
|
Muggeridge DJ, Crabtree DR, Tuncay A, Megson IL, Davison G, Cobley JN. Exercise decreases PP2A-specific reversible thiol oxidation in human erythrocytes: Implications for redox biomarkers. Free Radic Biol Med 2022; 182:73-78. [PMID: 35217176 DOI: 10.1016/j.freeradbiomed.2022.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
New readily accessible systemic redox biomarkers are needed to understand the biological roles reactive oxygen species (ROS) play in humans because overtly flawed, technically fraught, and unspecific assays severely hamper translational progress. The antibody-linked oxi-state assay (ALISA) makes it possible to develop valid ROS-sensitive target-specific protein thiol redox state biomarkers in a readily accessible microplate format. Here, we used a maximal exercise bout to disrupt redox homeostasis in a physiologically meaningful way to determine whether the catalytic core of the serine/threonine protein phosphatase PP2A is a candidate systemic redox biomarker in human erythrocytes. We reasoned that: constitutive oxidative stress (e.g., haemoglobin autoxidation) would sensitise erythrocytes to disrupted ion homeostasis as manifested by increased oxidation of the ion regulatory phosphatase PP2A. Unexpectedly, an acute bout of maximal exercise lasting ~16 min decreased PP2A-specific reversible thiol oxidation (redox ratio, rest: 0.46; exercise: 0.33) without changing PP2A content (rest: 193 pg/ml; exercise: 191 pg/ml). The need for only 3-4 μl of sample to perform ALISA means PP2A-specific reversible thiol oxidation is a capillary-fingertip blood-compatible candidate redox biomarker. Consistent with biologically meaningful redox regulation, thiol reductant-inducible PP2A activity was significantly greater (+10%) at rest compared to exercise. We establish a route to developing new readily measurable protein thiol redox biomarkers for understanding the biological roles ROS play in humans.
Collapse
Affiliation(s)
- David J Muggeridge
- Division of Biomedical Sciences, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH, Scotland, UK; Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Daniel R Crabtree
- Division of Biomedical Sciences, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH, Scotland, UK
| | - Ahmet Tuncay
- Division of Biomedical Sciences, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH, Scotland, UK
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH, Scotland, UK
| | - Gareth Davison
- Sport and Exercise Research Institute, Ulster University, Newtownabbey, Northern Ireland, UK
| | - James N Cobley
- Division of Biomedical Sciences, University of the Highlands and Islands, Old Perth Road, Inverness, IV2 3JH, Scotland, UK.
| |
Collapse
|
30
|
Exercise and Oxidative Stress Biomarkers among Adult with Cancer: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2097318. [PMID: 35222792 PMCID: PMC8881118 DOI: 10.1155/2022/2097318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
Evidence shows that exercise can have a favourable effect in cancer patients. The exercise’s clinical benefits are likely to concern multiple interrelated biological pathways, among which oxidative stress plays a key role. Regular training can induce an adaptive response that strengthens the antioxidative status of the body. To formulate public health recommendations regarding the optimal exercise prescription for cancer patients, a detailed understanding is needed regarding the effect of exercise on variables linked to oxidative stress and antioxidant status of patients. The goal of this systematic review, based on PRISMA, was to explore and critically analyse the evidence regarding the efficacy of exercise on oxidative stress biomarkers among people with cancer. Study search was conducted in the following databases: PubMed, Cochrane, CINAHL, Embase, PEDro, and SPORTDiscus. The studies’ quality was assessed with the Cochrane risk-of-bias tool and STROBE scale. After identification and screening steps, 10 articles were included. The findings provide an encouraging picture of exercise, including resistance training and aerobic activities, in people with cancer. The exercise improved the indicators of the total antioxidant capacity, increased the antioxidant enzymes’ activity, or reduced the biomarkers of oxidative damage in various forms of cancer such as breast, lung, head, and neck. Regarding oxidative DNA damage, the role of exercise intervention has been difficult to assess. The heterogeneity of study design and the plethora of biomarkers measured hampered the comparison of the articles. This limited the possibility of establishing a comprehensive conclusion on the sensitivity of biomarkers to estimate the exercise’s benefits. Further high-quality studies are required to provide data regarding oxidative stress biomarkers responding to exercise. This information will be useful to assess the efficacy of exercise in people with cancer and support the appropriate prescription of exercise in anticancer strategy.
Collapse
|
31
|
Interaction between the Effects of Sustained Swimming Activity and Dietary Macronutrient Proportions on the Redox Status of Gilthead Sea Bream Juveniles (Sparus aurata L.). Antioxidants (Basel) 2022; 11:antiox11020319. [PMID: 35204202 PMCID: PMC8868478 DOI: 10.3390/antiox11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers’ thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.
Collapse
|
32
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
33
|
Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA. Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life (Basel) 2021; 11:1269. [PMID: 34833151 PMCID: PMC8624755 DOI: 10.3390/life11111269] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cells have the ability to adapt to stressful environments as a part of their evolution. Physical exercise induces an increase of a demand for energy that must be met by mitochondria as the main (ATP) provider. However, this process leads to the increase of free radicals and the so-called reactive oxygen species (ROS), which are necessary for the maintenance of cell signaling and homeostasis. In addition, mitochondrial biogenesis is influenced by exercise in continuous crosstalk between the mitochondria and the nuclear genome. Excessive workloads may induce severe mitochondrial stress, resulting in oxidative damage. In this regard, the objective of this work was to provide a general overview of the molecular mechanisms involved in mitochondrial adaptation during exercise and to understand if some nutrients such as antioxidants may be implicated in blunt adaptation and/or an impact on the performance of exercise by different means.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Marcelo Angeles-Valencia
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Ciudad de México 14420, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - José Gutiérrez-Salinas
- Laboratorio de Bioquímica y Medicina Experimental, Centro Médico Nacional “20 de Noviembre”, ISSSTE, Ciudad de México 03229, Mexico;
| | - César Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico; (G.C.-C.); (J.M.C.-L.)
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico; (G.C.-C.); (J.M.C.-L.)
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| |
Collapse
|
34
|
An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101528. [PMID: 34679663 PMCID: PMC8532825 DOI: 10.3390/antiox10101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
One of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to moderate intensity and long-term exercises. In stressful situations, antioxidant supplements are recommended to prevent ROS damage. We examined the response of SM to ROS generation during exercise using an antioxidant supplement treatment strategy in this study. The findings of this review research are paradoxical due to variances in antioxidant supplements dose and duration, intensity, length, frequency, types of exercise activities, and, in general, the lack of a regular exercise and nutrition strategy. As such, further research in this area is still being felt.
Collapse
|
35
|
Duranti G, Maldini M, Crognale D, Horner K, Dimauro I, Sabatini S, Ceci R. Moringa oleifera Leaf Extract Upregulates Nrf2/HO-1 Expression and Ameliorates Redox Status in C2C12 Skeletal Muscle Cells. Molecules 2021; 26:molecules26165041. [PMID: 34443628 PMCID: PMC8400669 DOI: 10.3390/molecules26165041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles.
Collapse
Affiliation(s)
- Guglielmo Duranti
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy; (S.S.); (R.C.)
- Correspondence: ; Tel.: +39-06-3673-3589; Fax: +39-06-3673-3479
| | | | - Domenico Crognale
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland; (D.C.); (K.H.)
| | - Katy Horner
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland; (D.C.); (K.H.)
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy;
| | - Stefania Sabatini
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy; (S.S.); (R.C.)
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy; (S.S.); (R.C.)
| |
Collapse
|
36
|
Special issue on 'Biomarkers of Oxidative Stress, Aging and Nutrition in Human Studies'. Redox Biol 2021; 45:102059. [PMID: 34210644 PMCID: PMC8282506 DOI: 10.1016/j.redox.2021.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|